Derleme
BibTex RIS Kaynak Göster

Güneş Enerjili Yeşil Hidrojen Üretimi: Fotokatalitik Su Ayrıştırma

Yıl 2024, Cilt: 5 Sayı: 1, 36 - 45, 01.07.2024

Öz

Güneş enerjisiyle yeşil hidrojen üretimi, güneş enerjisinden yararlanmanın ve fosil yakıtların yanmasından kaynaklanan iklim değişikliğiyle mücadele etmenin potansiyel olarak ümit verici bir yolu olarak değerlendiriliyor. Suyun parçalanması yoluyla güneş hidrojeni üretmek için en çok araştırılan teknikler arasında fotokatalitik (FK), fotoelektrokimyasal, fotovoltaik-elektrokimyasal, güneş termokimyasal, fototermal katalitik ve fotobiyolojik teknolojiler yer alır. Bu makale, FK teknolojisinin kapsamlı bir incelemesini sağlamaya odaklanmaktadır. Bu teknolojinin temelleri ve işleyişine kısa bir genel bakışın ardından, fotokatalitik H2 üretimine ilişkin mevcut araştırmalar, güneş enerjisinin H2'ye (STH) dönüşüm verimliliğine vurgu yapılarak gözden geçirilmektedir. Sonuç olarak, fotokatalitik H2 sentezi üzerine daha ileri çalışmaların zorlukları ve hedefleri tartışılmıştır. Ayrıca inceleme, suyun ayrıştırılması ile doğrudan hidrojen eldesine ilişkin önerilerle tamamlanıyor.

Kaynakça

  • Ganguly, P., Harb, M., Cao, Z., & et al. (2019). 2D nanomaterials for photocatalytic hydrogen production. ACS Energy Letters, 4(7), 1687–1709.
  • Bilgiç, G., & Öztürk, B. (2023). Modeling of artificial neural networks for hydrogen production via water electrolysis. El-Cezeri Fen ve Mühendislik Dergisi.
  • Lu, H., Tournet, J., Dastafkan, K., & et al. (2021). Noble-metal-free multicomponent Nanointegration for Sustainable Energy Conversion. Chemical Reviews, 121(17), 10271–10366.
  • Song, H., Luo, S., Huang, H., & et al. (2022a). Solar-driven hydrogen production: Recent advances, challenges, and future perspectives. ACS Energy Letters, 7(3), 1043–1065.
  • Mosca, L., Medrano Jimenez, J. A., Wassie, S. A., & et al. (2020a). Process design for green hydrogen production. International Journal of Hydrogen Energy, 45(12), 7266–7277.
  • Ajanovic, A., Sayer, M., & Haas, R. (2022). The economics and the environmental benignity of different colors of hydrogen. International Journal of Hydrogen Energy, 47(57), 24136–24154.
  • Noussan, M., Raimondi, P. P., Scita, R., & Hafner, M. (2020). The role of green and blue hydrogen in the energy transition—a technological and geopolitical perspective. Sustainability, 13(1), 298.
  • Nikolaidis, P., & Poullikkas, A. (2017). A comparative overview of Hydrogen Production Processes. Renewable and Sustainable Energy Reviews, 67, 597–611.
  • Carmo, M., Fritz, D. L., Mergel, J., & Stolten, D. (2013). A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 38(12), 4901–4934.
  • Burton, N. A., Padilla, R. V., Rose, A., & Habibullah, H. (2021). Increasing the efficiency of hydrogen production from solar powered water electrolysis. Renewable and Sustainable Energy Reviews, 135, 110255.
  • Gupta, B., & Melvin, A. A. (2017). Tio2/RGO composites: Its achievement and factors involved in hydrogen production. Renewable and Sustainable Energy Reviews, 76, 1384–1392.
  • Rioja-Cabanillas, A., Valdesueiro, D., Fernández-Ibáñez, P., & Byrne, J. A. (2020). Hydrogen from wastewater by photocatalytic and photoelectrochemical treatment. Journal of Physics: Energy, 3(1), 012006.
  • Cox, N., Pantazis, D. A., Neese, F., & Lubitz, W. (2015). Artificial photosynthesis: Understanding water splitting in nature. Interface Focus, 5(3), 20150009.
  • Maeda, K. (2011). Photocatalytic water splitting using semiconductor particles: History and recent developments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 12(4), 237–268.
  • Al Obeidli, A., Ben Salah, H., Al Murisi, M., & Sabouni, R. (2022). Recent advancements in mofs synthesis and their green applications. International Journal of Hydrogen Energy, 47(4), 2561–2593.
  • Kaplan, H., Şahin, M., & Bilgiç, G. (2021). The influence of magnetic field on newly designed oxyhydrogen and hydrogen production by water electrolysis. Energy Technology, 9(12).
  • Goodarzi, N., Ashrafi-Peyman, Z., Khani, E., & Moshfegh, A. Z. (2023). Recent progress on semiconductor heterogeneous photocatalysts in clean energy production and environmental remediation. Catalysts, 13(7), 1102.
  • Nazir, M. A., Najam, T., Altaf, M., & et al. (2024). Tuning the photocatalytic hydrogen production via co-catalyst engineering. Journal of Alloys and Compounds, 990, 174378.
  • Pavel, M., Anastasescu, C., State, R.-N., & et al. (2023). Photocatalytic degradation of organic and inorganic pollutants to harmless end products: Assessment of practical application potential for water and air cleaning. Catalysts, 13(2), 380.
  • Yamada, T., & Domen, K. (2018). Development of sunlight driven water splitting devices towards future artificial photosynthetic industry. ChemEngineering, 2(3), 36.
  • Nadeem, M. A., Khan, M. A., Ziani, A. A., & Idriss, H. (2021). An overview of the photocatalytic water splitting over suspended particles. Catalysts, 11(1), 60.
  • Ng, B., Putri, L. K., Kong, X. Y., & et al. (2020). Z‐scheme photocatalytic systems for solar water splitting. Advanced Science, 7(7).
  • Dharani, S., Vadivel, S., Gnanasekaran, L., & Rajendran, S. (2023). S-scheme heterojunction photocatalysts for hydrogen production: Current progress and future prospects. Fuel, 349, 128688.
  • Zarmi, Y. (2024). High-intensity pulsed-light cultivation of unicellular algae: Photosynthesis continues in the dark. Heliyon, 10(5).
  • A., M., J., M., Ashokkumar, M., & Arunachalam, P. (2018). A review on Bivo 4 photocatalyst: Activity enhancement methods for solar photocatalytic applications. Applied Catalysis A: General, 555, 47–74.
  • Wang, Q.; Hisatomi, T.; Suzuki, Y.; & et al., K.Particulate photocatalyst sheets based on carbon conductor layer for efficient Z-scheme pure-water splitting at ambient pressure. J. Am. Chem. Soc. 2017, 139, 1675– 1683.
  • Wang, L.; Zheng, X.; Chen, L.; & et al. Van der Waals Heterostructures Comprised of Ultrathin Polymer Nanosheets for Efficient Z-Scheme Overall Water Splitting. Angew. Chem., Int. Ed. 2018, 57, 3454– 3458.
  • Zhao, D.; Wang, Y.; Dong, C.-L.; & et al. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy 2021, 6, 388– 397.
  • Wang, Q.; Hisatomi, T.; Jia, Q.; & et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 2016, 15, 611– 615.
  • Wang, Z.; Inoue, Y.; Hisatomi, T.; & et al. Overall water splitting by Ta 3 N 5 nanorod single crystals grown on the edges of KTaO3 particles. Nat. Catal. 2018, 1, 756– 763.
  • Wolff, C. M.; Frischmann, P. D.; Schulze, M.; & et al. All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods. Nat. Energy 2018, 3, 862– 869.
  • Liu, J.; Liu, Y.; Liu, N.; & et al.. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970– 974.
  • Lin, Y.; Su, W.; Wang, X.; & et al.. LaOCl-Coupled Polymeric Carbon Nitride for Overall Water Splitting through a One-Photon Excitation Pathway. Angew. Chem., Int. Ed. 2020, 59, 20919– 20923.
  • Nishiyama, H.; Yamada, T.; Nakabayashi, M.; & et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature 2021, 598, 304– 307.
  • Takata, T.; Jiang, J.; Sakata, Y.; & et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020, 581, 411– 414.
  • Etacheri, V., Di Valentin, C., Schneider, J., & et al. (2015). Visible-light activation of TIO2 photocatalysts: Advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 25, 1–29.
  • Wudil, Y. S., Ahmad, U. F., Gondal, M. A., & et al. (2023). Tuning of graphitic carbon nitride (G-C3N4) for Photocatalysis: A critical review. Arabian Journal of Chemistry, 16(3), 104542.
  • Huo, J., Zhang, Y.-B., Zou, W.-Y., & et al. (2019). Mini-review on an engineering approach towards the selection of transition metal complex-based catalysts for photocatalytic H2 production. Catalysis Science & Technology, 9(11), 2716–2727.
  • Suremann, N. F., McCarthy, B. D., Gschwind, W., & et al. (2023). Molecular catalysis of energy relevance in metal–organic frameworks: From Higher Coordination Sphere to system effects. Chemical Reviews, 123(10), 6545–6611.

Solar Green Hydrogen Production: Photocatalytic Water Splitting

Yıl 2024, Cilt: 5 Sayı: 1, 36 - 45, 01.07.2024

Öz

Solar green hydrogen production is considered a potentially promising way to harness solar energy and combat climate change caused by the burning of fossil fuels. The most researched techniques to produce solar hydrogen through water splitting include photocatalytic (PC), photoelectrochemical, photovoltaic-electrochemical, solar thermochemical, photothermal catalytic, and photobiological technologies. This article focuses on providing a comprehensive review of PC technology. After a brief overview of the fundamentals and operation of this technology, current research on photocatalytic H2 production is reviewed with emphasis on the conversion efficiency of solar energy to H2 (STH). In conclusion, the challenges, and goals of further studies on photocatalytic H2 synthesis are discussed. Additionally, the review is completed with suggestions for direct hydrogen production by splitting water.

Kaynakça

  • Ganguly, P., Harb, M., Cao, Z., & et al. (2019). 2D nanomaterials for photocatalytic hydrogen production. ACS Energy Letters, 4(7), 1687–1709.
  • Bilgiç, G., & Öztürk, B. (2023). Modeling of artificial neural networks for hydrogen production via water electrolysis. El-Cezeri Fen ve Mühendislik Dergisi.
  • Lu, H., Tournet, J., Dastafkan, K., & et al. (2021). Noble-metal-free multicomponent Nanointegration for Sustainable Energy Conversion. Chemical Reviews, 121(17), 10271–10366.
  • Song, H., Luo, S., Huang, H., & et al. (2022a). Solar-driven hydrogen production: Recent advances, challenges, and future perspectives. ACS Energy Letters, 7(3), 1043–1065.
  • Mosca, L., Medrano Jimenez, J. A., Wassie, S. A., & et al. (2020a). Process design for green hydrogen production. International Journal of Hydrogen Energy, 45(12), 7266–7277.
  • Ajanovic, A., Sayer, M., & Haas, R. (2022). The economics and the environmental benignity of different colors of hydrogen. International Journal of Hydrogen Energy, 47(57), 24136–24154.
  • Noussan, M., Raimondi, P. P., Scita, R., & Hafner, M. (2020). The role of green and blue hydrogen in the energy transition—a technological and geopolitical perspective. Sustainability, 13(1), 298.
  • Nikolaidis, P., & Poullikkas, A. (2017). A comparative overview of Hydrogen Production Processes. Renewable and Sustainable Energy Reviews, 67, 597–611.
  • Carmo, M., Fritz, D. L., Mergel, J., & Stolten, D. (2013). A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 38(12), 4901–4934.
  • Burton, N. A., Padilla, R. V., Rose, A., & Habibullah, H. (2021). Increasing the efficiency of hydrogen production from solar powered water electrolysis. Renewable and Sustainable Energy Reviews, 135, 110255.
  • Gupta, B., & Melvin, A. A. (2017). Tio2/RGO composites: Its achievement and factors involved in hydrogen production. Renewable and Sustainable Energy Reviews, 76, 1384–1392.
  • Rioja-Cabanillas, A., Valdesueiro, D., Fernández-Ibáñez, P., & Byrne, J. A. (2020). Hydrogen from wastewater by photocatalytic and photoelectrochemical treatment. Journal of Physics: Energy, 3(1), 012006.
  • Cox, N., Pantazis, D. A., Neese, F., & Lubitz, W. (2015). Artificial photosynthesis: Understanding water splitting in nature. Interface Focus, 5(3), 20150009.
  • Maeda, K. (2011). Photocatalytic water splitting using semiconductor particles: History and recent developments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 12(4), 237–268.
  • Al Obeidli, A., Ben Salah, H., Al Murisi, M., & Sabouni, R. (2022). Recent advancements in mofs synthesis and their green applications. International Journal of Hydrogen Energy, 47(4), 2561–2593.
  • Kaplan, H., Şahin, M., & Bilgiç, G. (2021). The influence of magnetic field on newly designed oxyhydrogen and hydrogen production by water electrolysis. Energy Technology, 9(12).
  • Goodarzi, N., Ashrafi-Peyman, Z., Khani, E., & Moshfegh, A. Z. (2023). Recent progress on semiconductor heterogeneous photocatalysts in clean energy production and environmental remediation. Catalysts, 13(7), 1102.
  • Nazir, M. A., Najam, T., Altaf, M., & et al. (2024). Tuning the photocatalytic hydrogen production via co-catalyst engineering. Journal of Alloys and Compounds, 990, 174378.
  • Pavel, M., Anastasescu, C., State, R.-N., & et al. (2023). Photocatalytic degradation of organic and inorganic pollutants to harmless end products: Assessment of practical application potential for water and air cleaning. Catalysts, 13(2), 380.
  • Yamada, T., & Domen, K. (2018). Development of sunlight driven water splitting devices towards future artificial photosynthetic industry. ChemEngineering, 2(3), 36.
  • Nadeem, M. A., Khan, M. A., Ziani, A. A., & Idriss, H. (2021). An overview of the photocatalytic water splitting over suspended particles. Catalysts, 11(1), 60.
  • Ng, B., Putri, L. K., Kong, X. Y., & et al. (2020). Z‐scheme photocatalytic systems for solar water splitting. Advanced Science, 7(7).
  • Dharani, S., Vadivel, S., Gnanasekaran, L., & Rajendran, S. (2023). S-scheme heterojunction photocatalysts for hydrogen production: Current progress and future prospects. Fuel, 349, 128688.
  • Zarmi, Y. (2024). High-intensity pulsed-light cultivation of unicellular algae: Photosynthesis continues in the dark. Heliyon, 10(5).
  • A., M., J., M., Ashokkumar, M., & Arunachalam, P. (2018). A review on Bivo 4 photocatalyst: Activity enhancement methods for solar photocatalytic applications. Applied Catalysis A: General, 555, 47–74.
  • Wang, Q.; Hisatomi, T.; Suzuki, Y.; & et al., K.Particulate photocatalyst sheets based on carbon conductor layer for efficient Z-scheme pure-water splitting at ambient pressure. J. Am. Chem. Soc. 2017, 139, 1675– 1683.
  • Wang, L.; Zheng, X.; Chen, L.; & et al. Van der Waals Heterostructures Comprised of Ultrathin Polymer Nanosheets for Efficient Z-Scheme Overall Water Splitting. Angew. Chem., Int. Ed. 2018, 57, 3454– 3458.
  • Zhao, D.; Wang, Y.; Dong, C.-L.; & et al. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy 2021, 6, 388– 397.
  • Wang, Q.; Hisatomi, T.; Jia, Q.; & et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 2016, 15, 611– 615.
  • Wang, Z.; Inoue, Y.; Hisatomi, T.; & et al. Overall water splitting by Ta 3 N 5 nanorod single crystals grown on the edges of KTaO3 particles. Nat. Catal. 2018, 1, 756– 763.
  • Wolff, C. M.; Frischmann, P. D.; Schulze, M.; & et al. All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods. Nat. Energy 2018, 3, 862– 869.
  • Liu, J.; Liu, Y.; Liu, N.; & et al.. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970– 974.
  • Lin, Y.; Su, W.; Wang, X.; & et al.. LaOCl-Coupled Polymeric Carbon Nitride for Overall Water Splitting through a One-Photon Excitation Pathway. Angew. Chem., Int. Ed. 2020, 59, 20919– 20923.
  • Nishiyama, H.; Yamada, T.; Nakabayashi, M.; & et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature 2021, 598, 304– 307.
  • Takata, T.; Jiang, J.; Sakata, Y.; & et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020, 581, 411– 414.
  • Etacheri, V., Di Valentin, C., Schneider, J., & et al. (2015). Visible-light activation of TIO2 photocatalysts: Advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 25, 1–29.
  • Wudil, Y. S., Ahmad, U. F., Gondal, M. A., & et al. (2023). Tuning of graphitic carbon nitride (G-C3N4) for Photocatalysis: A critical review. Arabian Journal of Chemistry, 16(3), 104542.
  • Huo, J., Zhang, Y.-B., Zou, W.-Y., & et al. (2019). Mini-review on an engineering approach towards the selection of transition metal complex-based catalysts for photocatalytic H2 production. Catalysis Science & Technology, 9(11), 2716–2727.
  • Suremann, N. F., McCarthy, B. D., Gschwind, W., & et al. (2023). Molecular catalysis of energy relevance in metal–organic frameworks: From Higher Coordination Sphere to system effects. Chemical Reviews, 123(10), 6545–6611.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Enerji Sistemleri Mühendisliği (Diğer)
Bölüm Derlemeler
Yazarlar

Gülbahar Bilgiç Tüzemen 0000-0002-9503-5884

Yayımlanma Tarihi 1 Temmuz 2024
Gönderilme Tarihi 13 Mayıs 2024
Kabul Tarihi 14 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 5 Sayı: 1

Kaynak Göster

APA Bilgiç Tüzemen, G. (2024). Güneş Enerjili Yeşil Hidrojen Üretimi: Fotokatalitik Su Ayrıştırma. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 5(1), 36-45.
AMA Bilgiç Tüzemen G. Güneş Enerjili Yeşil Hidrojen Üretimi: Fotokatalitik Su Ayrıştırma. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. Temmuz 2024;5(1):36-45.
Chicago Bilgiç Tüzemen, Gülbahar. “Güneş Enerjili Yeşil Hidrojen Üretimi: Fotokatalitik Su Ayrıştırma”. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 5, sy. 1 (Temmuz 2024): 36-45.
EndNote Bilgiç Tüzemen G (01 Temmuz 2024) Güneş Enerjili Yeşil Hidrojen Üretimi: Fotokatalitik Su Ayrıştırma. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 5 1 36–45.
IEEE G. Bilgiç Tüzemen, “Güneş Enerjili Yeşil Hidrojen Üretimi: Fotokatalitik Su Ayrıştırma”, Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 5, sy. 1, ss. 36–45, 2024.
ISNAD Bilgiç Tüzemen, Gülbahar. “Güneş Enerjili Yeşil Hidrojen Üretimi: Fotokatalitik Su Ayrıştırma”. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 5/1 (Temmuz 2024), 36-45.
JAMA Bilgiç Tüzemen G. Güneş Enerjili Yeşil Hidrojen Üretimi: Fotokatalitik Su Ayrıştırma. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2024;5:36–45.
MLA Bilgiç Tüzemen, Gülbahar. “Güneş Enerjili Yeşil Hidrojen Üretimi: Fotokatalitik Su Ayrıştırma”. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 5, sy. 1, 2024, ss. 36-45.
Vancouver Bilgiç Tüzemen G. Güneş Enerjili Yeşil Hidrojen Üretimi: Fotokatalitik Su Ayrıştırma. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2024;5(1):36-45.