Hasar Katalog Yazılımlarında Mimarlık ve Mimarların Rolü Üzerine Kapsamlı Bir İnceleme
Yıl 2024,
Cilt: 9 Sayı: Special Issue, 22 - 40, 06.02.2024
Mustafa Dallı
,
Asena Soyluk
Öz
Bu bilimsel makale, hasar kataloğu yazılımının kapsamlı bir incelemesini sunar ve yapısal hasarın analiz edilmesi ve belgelenmesi bağlamında mimari alıntıların önemini araştırır. Mimari tasarımların artan karmaşıklığı ve verimli hasar değerlendirmesinin artan önemi ile özel yazılım araçlarının kullanımı hayati hale gelmiştir. Bu çalışma, çeşitli hasar kataloğu yazılım uygulamalarını incelemekte ve mimari alıntıların doğru ve güvenilir belgeleme sağlamadaki rolünü vurgulamaktadır. Bulgular, veri yorumlamayı geliştirmek, bilgi transferini kolaylaştırmak ve yapısal analiz ve tasarım alanında disiplinler arası iş birliğini teşvik etmek için mimari alıntıları hasar kataloğu yazılımına entegre etmenin önemini vurgulamaktadır.
Kaynakça
- Anaissi, A., Makki Alamdari, M., Rakotoarivelo, T. & Khoa, N. (2018). A tensor-based structural damage identification and severity assessment. Sensors, 18(2), 111. https://doi.org/10.3390/s18010111
- Bernal, G. A. & Cardona, O. D. (2018). Next generation CAPRA software. In 16th European Conference on Earthquake Engineering.
- Betz, W., Papaioannou, I., Heidkamp, H., Gollwitzer, S. & Straub, D. (2017). Reliability analysis with STRUREL. In 2nd International Conference on Uncertainty Quantification in Computational Sciences and
Engineering, UNCECOMP.
- World Bank. (2018). CAPRA (Probabilistic Risk Assessment) Platform. Central America. Access Address (12.03.2023): https://ecapra.org/
- Computers and Structures Inc. (n.d.). SAP2000. Structural Analysıs and Design. Computers and Structures Inc. US. Access Address (11.12.2023): https://www.csiamerica.com/products/sap2000
- Croope, S. V. (2009). Working with HAZUS-MH. Disaster Research Center.
- Crowley, H., Monelli, D., Pagani, M., Silva, V., Weatherill, G., & Rao, A. (2015). The OpenQuake-engine User Manual. Global Earthquake Model (GEM) Technical Report 2015-12. doi:
10.13117/GEM.OPENQUAKE.MAN.ENGINE, 1(01), 152.
- Daniell, J., Simpson, A., Murnane, R., Tijssen, A., Nunez, A., Deparday, V., ... & Schäfer, A. (2014). Review of open source and open access software packages available to quantify risk from natural hazards.
Washington, DC: World Bank and Global Facility for Disaster Reduction and Recovery.
- Eracons (n.d.). STRUREL Structural Reliability Analysis Program, Eracons Germany. Access Address (12.03.2023): http://www.strurel.de/index.html
- Erdik, M., Şeşetyan, K., Demircioğlu, M. B., Hancılar, U., & Zülfikar, C. (2011). Rapid earthquake loss assessment after damaging earthquakes. Soil Dynamics and Earthquake Engineering, 31(2), 247-266.
- STRUREL. (n.d.). Structural Reliability Analysis Program, Eracons Germany. Access Address (12.03.2023): http://www.strurel.de/index.html
- FEMA. (1997). HAZUS Flood, Earthquake, Hurricane, FEMA, US. Access Address (12.03.2023):http://www.fema.gov/hazus.
- Geoscience Australia. (2014). New disaster management software released worldwide. Access Address (11.12.2023): https://www.ga.gov.au/news-events/news/latest-news/new-disaster-
management-software-released-worldwide
- Global Earthquake Model Foundation (GEM). (2012). OpenQuake Engine 3.18.0. Global Earthquake Model Foundation (GEM), Italy. Access Address (12.03.2023): https://github.com/gem/oq-engine/.
- Hallermann, N. & Morgenthal, G. (2014). Visual inspection strategies for large bridges using unmanned aerial vehicles (UAV). Bridge Maintenance, Safety, Management and Life Extension, 661–667.
https://doi.org/10.1201/b17063-96.
- Hancilar, U., Tuzun, C., Yenidogan, C. & Erdik, M. (2010). Eler Software – a new tool for Urban Earthquake Loss Assessment. Natural Hazards and Earth System Sciences, 10(12), 2677–2696.
https://doi.org/10.5194/nhess-10-2677-2010.
- Hosseinpour, V., Saeidi, A., Nollet, M.-J. & amp; Nastev, M. (2021). Seismic Loss Estimation Software: A comprehensive review of risk assessment steps, software development and limitations.
Engineering Structures, 232, 111866. https://doi.org/10.1016/j.engstruct.2021.111866
- Huang, M.Q., Ninić, J. & Zhang, Q.B. (2021). ‘Bim, machine learning and computer vision techniques in underground construction: Current status and future perspectives’, Tunnelling and Underground
Space Technology, 108, p. 103677. doi:10.1016/j.tust.2020.103677.
- Kandilli Observatory and Earthquake Research Institute (KOERI). (2009). ELER (Earthquake Loss Estimation Routine), Kandilli Observatory and Earthquake Research Institute, Türkiye. Access Address
(12.03.2023): https://eqe.bogazici.edu.tr/tr/eler-programi
- Karaman, S. (2013). Analysis and design of greenhouses with Sap2000 software seraların Sap2000 programı ıle analiz ve tasarımı. Anadolu Journal of Agrıcultural Scıences, 28(2), 87–93.
Https://Doi.Org/10.7161/Anajas.2013.282.87.
- Kazado, D., Kavgic, M. & Eskicioglu, R. (2019). Integrating building information modeling (BIM) and sensor technology for facility management. Journal of Information Technology in Construction
(ITcon), 24(23), 440-458.
- Kircher, C. A., Nassar, A. A., Kustu, O., & Holmes, W. T. (1997). Development of building damage functions for earthquake loss estimation. Earthquake Spectra, 13(4), 663–682.
https://doi.org/10.1193/1.1585974.
- Minister of Environment, Urbanisation and Climate Change. (nd). AR-GE-7 Muhtemel Deprem Senaryolarının ve Önlemlerinin Araştırılması (Eler Deprem Kayıp Tahmin Programı). Çevre, Şehircilik ve
İklim Değişikliği İl Müdürlüğü, Türkiye. Access Address (11.12.2023): https://yalova.csb.gov.tr/ar-ge-7-muhtemel-deprem-senaryolarinin-ve-onlemlerinin-arastirilmasi-eler-deprem-kayip-tahmin-
programi-proje
- Molina-Palacios, S., Lang, D. H., Meslem, A., Lindholm, C. D. & Agea-Medina, N. (2017). A next-generation open-source tool for earthquake loss estimation. International Journal of Safety and Security
Engineering, 7(4), 585–596. https://doi.org/10.2495/safe-v7-n4-585-596.
- Nakashima, Y. & Nakamura, T. (2017). An effect evaluation of the DMAT lifesaving activity considering simultaneous damage of the Moving Pass Facilities. Journal of JAEE, 17(1).
https://doi.org/10.5610/jaee.17.1_30.
- National Disaster Agency. (2014). InaSAFE, Indonesia. Access Address (12.03.2023): https://inasafe.org/
- Naveen, S., Zalakkumar, C. R. & Pratik, P. A. (2016). "Modeling and analysis of aqueduct using STAAD-PRO," International Journal of Engineering and Technology, vol. 3, pp. 2324-2329.
- Newman, J. P. et al. (2017). ‘Review of literature on decision support systems for natural hazard risk reduction: Current status and Future Research Directions’, Environmental Modelling & Software, 96,
pp. 378–409. doi:10.1016/j.envsoft.2017.06.042.
- NORSAR. (2010). SELENA v4.1. NORSAR, Norway. Access Address (12.03.2023): https://www.norsar.no/r-d/publications/key-publications_2/selena-an-open-source-tool-for-seismic-risk-and-loss-
assessment-using-a-logic-tree-computation-procedure
- Pranantyo, I. R., Fadmastuti, M. & Chandra, F. (2015). INASAFE applications in Disaster Preparedness. AIP Conference Proceedings.
- Research Engineers International (REI). (1997). STAAD.Pro. Research Engineers International (REI), Germany. Access Address (12.03.2023): https://reig.de/en/our-software-solutions-at-a-
glance/staad-pro/
- Robinson, D., Fulford, G. & Dhu, T. 2006. “EQRM: Geoscience Australia’s Earthquake Risk Model.” Record 2005/01, Geoscience Australia, Canberra.
- Robinson, D. J., Dhu, T. & Row, P. (2007). EQRM: An open-source event-based earthquake risk modeling program. In AGU Fall Meeting Abstracts (Vol. 2007, pp. PA33A-1027).
- Schweier, C., & Markus, M. (2004). Assessment of the search and rescue demand for individual buildings. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC,
Canada (pp. 1-6).
Damage Catalogue Software and the Role of Architecture & Architects: A Comprehensive Review
Yıl 2024,
Cilt: 9 Sayı: Special Issue, 22 - 40, 06.02.2024
Mustafa Dallı
,
Asena Soyluk
Öz
This scientific paper explores several aspects related to damage catalogue software while also highlighting the importance of including accurate architecture when analyzing structural damage. With modern architecture continuously evolving in complexity, employing specialized tools that can efficiently evaluate damages has become increasingly necessary. We investigate various available solutions while stressing the need for incorporating precise references from building designs within these systems as a means to ensure credible documentation. Our research findings demonstrate that integrating these references within such software aids data interpretation while creating bridges between experts working on diverse areas related to structural analysis/design.
Teşekkür
No assistance was received from any institution or organization in the study. The article complies with national and international research and publication ethics. Ethics committee permission was not required for the study.
Kaynakça
- Anaissi, A., Makki Alamdari, M., Rakotoarivelo, T. & Khoa, N. (2018). A tensor-based structural damage identification and severity assessment. Sensors, 18(2), 111. https://doi.org/10.3390/s18010111
- Bernal, G. A. & Cardona, O. D. (2018). Next generation CAPRA software. In 16th European Conference on Earthquake Engineering.
- Betz, W., Papaioannou, I., Heidkamp, H., Gollwitzer, S. & Straub, D. (2017). Reliability analysis with STRUREL. In 2nd International Conference on Uncertainty Quantification in Computational Sciences and
Engineering, UNCECOMP.
- World Bank. (2018). CAPRA (Probabilistic Risk Assessment) Platform. Central America. Access Address (12.03.2023): https://ecapra.org/
- Computers and Structures Inc. (n.d.). SAP2000. Structural Analysıs and Design. Computers and Structures Inc. US. Access Address (11.12.2023): https://www.csiamerica.com/products/sap2000
- Croope, S. V. (2009). Working with HAZUS-MH. Disaster Research Center.
- Crowley, H., Monelli, D., Pagani, M., Silva, V., Weatherill, G., & Rao, A. (2015). The OpenQuake-engine User Manual. Global Earthquake Model (GEM) Technical Report 2015-12. doi:
10.13117/GEM.OPENQUAKE.MAN.ENGINE, 1(01), 152.
- Daniell, J., Simpson, A., Murnane, R., Tijssen, A., Nunez, A., Deparday, V., ... & Schäfer, A. (2014). Review of open source and open access software packages available to quantify risk from natural hazards.
Washington, DC: World Bank and Global Facility for Disaster Reduction and Recovery.
- Eracons (n.d.). STRUREL Structural Reliability Analysis Program, Eracons Germany. Access Address (12.03.2023): http://www.strurel.de/index.html
- Erdik, M., Şeşetyan, K., Demircioğlu, M. B., Hancılar, U., & Zülfikar, C. (2011). Rapid earthquake loss assessment after damaging earthquakes. Soil Dynamics and Earthquake Engineering, 31(2), 247-266.
- STRUREL. (n.d.). Structural Reliability Analysis Program, Eracons Germany. Access Address (12.03.2023): http://www.strurel.de/index.html
- FEMA. (1997). HAZUS Flood, Earthquake, Hurricane, FEMA, US. Access Address (12.03.2023):http://www.fema.gov/hazus.
- Geoscience Australia. (2014). New disaster management software released worldwide. Access Address (11.12.2023): https://www.ga.gov.au/news-events/news/latest-news/new-disaster-
management-software-released-worldwide
- Global Earthquake Model Foundation (GEM). (2012). OpenQuake Engine 3.18.0. Global Earthquake Model Foundation (GEM), Italy. Access Address (12.03.2023): https://github.com/gem/oq-engine/.
- Hallermann, N. & Morgenthal, G. (2014). Visual inspection strategies for large bridges using unmanned aerial vehicles (UAV). Bridge Maintenance, Safety, Management and Life Extension, 661–667.
https://doi.org/10.1201/b17063-96.
- Hancilar, U., Tuzun, C., Yenidogan, C. & Erdik, M. (2010). Eler Software – a new tool for Urban Earthquake Loss Assessment. Natural Hazards and Earth System Sciences, 10(12), 2677–2696.
https://doi.org/10.5194/nhess-10-2677-2010.
- Hosseinpour, V., Saeidi, A., Nollet, M.-J. & amp; Nastev, M. (2021). Seismic Loss Estimation Software: A comprehensive review of risk assessment steps, software development and limitations.
Engineering Structures, 232, 111866. https://doi.org/10.1016/j.engstruct.2021.111866
- Huang, M.Q., Ninić, J. & Zhang, Q.B. (2021). ‘Bim, machine learning and computer vision techniques in underground construction: Current status and future perspectives’, Tunnelling and Underground
Space Technology, 108, p. 103677. doi:10.1016/j.tust.2020.103677.
- Kandilli Observatory and Earthquake Research Institute (KOERI). (2009). ELER (Earthquake Loss Estimation Routine), Kandilli Observatory and Earthquake Research Institute, Türkiye. Access Address
(12.03.2023): https://eqe.bogazici.edu.tr/tr/eler-programi
- Karaman, S. (2013). Analysis and design of greenhouses with Sap2000 software seraların Sap2000 programı ıle analiz ve tasarımı. Anadolu Journal of Agrıcultural Scıences, 28(2), 87–93.
Https://Doi.Org/10.7161/Anajas.2013.282.87.
- Kazado, D., Kavgic, M. & Eskicioglu, R. (2019). Integrating building information modeling (BIM) and sensor technology for facility management. Journal of Information Technology in Construction
(ITcon), 24(23), 440-458.
- Kircher, C. A., Nassar, A. A., Kustu, O., & Holmes, W. T. (1997). Development of building damage functions for earthquake loss estimation. Earthquake Spectra, 13(4), 663–682.
https://doi.org/10.1193/1.1585974.
- Minister of Environment, Urbanisation and Climate Change. (nd). AR-GE-7 Muhtemel Deprem Senaryolarının ve Önlemlerinin Araştırılması (Eler Deprem Kayıp Tahmin Programı). Çevre, Şehircilik ve
İklim Değişikliği İl Müdürlüğü, Türkiye. Access Address (11.12.2023): https://yalova.csb.gov.tr/ar-ge-7-muhtemel-deprem-senaryolarinin-ve-onlemlerinin-arastirilmasi-eler-deprem-kayip-tahmin-
programi-proje
- Molina-Palacios, S., Lang, D. H., Meslem, A., Lindholm, C. D. & Agea-Medina, N. (2017). A next-generation open-source tool for earthquake loss estimation. International Journal of Safety and Security
Engineering, 7(4), 585–596. https://doi.org/10.2495/safe-v7-n4-585-596.
- Nakashima, Y. & Nakamura, T. (2017). An effect evaluation of the DMAT lifesaving activity considering simultaneous damage of the Moving Pass Facilities. Journal of JAEE, 17(1).
https://doi.org/10.5610/jaee.17.1_30.
- National Disaster Agency. (2014). InaSAFE, Indonesia. Access Address (12.03.2023): https://inasafe.org/
- Naveen, S., Zalakkumar, C. R. & Pratik, P. A. (2016). "Modeling and analysis of aqueduct using STAAD-PRO," International Journal of Engineering and Technology, vol. 3, pp. 2324-2329.
- Newman, J. P. et al. (2017). ‘Review of literature on decision support systems for natural hazard risk reduction: Current status and Future Research Directions’, Environmental Modelling & Software, 96,
pp. 378–409. doi:10.1016/j.envsoft.2017.06.042.
- NORSAR. (2010). SELENA v4.1. NORSAR, Norway. Access Address (12.03.2023): https://www.norsar.no/r-d/publications/key-publications_2/selena-an-open-source-tool-for-seismic-risk-and-loss-
assessment-using-a-logic-tree-computation-procedure
- Pranantyo, I. R., Fadmastuti, M. & Chandra, F. (2015). INASAFE applications in Disaster Preparedness. AIP Conference Proceedings.
- Research Engineers International (REI). (1997). STAAD.Pro. Research Engineers International (REI), Germany. Access Address (12.03.2023): https://reig.de/en/our-software-solutions-at-a-
glance/staad-pro/
- Robinson, D., Fulford, G. & Dhu, T. 2006. “EQRM: Geoscience Australia’s Earthquake Risk Model.” Record 2005/01, Geoscience Australia, Canberra.
- Robinson, D. J., Dhu, T. & Row, P. (2007). EQRM: An open-source event-based earthquake risk modeling program. In AGU Fall Meeting Abstracts (Vol. 2007, pp. PA33A-1027).
- Schweier, C., & Markus, M. (2004). Assessment of the search and rescue demand for individual buildings. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC,
Canada (pp. 1-6).