Derleme
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 3 Sayı: 1, 31 - 38, 17.06.2021
https://doi.org/10.51946/melid.927270

Öz

Kaynakça

  • Abellán A, Vilaplana J M & Martínez J (2008). Application of a long-range terrestrial laser scanner to a detailed rockfall study at Vall de Núria (Eastern pyrenees, Spain), Eng Geol 88, 136-148.
  • Aksoy H & Ercanoglu M (2006). Determination of the rockfall source in an urban settle-ment area by using a rule-based fuzzy evaluation. Natural Hazards and Earth System (6), 941–954.
  • Bauer A, Paar G & Kaltenböck A (2005). Mass movement monitoring using terrestrial laser scanner for rock fall management. In: Proc first international symposium on geo-information for disaster management, 393-406.
  • Bazarnik M (2018) Slope stability monitoring in open pit mines using 3D terrestrial laser scanning, 4th International Conference on Applied Geophysics, E3S Web of Conferences 66, 01020
  • Bieniawski Z T (1989). Engineering Rock Mass Classification. John Wiley and Sons, New York, 1989.
  • Boehler W & Marbs A (2002). 3d Scanning instruments. Proceeding of the CIPA WG6 International Workshop on Scanning for Cultural Heritage Recording.
  • Chun-Lei, Luo, et al., (2019). Intelligent Detection for Tunnel Shotcrete Spray Using Deep Learning and LiDAR. IEEE Access (8), 1755-1766.
  • Decker J (2008). Laser scanning techniques in Devil’s Slide tunnels. In: Proceedings of the 42nd US rock mechanics symposium, San Francisco.
  • Delaloye D, Hutchinson J & Diederichs M (2011). Accuracy issues associated with Lidar scanning for tunnel deformation monitoring. Proceedings of the 2011 Pan-AM CGS Geotechnical Conference.
  • Deliormanlı A H, Maerz N & Otoo J N A (2014). Using terrestrial 3D laser scanning and optical methods to determine orientations of discontinuities at a granite quarry, International Journal of Rock Mechanics and Mining Sciences, (66), 41–48.
  • Engin İ C & Maerz N (2016). Patlatma Sonuçlarının Analizinde Yersel Lazer Tarayıcıların (LiDAR) Kullanımı. Bilimsel Madencilik Dergisi, 55(1), 35-44.
  • Fasching A, Gaich A & Schubert W (2001). Data acquisition in Engineering Geology. An Improvement of Acquisition Methods for Geotechnical Rock Mass Parameters, Felsbau, 19, (5), 93-101.
  • Fekete S & Diederichs M (2013). Integration of three-dimensional laser scanning with discontinuum modelling for stability analysis of tunnels in blocky rock masses. International Journal of Rock Mechanics & Mining Sciences, (57), 11–23.
  • Fekete S, Diederichs M & Lato M (2009). Geotechnical application of lidar scanning in tunnelling. 3rd CANUS Rock Mechanics Symposium, Toronto. 1-12.
  • Feng Q, Sjogren P, Stephansson O & L Jing (2001). Measuring Fracture Orientation at Exposed Rock Faces by Using a Non-Reflector Total Station. Engineering Geology, (59), 133-146.
  • Feng Q H & Röshoff K (2004). In-situ mapping and documentation of rock faces using full-coverage 3D laser scanning techniques. International Journal of Rock Mechanics and Mining, (41), 379.
  • Fröhlich C & Mettenleiter M (2004). Terrestrial Laser Scanning – New Perspectives in 3D Surveying, In International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences. Cilt. XXXVI-8/W20.
  • Gümüş K (2008) Yersel Lazer Tarayıcılar ve Konum Doğruluklarının Araştırılması, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 134 s. (in Turkish).
  • Ingensand H (2006). Methodological aspects in terrestrial laser-scanning technology. 3rd IAG / 12th FIG Symposium, Baden.
  • Karasaka L & Beg A A R (2021). Yersel Lazer Tarama Yöntemi ile Farklı Geometrik Yapıdaki Özelliklerin Modellenmesi. Geomatik, 6(1), 54-60.
  • Karşıdağ G (2011). Yersel lazer tarama ölçmelerinde doğruluk analizi. İstanbul Teknik Üniversitesi, Yüksek Lisans Tezi. İstanbul. (in Turkish).
  • Kemeny J & Post R (2003). Estimating three-dimensional rock discontinuity orientation from digital images of fracture traces. Computers and Geosciences vol. 29, pp. 65-77.
  • Kemeny J & Post R (2003). Estimating Three-Dimensional Rock Discontinuity Orientation from Digital Images of Fracture Traces, Computers and Geosciences, Vol. 29, pp. 65-77.
  • Kemeny J, Turner K & Norton B (2006). LiDAR for Rock Mass Characterization: hardware, software, accuracy, and best practices. Laser and Photogrammetric Methods for Rock Face Characterization workshop, Golden Colorado, 49-62.
  • Kraus K (2004). Photogrammetrie Band 1, Geometrische Informationen aus Photographien und Laserscanneraufnahmen. Walter de Gruyter Verlag, Berlin, 7. Auflage.
  • Kushwaha S K P, Dayal K R, Raghavendra S, Pande H, Tiwari P S, Agrawal S & Srivastava S K (2020). 3D Digital Documentation of a Cultural Heritage Site Using Terrestrial Laser Scanner—A Case Study. In Applications of Geomatics in Civil Engineering (pp. 49-58). Springer, Singapore.
  • Lato M, Kemeny J, Harrap R M Bevan G (2013). Rock bench: Establishing a common repository and standards for assessing rockmass characteristics using LiDAR and photogrammetry. Computers & Geosciences 50, 106–114.
  • Maerz N H, Youssef A M, Otoo J N, Kassebaum T J & Duan Y (2012). A simple method for measuring discontinuity orientations from terrestrial LiDAR images. Sub. to J. of Environmental and Engineering Geoscience.
  • Oparin V N, Seredovich V A, Yushkin V F, Ivanov A V, Prokop’eva S A (2007). Application of laser scanning for developing a 3D digital model of an open-pit side surface. Journal of Mining Science 43(5), 545-554.
  • Özdoğan M V (2015). Madencilik Faaliyetleri Sonucu Oluşan Yüzey Hareketlerinin Yeni Teknolojiler İle Belirlenmesi.. Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 183s, İzmir. (in Turkish).
  • Perc M N & Topolšek D (2020). Using the scanners and drone for comparison of point cloud accuracy at traffic accident analysis. Accident Analysis & Prevention, 135, 105391. Pollefeys M, Koch R, Vergauwen M & Van Gool L (2000). Automated Reconstruction of 3D Scenes from Sequences of Images, ISPRS Journal ofPhotogrammetry & Remote Sensing, 55 (4), 251-267.
  • Priest S D & Hudson J A (1981). Estimation of Discontinuity Spacing and Trace Length Using Scanline Surveys, International Journal of Rock Mechanics and Mining Sciences & Geomechanics, Vol. 18, pp. 183-197.
  • Priest S D (1993). Discontinuity Analysis for Rock Engineering. Chapman & Hall, p. 473, London.
  • Puente, Iván, et al. (2014). Automatic detection of road tunnel luminaires using a mobile LiDAR system. Measurement 47, 569-575.
  • Rengers N (1967). Terrestrial Photogrammetry: A Valuable Tool for Engineering Geological Purposes, Rock Mechanics and Engineering Geology, Vol. V/2-3, pp. 150-154.
  • Roberts G & Poropat G (2000). High wall Joint Mapping in 3D at the Moura Mine Using SIROJOINT, Coal and Mining, The New Millennium, Rockhampton, Australia.
  • Slob S, Hack R, Knapen B & Kemeny J (2005). A method for automated discontinuity analysis of rock slopes with 3D laser scanning. In: Proceedings of the 84th annual meeting of Transportation Research Board, 16 pp Washington.
  • Slob S, Hack R, Van Knapen B & Kemeny J (2004). Automated identification and characterisation of discontinuity sets in outcropping rock masses using 3D terrestrial laser scan survey techniques, In Proceedings of the ISRM Regional Symposium EUROCK 2004 & 53rd Geomechanics Colloquy, 439-443, Salzburg.
  • Sturzenegger M & Stead D (2009). Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts, Engineering Geology 106, 163-182.
  • Teza G, Pesci A, Genevois R & Galgaro A (2008). Characterization of landslide ground surface kinematics from terrestrial laser scanning and strain field computation, Geomorphology 97, 424-437.
  • URL5:http://www.gexcel.homeip.net/Reconstructor/R_Manual/R_Manual_EN.pdf.
  • URL8:http://www.3dreshaper.com/images/brochures/BeginnersGuide_EN.pdf.
  • Wieczorek T, Przyłucki R, Lisok J & Smagór A (2018). Analysis of the Accuracy of Crime Scene Mapping Using 3D Laser Scanners. In International Workshop on Modeling Social Media, pp. 406-415.
  • Wieczorek T, Przyłucki R, Lisok J, Smagór A (2018). Analysis of the Accuracy of Crime Scene Mapping Using 3D Laser Scanners. In International Workshop on Modeling Social Media, pp. 406-415.
  • Yakar M, Yılmaz H M, Mutluoğlu Ö (2008). Lazer Tarama Teknolojisi ve Fotogrametrik Yöntem ile Hacim Hesabı. TÜBİTAK, Proje No: 105M179, 90s.
  • Yanalak M & Baykal O (2003). Digital Elevation Model Based Volume Calculations Using Topographical Data, Journal of Surveying Engineering 129 (2), 56-64.
  • Yanalak M (2005). Computing Pit Excavation Volume. Journal of Surveying Engineering 131(1), 15-19.

Applications of Terrestrial Laser Scanning (TLS) in Mining: A Review

Yıl 2021, Cilt: 3 Sayı: 1, 31 - 38, 17.06.2021
https://doi.org/10.51946/melid.927270

Öz

This study investigates in depth Terrestrial Laser Scanning technology (TLS), its working and measurement principle, 3D Terrestrial Laser Scanning softwares and the advantages of this scanning method. This paper also stresses the advantages of adopting this technology in quarries and mines and provides examples of researches that have demonstrated the superiority of TLS systems over the traditional scanning methods in terms of practicability, reliability and accuracy in numerous mining engineering applications such as deformation measurements, rock fall and landslide control, volume calculations and detection of discontinuities.

Kaynakça

  • Abellán A, Vilaplana J M & Martínez J (2008). Application of a long-range terrestrial laser scanner to a detailed rockfall study at Vall de Núria (Eastern pyrenees, Spain), Eng Geol 88, 136-148.
  • Aksoy H & Ercanoglu M (2006). Determination of the rockfall source in an urban settle-ment area by using a rule-based fuzzy evaluation. Natural Hazards and Earth System (6), 941–954.
  • Bauer A, Paar G & Kaltenböck A (2005). Mass movement monitoring using terrestrial laser scanner for rock fall management. In: Proc first international symposium on geo-information for disaster management, 393-406.
  • Bazarnik M (2018) Slope stability monitoring in open pit mines using 3D terrestrial laser scanning, 4th International Conference on Applied Geophysics, E3S Web of Conferences 66, 01020
  • Bieniawski Z T (1989). Engineering Rock Mass Classification. John Wiley and Sons, New York, 1989.
  • Boehler W & Marbs A (2002). 3d Scanning instruments. Proceeding of the CIPA WG6 International Workshop on Scanning for Cultural Heritage Recording.
  • Chun-Lei, Luo, et al., (2019). Intelligent Detection for Tunnel Shotcrete Spray Using Deep Learning and LiDAR. IEEE Access (8), 1755-1766.
  • Decker J (2008). Laser scanning techniques in Devil’s Slide tunnels. In: Proceedings of the 42nd US rock mechanics symposium, San Francisco.
  • Delaloye D, Hutchinson J & Diederichs M (2011). Accuracy issues associated with Lidar scanning for tunnel deformation monitoring. Proceedings of the 2011 Pan-AM CGS Geotechnical Conference.
  • Deliormanlı A H, Maerz N & Otoo J N A (2014). Using terrestrial 3D laser scanning and optical methods to determine orientations of discontinuities at a granite quarry, International Journal of Rock Mechanics and Mining Sciences, (66), 41–48.
  • Engin İ C & Maerz N (2016). Patlatma Sonuçlarının Analizinde Yersel Lazer Tarayıcıların (LiDAR) Kullanımı. Bilimsel Madencilik Dergisi, 55(1), 35-44.
  • Fasching A, Gaich A & Schubert W (2001). Data acquisition in Engineering Geology. An Improvement of Acquisition Methods for Geotechnical Rock Mass Parameters, Felsbau, 19, (5), 93-101.
  • Fekete S & Diederichs M (2013). Integration of three-dimensional laser scanning with discontinuum modelling for stability analysis of tunnels in blocky rock masses. International Journal of Rock Mechanics & Mining Sciences, (57), 11–23.
  • Fekete S, Diederichs M & Lato M (2009). Geotechnical application of lidar scanning in tunnelling. 3rd CANUS Rock Mechanics Symposium, Toronto. 1-12.
  • Feng Q, Sjogren P, Stephansson O & L Jing (2001). Measuring Fracture Orientation at Exposed Rock Faces by Using a Non-Reflector Total Station. Engineering Geology, (59), 133-146.
  • Feng Q H & Röshoff K (2004). In-situ mapping and documentation of rock faces using full-coverage 3D laser scanning techniques. International Journal of Rock Mechanics and Mining, (41), 379.
  • Fröhlich C & Mettenleiter M (2004). Terrestrial Laser Scanning – New Perspectives in 3D Surveying, In International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences. Cilt. XXXVI-8/W20.
  • Gümüş K (2008) Yersel Lazer Tarayıcılar ve Konum Doğruluklarının Araştırılması, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 134 s. (in Turkish).
  • Ingensand H (2006). Methodological aspects in terrestrial laser-scanning technology. 3rd IAG / 12th FIG Symposium, Baden.
  • Karasaka L & Beg A A R (2021). Yersel Lazer Tarama Yöntemi ile Farklı Geometrik Yapıdaki Özelliklerin Modellenmesi. Geomatik, 6(1), 54-60.
  • Karşıdağ G (2011). Yersel lazer tarama ölçmelerinde doğruluk analizi. İstanbul Teknik Üniversitesi, Yüksek Lisans Tezi. İstanbul. (in Turkish).
  • Kemeny J & Post R (2003). Estimating three-dimensional rock discontinuity orientation from digital images of fracture traces. Computers and Geosciences vol. 29, pp. 65-77.
  • Kemeny J & Post R (2003). Estimating Three-Dimensional Rock Discontinuity Orientation from Digital Images of Fracture Traces, Computers and Geosciences, Vol. 29, pp. 65-77.
  • Kemeny J, Turner K & Norton B (2006). LiDAR for Rock Mass Characterization: hardware, software, accuracy, and best practices. Laser and Photogrammetric Methods for Rock Face Characterization workshop, Golden Colorado, 49-62.
  • Kraus K (2004). Photogrammetrie Band 1, Geometrische Informationen aus Photographien und Laserscanneraufnahmen. Walter de Gruyter Verlag, Berlin, 7. Auflage.
  • Kushwaha S K P, Dayal K R, Raghavendra S, Pande H, Tiwari P S, Agrawal S & Srivastava S K (2020). 3D Digital Documentation of a Cultural Heritage Site Using Terrestrial Laser Scanner—A Case Study. In Applications of Geomatics in Civil Engineering (pp. 49-58). Springer, Singapore.
  • Lato M, Kemeny J, Harrap R M Bevan G (2013). Rock bench: Establishing a common repository and standards for assessing rockmass characteristics using LiDAR and photogrammetry. Computers & Geosciences 50, 106–114.
  • Maerz N H, Youssef A M, Otoo J N, Kassebaum T J & Duan Y (2012). A simple method for measuring discontinuity orientations from terrestrial LiDAR images. Sub. to J. of Environmental and Engineering Geoscience.
  • Oparin V N, Seredovich V A, Yushkin V F, Ivanov A V, Prokop’eva S A (2007). Application of laser scanning for developing a 3D digital model of an open-pit side surface. Journal of Mining Science 43(5), 545-554.
  • Özdoğan M V (2015). Madencilik Faaliyetleri Sonucu Oluşan Yüzey Hareketlerinin Yeni Teknolojiler İle Belirlenmesi.. Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 183s, İzmir. (in Turkish).
  • Perc M N & Topolšek D (2020). Using the scanners and drone for comparison of point cloud accuracy at traffic accident analysis. Accident Analysis & Prevention, 135, 105391. Pollefeys M, Koch R, Vergauwen M & Van Gool L (2000). Automated Reconstruction of 3D Scenes from Sequences of Images, ISPRS Journal ofPhotogrammetry & Remote Sensing, 55 (4), 251-267.
  • Priest S D & Hudson J A (1981). Estimation of Discontinuity Spacing and Trace Length Using Scanline Surveys, International Journal of Rock Mechanics and Mining Sciences & Geomechanics, Vol. 18, pp. 183-197.
  • Priest S D (1993). Discontinuity Analysis for Rock Engineering. Chapman & Hall, p. 473, London.
  • Puente, Iván, et al. (2014). Automatic detection of road tunnel luminaires using a mobile LiDAR system. Measurement 47, 569-575.
  • Rengers N (1967). Terrestrial Photogrammetry: A Valuable Tool for Engineering Geological Purposes, Rock Mechanics and Engineering Geology, Vol. V/2-3, pp. 150-154.
  • Roberts G & Poropat G (2000). High wall Joint Mapping in 3D at the Moura Mine Using SIROJOINT, Coal and Mining, The New Millennium, Rockhampton, Australia.
  • Slob S, Hack R, Knapen B & Kemeny J (2005). A method for automated discontinuity analysis of rock slopes with 3D laser scanning. In: Proceedings of the 84th annual meeting of Transportation Research Board, 16 pp Washington.
  • Slob S, Hack R, Van Knapen B & Kemeny J (2004). Automated identification and characterisation of discontinuity sets in outcropping rock masses using 3D terrestrial laser scan survey techniques, In Proceedings of the ISRM Regional Symposium EUROCK 2004 & 53rd Geomechanics Colloquy, 439-443, Salzburg.
  • Sturzenegger M & Stead D (2009). Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts, Engineering Geology 106, 163-182.
  • Teza G, Pesci A, Genevois R & Galgaro A (2008). Characterization of landslide ground surface kinematics from terrestrial laser scanning and strain field computation, Geomorphology 97, 424-437.
  • URL5:http://www.gexcel.homeip.net/Reconstructor/R_Manual/R_Manual_EN.pdf.
  • URL8:http://www.3dreshaper.com/images/brochures/BeginnersGuide_EN.pdf.
  • Wieczorek T, Przyłucki R, Lisok J & Smagór A (2018). Analysis of the Accuracy of Crime Scene Mapping Using 3D Laser Scanners. In International Workshop on Modeling Social Media, pp. 406-415.
  • Wieczorek T, Przyłucki R, Lisok J, Smagór A (2018). Analysis of the Accuracy of Crime Scene Mapping Using 3D Laser Scanners. In International Workshop on Modeling Social Media, pp. 406-415.
  • Yakar M, Yılmaz H M, Mutluoğlu Ö (2008). Lazer Tarama Teknolojisi ve Fotogrametrik Yöntem ile Hacim Hesabı. TÜBİTAK, Proje No: 105M179, 90s.
  • Yanalak M & Baykal O (2003). Digital Elevation Model Based Volume Calculations Using Topographical Data, Journal of Surveying Engineering 129 (2), 56-64.
  • Yanalak M (2005). Computing Pit Excavation Volume. Journal of Surveying Engineering 131(1), 15-19.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Derleme Makalesi
Yazarlar

Bilgehan Kekeç 0000-0002-1361-1244

Niyazi Bilim 0000-0002-6711-0453

Emre Karakaya 0000-0002-3790-8325

Dhikra Ghiloufi 0000-0002-9818-6434

Yayımlanma Tarihi 17 Haziran 2021
Gönderilme Tarihi 24 Nisan 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 3 Sayı: 1

Kaynak Göster

APA Kekeç, B., Bilim, N., Karakaya, E., Ghiloufi, D. (2021). Applications of Terrestrial Laser Scanning (TLS) in Mining: A Review. Türkiye Lidar Dergisi, 3(1), 31-38. https://doi.org/10.51946/melid.927270

Türkiye LiDAR Dergisi