Effects of Cadmium and Nickel on Embryonic Development of Fish: A Review
Yıl 2023,
, 40 - 51, 28.12.2023
Saima Naz
,
Ahmad Manan Mustafa Chatha
,
Durali Danabaş
Öz
Balık embriyolarında, büyümenin engellenmesi, düşük yaşama oranı ve anormal gelişmenin de dahil olduğu çeşitli anormallikler bulunmuştur. Bunun makul bir açıklaması ise, erken embriyonik aşamaların daha hassas olması olabilir. Embriyonik çalışmalar, ağır metallerin balıklar üzerindeki çeşitli etkileri hakkında bilgi sağlamaktadır, ancak suda taşınan metallerin neden olduğu larva anormallikleri hakkında bilgiler eksik kalmıştır.
Kadmiyumun (Cd) balık büyüme hormonu ekspresyonunda bozulmaya ek olarak tiroid hormon düzeylerinde azalmaya neden olduğu tespit edilmiştir. Benzer şekilde, nikele (Ni) maruz kalmanın bir sonucu olarak olumsuz sağlık etkileri de belgelenmiştir. Ni'ye maruz kalmanın bir sonucu olarak organlar üzerinde, cilt tahrişi, cilt kaşıntıları veya kabarcıkları ile alerjik reaksiyonlar gibi bazı toksik etkiler meydana gelebilmektedir.
Bu derleme çalışması, Cd ve Ni'nin farklı balık türlerinin embriyonik gelişimi üzerindeki etkilerine odaklanmaktadır. Cd ve Ni'nin neden olduğu balık larvalarındaki anormalliklere ilişkin kanıtlar da metin içinde verilmiştir.
Kaynakça
- Ahmed, M.F., & Mokhtar, M.B. (2020). Assessing cadmium and chromium concentrations in drinking water to predict health risk in Malaysia. Int. J. Environ. Res. 17(8): 2966, DOI: https://doi.org/10.3390/ijerph17082966.
- Aldavood, S.J., Abbott, L.C., Evans, Z.R., Griffin, D.J., Lee, M.D., Quintero-Arevalo, N.M., & Villalobos, A.R. (2020). Effect of cadmium and nickel exposure on early development in zebrafish (Danio rerio) embryos. Water. 12(11): 3005. DOI: https://doi.org/10.3390/w12113005.
- Almeida, A.R., Salimian, M., Ferro, M., Marques, P.A., Goncalves, G., Titus, E., & Domingues, I. (2019). Biochemical and behavioral responses of zebrafish embryos to magnetic graphene/nickel nanocomposites. Ecotoxicol. Environ. Saf. 186: 109760, DOI: https://doi.org/10.1016/j.ecoenv.2019.109760.
- Alsop, D., Lall, S.P., & Wood, C.M. (2014). Reproductive impacts and physiological adaptations of zebrafish to elevated dietary nickel. Comp. Biochem. Physio. Part C: Toxicol. Pharmacol. 165: 67-75, DOI: https://doi.org/ 10.1016/j.cbpc.2014.05.001.
- Barjhoux, I., Baudrimont, M., Morin, B., Landi, L., Gonzalez, P., & Cachot, J. (2012). Effects of copper and cadmium spiked-sediments on embryonic development of Japanese medaka (Oryzias latipes). Ecotoxicol. Environ. Saf. 79: 272–282, DOI: https://doi.org/10.1016/j.ecoenv.2012.01.011.
- Bartzke, M., Delov, V., Stahlschmidt-Allner, P., Allner, B., & Oehlmann, J. (2010). Integrating the fish embryo toxicity test as triad element for sediment toxicity assessment based on the Water Framework Directive approach. J Soils Sediments. 10(3): 389–399, DOI: https://doi.org/10.1007/s11368-009-0170-1.
- Bian, X., & Gao, Y. (2021). DNA methylation and gene expression alterations in zebrafish embryos exposed to cadmium. Environ. Sci. Pollut. Res. 28(23): 30101-30110, DOI: https://doi.org/10.1007/s11356-021-12691-6.
Bielmyer, G.K., DeCarlo, C., Morris, C., & Carrigan, T. (2013). The influence of salinity on acute nickel toxicity to the two euryhaline fish species, Fundulus heteroclitus and Kryptolebias marmoratus. Environ. Toxicol. Chem. 32: 1354-1359, DOI: https://doi.org/10.1002/etc.2185
- Bouwmeester, M.C., Ruiter, S., Lommelaars, T., Sippel, J., Hodemaekers, H.M., van den Brandhof, E.J., Pennings, J.L.A., Kamstra, J.H., Jelinek, J., Issa, J.P.J., Legler, J., & van der Ven, L.T.M. (2016). Zebrafish embryos as a screen for DNA methylation modifications after compound exposure. Toxicol. Appl. Pharmacol. 291: 84–96, DOI: https://doi.org/10.1016/j.taap.2015.12.012.
- Brix, K.V., Schlekat, C.E., & Garman, E.R. (2017). The mechanisms of nickel toxicity in aquatic environments: An adverse outcome pathway analysis. Environ. Toxicol. Chem. 36: 1128-1137, DOI: https://doi.org/10.1002/etc.3706.
- Cao, L., Huang, W., Shan, X., Xiao, Z., Wang, Q., & Dou, S. (2009). Cadmium toxicity to embryonic-larval development and survival in red sea bream Pagrus major. Ecotoxicol. Environ. Saf. 72(7): 1966–1974, DOI: https://doi.org/10.1016/j.ecoenv.2009.06.002.
- Chouchene, L., Pellegrini, E., Gueguen, M.M., Hinfray, N., Brion, F., Piccini, B., Kah, O., Saïd, K., Messaoudi, I., & Pakdel, F. (2016). Inhibitory effect of cadmium on estrogen signaling in zebrafish brain and protection by zinc: Cadmium effect on estrogen signaling in zebrafish brain. J. Appl. Toxicol. 36(6): 863–871, DOI: https://doi.org/10.1002/jat.3285.
- Custer, K.W., Hammerschmidt, C.R., & Burton, G.A. (2016). Nickel toxicity to benthic organisms: The role of dissolved organic carbon, suspended solids, and route of exposure. Environ. Pollut. 208: 309-317, DOI: https://doi.org/10.1016/j.envpol.2015.09.045.
- Duan, Z., Xing, Y., Feng, Z., Zhang, H., Li, C., Gong, Z., Wang, L., & Sun, H. (2017). Hepatotoxicity of benzotriazole and its effect on the cadmium induced toxicity in zebrafish Danio rerio. Environ. Pollut. 224: 706–713, DOI: https://doi.org/10.1016/j.envpol.2017.02.055.
- Dutton, J., & Venuti, V.M. (2019). Comparison of maternal and embryonic trace element concentrations in common thresher shark (Alopias vulpinus) muscle tissue. Bull. Environ. Contam. Toxicol. 103(3): 380–384, DOI: https://doi.org/10.1007/s00128-019-02667-1.
- Eisler, R. (1998). Nickel hazards to fish, wildlife, and invertebrates: A synoptic review. US Department of the Interior, US Geological Survey, Patuxent Wildlife Research Center.
- Gárriz, Á., & Miranda, L.A. (2020). Effects of metals on sperm quality, fertilization and hatching rates, and embryo and larval survival of pejerrey fish (Odontesthes bonariensis). Ecotoxicology. 29(7): 1072–1082, DOI: https://doi.org/10.1007/s10646-020-02245-w.
- Guo, S.N., Zheng, J.L., Yuan, S.S., Zhu, Q.L., & Wu, C.W. (2017). Immunosuppressive effects and associated compensatory responses in zebrafish after full life-cycle exposure to environmentally relevant concentrations of cadmium. Aquat. Toxicol. 188: 64–71, DOI: https://doi.org/10.1016/j.aquatox.2017.04.014.
- Hani, Y.M.I., Turies, C., Palluel, O., Delahaut, L., Gaillet, V., Bado-nilles, A., Porcher, J.M., Geffard, A., & Dedourge-geffard, O. (2018). Effects of chronic exposure to cadmium and temperature, alone or combined, on the three spine stickleback (Gasterosteus aculeatus): Interest of digestive enzymes as biomarkers. Aquat. Toxicol. 199: 252-262, DOI: https://doi.org/10.1016/j.aquatox.2018.04.006.
- Jin, Y., Liu, Z., Liu, F., Ye, Y., Peng, T., & Fu, Z. (2015). Embryonic exposure to cadmium (II) and chromium (VI) induce behavioral alterations, oxidative stress and immunotoxicity in zebrafish (Danio rerio). Neurotoxicol. Teratol. 48: 9–17, DOI: https://doi.org/10.1016/j.ntt.2015.01.002.
- Kienle, C., Köhler, H.R., Filser, J., & Gerhardt, A. (2008). Effects of nickel chloride and oxygen depletion on behaviour and vitality of zebrafish (Danio rerio, Hamilton, 1822) (Pisces, Cypriniformes) embryos and larvae. Environ. Pollut. 152(3): 612–620, DOI: https://doi.org/10.1016/j.envpol.2007.06.069.
- Kim, K. Wang, C.H., Ok, Y.S., & Lee, S.E. (2019). Heart developmental toxicity by carbon black waste generated from oil refinery on zebrafish embryos (Danio rerio): Combined toxicity on heart function by nickel and vanadium. J. Hazard. Mater. 363: 127-137, DOI: https://doi.org/10.1016/j.jhazmat.2018.09.089.
- Kimáková, T., Kuzmová, L., Nevolná, Z., & Bencko, V. (2018). Fish and fish products as risk factors of mercury exposure. Ann. Agric. Environ. Med. 25(3): 488–493, DOI: https://doi.org/10.26444/aaem/84934.
- Krzykwa, J.C., Saeid, A., & Jeffries, M.K.S. (2019). Identifying sublethal endpoints for evaluating neurotoxic compounds utilizing the fish embryo toxicity test. Ecotoxicol. Environ. Saf. 170: 521–529, DOI: https://doi.org/10.1016/j.ecoenv.2018.11.118.
- Ku, T., Yan, W., Jia, W., Yun, Y., Zhu, N., Li, G., & Sang, N. (2015). Characterization of synergistic embryotoxicity of nickel and buprofezin in zebrafish. Environ. Sci. Technol. 49(7): 4600–4608, DOI: https://doi.org/10.1021/es506293t.
- Kumar, S., & Sharma, A. (2019). Cadmium toxicity: Effects on human reproduction and fertility. Rev. Environ. Health. 34: 327-338, DOI: https://doi.org/10.1515/reveh-2019-0016.
- Lapointe, D., & Couture, P. (2010). Accumulation and effects of nickel and thallium in early-life stages of fathead minnows (Pimephales promelas). Ecotoxicol. Environ. Saf. 73(4): 572–578, DOI: https://doi.org/10.1016/j.ecoenv.2010.01.004.
- Li, X., Mao, L., Zhang, Y., Wang, X., Wang, Y., & Wu, X. (2020). Joint toxic impacts of cadmium and three pesticides on embryonic development of rare minnow (Gobiocypris rarus). Environ. Sci. Pollut. Res. 27(29): 36596–36604, DOI: https://doi.org/10.1007/s11356-020-09769-y.
- Liu, K., Song, J., Chi, W., Liu, H., Ge, S., & Yu, D. (2021), Developmental toxicity in marine medaka (Oryzias melastigma) embryos and larvae exposed to nickel. Comp. Biochem. Physiol. Part - C: Toxicol. Pharmacol. 248: 109082, DOI: https://doi.org/10.1016/j.cbpc.2021.109082.
- Ługowska, K., & Kondera, E. (2020). Developmental anomalies in ide (Leuciscus idus L.) larvae caused by copper and cadmium. Roczniki Naukowe Polskiego Towarzystwa Zootechnicznego, 16(3): 37-51, DOI: https://doi.org/10.5604/01.3001.0014.3996.
- Monaco, A., Capriello, T., Grimaldi, M.C., Schiano, V., & Ferrandino, I. (2017). Neurodegeneration in zebrafish embryos and adults after cadmium exposure. Eur. J. Histochem. 61(4): 2833 DOI: https://doi.org/10.4081/ejh.2017.2833.
- Motta, C.M., Simoniello, P., Di Lorenzo, M., Migliaccio, V., Panzuto, R., Califano, E., & Santovito, G. (2021). Endocrine disrupting effects of copper and cadmium in the oocytes of the Antarctic Emerald rockcod Trematomus bernacchii. Chemosphere. 268: 129282, DOI: https://doi.org/10.1016/j.chemosphere.2020.129282.
- Ouellet, J.D., Dubé, M.G., & Niyogi, S. (2013). Influence of elevated alkalinity and natural organic matter (NOM) on tissue-specific metal accumulation and reproductive performance in fathead minnows during chronic, multi-trophic exposures to a metal mine effluent. Ecotoxicol. Environ. Saf. 95: 104–112, DOI: https://doi.org/10.1016/j.ecoenv.2013.05.027.
- Pinto, G.L., da Silva Castro, J., & Val, A.L. (2021). Copper and cadmium impair sperm performance, fertilization and hatching of oocytes from Amazonian fish Colossoma macropomum. Chemosphere. 266: 128957, DOI: https://doi.org/10.1016/j.chemosphere.2020.128957.
- Puangprasert, S., & Prueksasit, T. (2019). Health risk assessment of airborne Cd, Cu, Ni and Pb for electronic waste dismantling workers in Buriram Province, Thailand. J. Environ. Manag. 252: 109601, https://doi.org/10.1016/j.jenvman.2019.109601.
- Scheil, V., Zürn, A., Köhler, H.R., & Triebskorn, R. (2010). Embryo development, stress protein (Hsp70) responses, and histopathology in zebrafish (Danio rerio) following exposure to nickel chloride, chlorpyrifos, and binary mixtures of them. Environ. Toxicol. 25(1): 83–93, DOI: https://doi.org/10.1002/tox.20477.
- Sonnack, L., Kampe, S., Muth-Köhne, E., Erdinger, L., Henny, N., Hollert, H., Schäfers, C., & Fenske, M. (2015). Effects of metal exposure on motor neuron development, neuromasts and the escape response of zebrafish embryos. Neurotoxicol. Teratol. 50: 33–42, DOI: https://doi.org/10.1016/j.ntt.2015.05.006.
- Tian, J., Hu, J., He, W., Zhou, L., & Huang, Y. (2020). Parental exposure to cadmium chloride causes developmental toxicity and thyroid endocrine disruption in zebrafish offspring. Comp. Biochem. Physiol. Part - C: Toxicol. Pharmacol. 234: 108782, DOI: https://doi.org/10.1016/j.cbpc.2020.108782.
- Tian, J., Hu, J., Liu, D., Yin, J., Chen, M., Zhou, L., & Yin, H. (2021). Cadmium chloride-induced transgenerational neurotoxicity in zebrafish development. Environ. Toxicol. Pharmacol, 81: 103545, DOI: https://doi.org/10.1016/j.etap.2020.103545.
- Witeska, M., Sarnowski, P., Ługowska, K., & Kowal, E. (2014). The effects of cadmium and copper on embryonic and larval development of ide Leuciscus idus L. Fish Physiol. Biochem. 40(1): 151–163, DOI: https://doi.org/10.1007/s10695-013-9832-4.
- Wold, M., Beckmann, M., Poitra, S., Espinoza, A., Longie, R., Mersereau, E., Darland, D.C., & Darland, T. (2017). The longitudinal effects of early developmental cadmium exposure on conditioned place preference and cardiovascular physiology in zebrafish. Aquat. Toxicol. 191: 73–84, DOI: https://doi.org/10.1016/j.aquatox.2017.07.017.
- Yang, Y., Yu, Y., Zhou, R., Yang, Y., & Bu, Y. (2021). The effect of combined exposure of zinc and nickel on the development of zebrafish. J. Appl. Toxicol. 41(11): 1765–1778, DOI: https://doi.org/10.1002/jat.4159.
- Zhao, L., Si, J., Wei, Y., Li, S., Jiang, Y., Zhou, R., Liu, B., & Zhang, H. (2018). Toxicity of porcelain-fused-to-metal substrate to zebrafish (Danio rerio) embryos and larvae. Life Sci. 203: 66–71, DOI: https://doi.org/10.1016/j.lfs.2018.04.019.
- Zhu, B., Wu, Z.F., Li, J., & Wang, G.X. (2011). Single and joint action toxicity of heavy metals on early developmental stages of Chinese rare minnow (Gobiocypris rarus). Ecotoxicol. Environ. Saf. 74(8): 2193–2202, DOI: https://doi.org/10.1016/j.ecoenv.2011.07.033.
- Zhu, Q.L., Li, W.Y., & Zheng, J.L. (2018). Life-cycle exposure to cadmium induced compensatory responses towards oxidative stress in the liver of female zebrafish. Chemosphere. 210: 949–957, DOI: https://doi.org/10.1016/j.chemosphere.2018.07.095.
- Zindler, F., Beedgen, F., Brandt, D., Steiner, M., Stengel, D., Baumann, L., & Braunbeck, T. (2019). Analysis of tail coiling activity of zebrafish (Danio rerio) embryos allows for the differentiation of neurotoxicants with different modes of action. Ecotoxicol. Environ. Saf. 186: 109754, DOI: https://doi.org/10.1016/j.ecoenv.2019.109754.
EFFECTS OF CADMIUM AND NICKEL ON EMBRYONIC DEVELOPMENT OF FISH: A REVIEW
Yıl 2023,
, 40 - 51, 28.12.2023
Saima Naz
,
Ahmad Manan Mustafa Chatha
,
Durali Danabaş
Öz
In fish embryos, a variety of abnormalities have been found, including stunted growth, a reduced survival rate, and aberrant development. One plausible explanation is that early embryonic stages are more sensitive. Embryonic studies provide additional information regarding the various impacts of heavy metals on fish, but information on larval abnormalities caused by waterborne metals is lacking.
It is found that cadmium (Cd) causes a decrease in thyroid hormone levels as well as a disruption in fish growth hormone expression. Similarly, negative health effects have been documented as a result of nickel (Ni) exposure. Some toxic effects on organs, skin irritation, skin itches or blisters and allergic reactions may occur as a result of Ni exposure.
This review study focuses on the impacts of Cd and Ni, on the embryonic development of different fish species. The evidence on abnormalities in fish larvae caused by Cd and Ni was also provided in text.
Kaynakça
- Ahmed, M.F., & Mokhtar, M.B. (2020). Assessing cadmium and chromium concentrations in drinking water to predict health risk in Malaysia. Int. J. Environ. Res. 17(8): 2966, DOI: https://doi.org/10.3390/ijerph17082966.
- Aldavood, S.J., Abbott, L.C., Evans, Z.R., Griffin, D.J., Lee, M.D., Quintero-Arevalo, N.M., & Villalobos, A.R. (2020). Effect of cadmium and nickel exposure on early development in zebrafish (Danio rerio) embryos. Water. 12(11): 3005. DOI: https://doi.org/10.3390/w12113005.
- Almeida, A.R., Salimian, M., Ferro, M., Marques, P.A., Goncalves, G., Titus, E., & Domingues, I. (2019). Biochemical and behavioral responses of zebrafish embryos to magnetic graphene/nickel nanocomposites. Ecotoxicol. Environ. Saf. 186: 109760, DOI: https://doi.org/10.1016/j.ecoenv.2019.109760.
- Alsop, D., Lall, S.P., & Wood, C.M. (2014). Reproductive impacts and physiological adaptations of zebrafish to elevated dietary nickel. Comp. Biochem. Physio. Part C: Toxicol. Pharmacol. 165: 67-75, DOI: https://doi.org/ 10.1016/j.cbpc.2014.05.001.
- Barjhoux, I., Baudrimont, M., Morin, B., Landi, L., Gonzalez, P., & Cachot, J. (2012). Effects of copper and cadmium spiked-sediments on embryonic development of Japanese medaka (Oryzias latipes). Ecotoxicol. Environ. Saf. 79: 272–282, DOI: https://doi.org/10.1016/j.ecoenv.2012.01.011.
- Bartzke, M., Delov, V., Stahlschmidt-Allner, P., Allner, B., & Oehlmann, J. (2010). Integrating the fish embryo toxicity test as triad element for sediment toxicity assessment based on the Water Framework Directive approach. J Soils Sediments. 10(3): 389–399, DOI: https://doi.org/10.1007/s11368-009-0170-1.
- Bian, X., & Gao, Y. (2021). DNA methylation and gene expression alterations in zebrafish embryos exposed to cadmium. Environ. Sci. Pollut. Res. 28(23): 30101-30110, DOI: https://doi.org/10.1007/s11356-021-12691-6.
Bielmyer, G.K., DeCarlo, C., Morris, C., & Carrigan, T. (2013). The influence of salinity on acute nickel toxicity to the two euryhaline fish species, Fundulus heteroclitus and Kryptolebias marmoratus. Environ. Toxicol. Chem. 32: 1354-1359, DOI: https://doi.org/10.1002/etc.2185
- Bouwmeester, M.C., Ruiter, S., Lommelaars, T., Sippel, J., Hodemaekers, H.M., van den Brandhof, E.J., Pennings, J.L.A., Kamstra, J.H., Jelinek, J., Issa, J.P.J., Legler, J., & van der Ven, L.T.M. (2016). Zebrafish embryos as a screen for DNA methylation modifications after compound exposure. Toxicol. Appl. Pharmacol. 291: 84–96, DOI: https://doi.org/10.1016/j.taap.2015.12.012.
- Brix, K.V., Schlekat, C.E., & Garman, E.R. (2017). The mechanisms of nickel toxicity in aquatic environments: An adverse outcome pathway analysis. Environ. Toxicol. Chem. 36: 1128-1137, DOI: https://doi.org/10.1002/etc.3706.
- Cao, L., Huang, W., Shan, X., Xiao, Z., Wang, Q., & Dou, S. (2009). Cadmium toxicity to embryonic-larval development and survival in red sea bream Pagrus major. Ecotoxicol. Environ. Saf. 72(7): 1966–1974, DOI: https://doi.org/10.1016/j.ecoenv.2009.06.002.
- Chouchene, L., Pellegrini, E., Gueguen, M.M., Hinfray, N., Brion, F., Piccini, B., Kah, O., Saïd, K., Messaoudi, I., & Pakdel, F. (2016). Inhibitory effect of cadmium on estrogen signaling in zebrafish brain and protection by zinc: Cadmium effect on estrogen signaling in zebrafish brain. J. Appl. Toxicol. 36(6): 863–871, DOI: https://doi.org/10.1002/jat.3285.
- Custer, K.W., Hammerschmidt, C.R., & Burton, G.A. (2016). Nickel toxicity to benthic organisms: The role of dissolved organic carbon, suspended solids, and route of exposure. Environ. Pollut. 208: 309-317, DOI: https://doi.org/10.1016/j.envpol.2015.09.045.
- Duan, Z., Xing, Y., Feng, Z., Zhang, H., Li, C., Gong, Z., Wang, L., & Sun, H. (2017). Hepatotoxicity of benzotriazole and its effect on the cadmium induced toxicity in zebrafish Danio rerio. Environ. Pollut. 224: 706–713, DOI: https://doi.org/10.1016/j.envpol.2017.02.055.
- Dutton, J., & Venuti, V.M. (2019). Comparison of maternal and embryonic trace element concentrations in common thresher shark (Alopias vulpinus) muscle tissue. Bull. Environ. Contam. Toxicol. 103(3): 380–384, DOI: https://doi.org/10.1007/s00128-019-02667-1.
- Eisler, R. (1998). Nickel hazards to fish, wildlife, and invertebrates: A synoptic review. US Department of the Interior, US Geological Survey, Patuxent Wildlife Research Center.
- Gárriz, Á., & Miranda, L.A. (2020). Effects of metals on sperm quality, fertilization and hatching rates, and embryo and larval survival of pejerrey fish (Odontesthes bonariensis). Ecotoxicology. 29(7): 1072–1082, DOI: https://doi.org/10.1007/s10646-020-02245-w.
- Guo, S.N., Zheng, J.L., Yuan, S.S., Zhu, Q.L., & Wu, C.W. (2017). Immunosuppressive effects and associated compensatory responses in zebrafish after full life-cycle exposure to environmentally relevant concentrations of cadmium. Aquat. Toxicol. 188: 64–71, DOI: https://doi.org/10.1016/j.aquatox.2017.04.014.
- Hani, Y.M.I., Turies, C., Palluel, O., Delahaut, L., Gaillet, V., Bado-nilles, A., Porcher, J.M., Geffard, A., & Dedourge-geffard, O. (2018). Effects of chronic exposure to cadmium and temperature, alone or combined, on the three spine stickleback (Gasterosteus aculeatus): Interest of digestive enzymes as biomarkers. Aquat. Toxicol. 199: 252-262, DOI: https://doi.org/10.1016/j.aquatox.2018.04.006.
- Jin, Y., Liu, Z., Liu, F., Ye, Y., Peng, T., & Fu, Z. (2015). Embryonic exposure to cadmium (II) and chromium (VI) induce behavioral alterations, oxidative stress and immunotoxicity in zebrafish (Danio rerio). Neurotoxicol. Teratol. 48: 9–17, DOI: https://doi.org/10.1016/j.ntt.2015.01.002.
- Kienle, C., Köhler, H.R., Filser, J., & Gerhardt, A. (2008). Effects of nickel chloride and oxygen depletion on behaviour and vitality of zebrafish (Danio rerio, Hamilton, 1822) (Pisces, Cypriniformes) embryos and larvae. Environ. Pollut. 152(3): 612–620, DOI: https://doi.org/10.1016/j.envpol.2007.06.069.
- Kim, K. Wang, C.H., Ok, Y.S., & Lee, S.E. (2019). Heart developmental toxicity by carbon black waste generated from oil refinery on zebrafish embryos (Danio rerio): Combined toxicity on heart function by nickel and vanadium. J. Hazard. Mater. 363: 127-137, DOI: https://doi.org/10.1016/j.jhazmat.2018.09.089.
- Kimáková, T., Kuzmová, L., Nevolná, Z., & Bencko, V. (2018). Fish and fish products as risk factors of mercury exposure. Ann. Agric. Environ. Med. 25(3): 488–493, DOI: https://doi.org/10.26444/aaem/84934.
- Krzykwa, J.C., Saeid, A., & Jeffries, M.K.S. (2019). Identifying sublethal endpoints for evaluating neurotoxic compounds utilizing the fish embryo toxicity test. Ecotoxicol. Environ. Saf. 170: 521–529, DOI: https://doi.org/10.1016/j.ecoenv.2018.11.118.
- Ku, T., Yan, W., Jia, W., Yun, Y., Zhu, N., Li, G., & Sang, N. (2015). Characterization of synergistic embryotoxicity of nickel and buprofezin in zebrafish. Environ. Sci. Technol. 49(7): 4600–4608, DOI: https://doi.org/10.1021/es506293t.
- Kumar, S., & Sharma, A. (2019). Cadmium toxicity: Effects on human reproduction and fertility. Rev. Environ. Health. 34: 327-338, DOI: https://doi.org/10.1515/reveh-2019-0016.
- Lapointe, D., & Couture, P. (2010). Accumulation and effects of nickel and thallium in early-life stages of fathead minnows (Pimephales promelas). Ecotoxicol. Environ. Saf. 73(4): 572–578, DOI: https://doi.org/10.1016/j.ecoenv.2010.01.004.
- Li, X., Mao, L., Zhang, Y., Wang, X., Wang, Y., & Wu, X. (2020). Joint toxic impacts of cadmium and three pesticides on embryonic development of rare minnow (Gobiocypris rarus). Environ. Sci. Pollut. Res. 27(29): 36596–36604, DOI: https://doi.org/10.1007/s11356-020-09769-y.
- Liu, K., Song, J., Chi, W., Liu, H., Ge, S., & Yu, D. (2021), Developmental toxicity in marine medaka (Oryzias melastigma) embryos and larvae exposed to nickel. Comp. Biochem. Physiol. Part - C: Toxicol. Pharmacol. 248: 109082, DOI: https://doi.org/10.1016/j.cbpc.2021.109082.
- Ługowska, K., & Kondera, E. (2020). Developmental anomalies in ide (Leuciscus idus L.) larvae caused by copper and cadmium. Roczniki Naukowe Polskiego Towarzystwa Zootechnicznego, 16(3): 37-51, DOI: https://doi.org/10.5604/01.3001.0014.3996.
- Monaco, A., Capriello, T., Grimaldi, M.C., Schiano, V., & Ferrandino, I. (2017). Neurodegeneration in zebrafish embryos and adults after cadmium exposure. Eur. J. Histochem. 61(4): 2833 DOI: https://doi.org/10.4081/ejh.2017.2833.
- Motta, C.M., Simoniello, P., Di Lorenzo, M., Migliaccio, V., Panzuto, R., Califano, E., & Santovito, G. (2021). Endocrine disrupting effects of copper and cadmium in the oocytes of the Antarctic Emerald rockcod Trematomus bernacchii. Chemosphere. 268: 129282, DOI: https://doi.org/10.1016/j.chemosphere.2020.129282.
- Ouellet, J.D., Dubé, M.G., & Niyogi, S. (2013). Influence of elevated alkalinity and natural organic matter (NOM) on tissue-specific metal accumulation and reproductive performance in fathead minnows during chronic, multi-trophic exposures to a metal mine effluent. Ecotoxicol. Environ. Saf. 95: 104–112, DOI: https://doi.org/10.1016/j.ecoenv.2013.05.027.
- Pinto, G.L., da Silva Castro, J., & Val, A.L. (2021). Copper and cadmium impair sperm performance, fertilization and hatching of oocytes from Amazonian fish Colossoma macropomum. Chemosphere. 266: 128957, DOI: https://doi.org/10.1016/j.chemosphere.2020.128957.
- Puangprasert, S., & Prueksasit, T. (2019). Health risk assessment of airborne Cd, Cu, Ni and Pb for electronic waste dismantling workers in Buriram Province, Thailand. J. Environ. Manag. 252: 109601, https://doi.org/10.1016/j.jenvman.2019.109601.
- Scheil, V., Zürn, A., Köhler, H.R., & Triebskorn, R. (2010). Embryo development, stress protein (Hsp70) responses, and histopathology in zebrafish (Danio rerio) following exposure to nickel chloride, chlorpyrifos, and binary mixtures of them. Environ. Toxicol. 25(1): 83–93, DOI: https://doi.org/10.1002/tox.20477.
- Sonnack, L., Kampe, S., Muth-Köhne, E., Erdinger, L., Henny, N., Hollert, H., Schäfers, C., & Fenske, M. (2015). Effects of metal exposure on motor neuron development, neuromasts and the escape response of zebrafish embryos. Neurotoxicol. Teratol. 50: 33–42, DOI: https://doi.org/10.1016/j.ntt.2015.05.006.
- Tian, J., Hu, J., He, W., Zhou, L., & Huang, Y. (2020). Parental exposure to cadmium chloride causes developmental toxicity and thyroid endocrine disruption in zebrafish offspring. Comp. Biochem. Physiol. Part - C: Toxicol. Pharmacol. 234: 108782, DOI: https://doi.org/10.1016/j.cbpc.2020.108782.
- Tian, J., Hu, J., Liu, D., Yin, J., Chen, M., Zhou, L., & Yin, H. (2021). Cadmium chloride-induced transgenerational neurotoxicity in zebrafish development. Environ. Toxicol. Pharmacol, 81: 103545, DOI: https://doi.org/10.1016/j.etap.2020.103545.
- Witeska, M., Sarnowski, P., Ługowska, K., & Kowal, E. (2014). The effects of cadmium and copper on embryonic and larval development of ide Leuciscus idus L. Fish Physiol. Biochem. 40(1): 151–163, DOI: https://doi.org/10.1007/s10695-013-9832-4.
- Wold, M., Beckmann, M., Poitra, S., Espinoza, A., Longie, R., Mersereau, E., Darland, D.C., & Darland, T. (2017). The longitudinal effects of early developmental cadmium exposure on conditioned place preference and cardiovascular physiology in zebrafish. Aquat. Toxicol. 191: 73–84, DOI: https://doi.org/10.1016/j.aquatox.2017.07.017.
- Yang, Y., Yu, Y., Zhou, R., Yang, Y., & Bu, Y. (2021). The effect of combined exposure of zinc and nickel on the development of zebrafish. J. Appl. Toxicol. 41(11): 1765–1778, DOI: https://doi.org/10.1002/jat.4159.
- Zhao, L., Si, J., Wei, Y., Li, S., Jiang, Y., Zhou, R., Liu, B., & Zhang, H. (2018). Toxicity of porcelain-fused-to-metal substrate to zebrafish (Danio rerio) embryos and larvae. Life Sci. 203: 66–71, DOI: https://doi.org/10.1016/j.lfs.2018.04.019.
- Zhu, B., Wu, Z.F., Li, J., & Wang, G.X. (2011). Single and joint action toxicity of heavy metals on early developmental stages of Chinese rare minnow (Gobiocypris rarus). Ecotoxicol. Environ. Saf. 74(8): 2193–2202, DOI: https://doi.org/10.1016/j.ecoenv.2011.07.033.
- Zhu, Q.L., Li, W.Y., & Zheng, J.L. (2018). Life-cycle exposure to cadmium induced compensatory responses towards oxidative stress in the liver of female zebrafish. Chemosphere. 210: 949–957, DOI: https://doi.org/10.1016/j.chemosphere.2018.07.095.
- Zindler, F., Beedgen, F., Brandt, D., Steiner, M., Stengel, D., Baumann, L., & Braunbeck, T. (2019). Analysis of tail coiling activity of zebrafish (Danio rerio) embryos allows for the differentiation of neurotoxicants with different modes of action. Ecotoxicol. Environ. Saf. 186: 109754, DOI: https://doi.org/10.1016/j.ecoenv.2019.109754.