Research Article
BibTex RIS Cite

THE EFFECT OF DIFFERENT FLIGHT HEIGHTS ON GENERATED DIGITAL PRODUCTS: DSM AND ORTHOPHOTO

Year 2020, Volume: 2 Issue: 1, 1 - 9, 01.06.2020

Abstract

Unmanned Aerial
Vehicle (UAV) allows you to create digital surface models (DSM) and orthophotos
of an area in a short time by photogrammetric methods. In the last decade, UAV
and Global Positioning System (GPS) have been used to create real, reliable and
high-resolution maps. In this study, the effect of flight height on DSM and
orthophoto was investigated. Two flight plans at a height of 30 to 50 meters
were prepared. Images taken with UAV were used to produce DSM and orthophoto.
Resolution of maps were compared when models were produced.  Compared to a flight height of 50 meters, a
more detailed and high-resolution model was created with 30 meters. Although
the flight data from 30 meters gave better results, the flight process took
longer. Also, more photos were taken and the file size took up more space. As a
result of this comparison, it was determined that the flight height should be
determined according to the terrain structure, accuracy, precision and
time-cost balance expected from the job.

References

  • ATLIS Geomatics,http://www.atlisgeo.com/expertise/process/dem-dtm/ [Accessed 17 Oct. 2019].
  • Bogaziçi Construction Consultancy A.Ş. (BIMTAS),https://bimtas.istanbul/lttmDem.aspx [Accessed 15 Oct. 2019a].
  • Bogaziçi Construction Consultancy A.Ş. (BIMTAS), https://bimtas.istanbul/bimtas-galeri-lttm.aspx?kls=DSM [Accessed 15 Oct. 2019b].
  • Ceylan, M., Doner, F. and Ozdemir, S. (2014). “Use of unmanned aerial vehicle systems in data collection and mapping studies.” 5. Remote Sensing-GIS semposium, Istanbul, Turkey.
  • Dellaert, F. Seitz, S. M., Thorpe, C. E. and Thrun, S. (2000). “Structure from motion without correspondence. Proceedings.” IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2000 (Cat. No.PR00662), Hilton Head Island, SC, pp. 557-564 Vol. 2, doi: 10.1109/CVPR.2000.854916.
  • Eisenbeiss, H. (2003). Positions und orientierungsbestimmung eines autonomen helikopters-vergleich zwischen direkter georeferenzierung und aerotriangulation mit videobilddaten, Diploma Thesis, Institute for Photogrammetry and remote sensing, University of Technology, Dresden, Germany.
  • Eisenbeiss, H. (2004) “A mini unmanned aerial vehicle (UAV): system overview and image acquisition.” International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 36, part 5/W1, on CD-ROM.
  • Eisenbeiss, H. (2009). UAV Photogrammetry, ETH Zurich for the degree of Doctor of Science, ISNN 0252-9335, ISBN: 978-3-906467-86-3, Zurich, Switzerland.
  • Furukawa, Y., Hernández, C. (2013). “Multi-View Stereo: A Tutorial.” Foundations and Trends® in Computer Graphics and Vision, Vol. 9, No. 1-2, pp. 1-148.
  • Kraus, K. (2007). “Photogrammetry, Geometry from Images and Laser Scans (2nd edition)”,Walter de Gruyter, Berlin, Germany.
  • Kolzenburg, S., Favalli, M., Fornaciai, A., Isola, I., Harris, A. J. L., Nannipieri, L. And Giordano, D. (2016). “Rapid updating and improvement of airborne lidar DEMs through ground-based sfm 3-d modelling of volcanic features.” IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 11, pp. 6687-6699.
  • Marangoz, A., M. (2014). “Lecture notes on photogrammetry II”, Bülent Ecevit University, Zonguldak, Turkey.
  • Newhall, B. (1969). “Airborne camera: The world from the air and outer space.” Hasting House Trowbridge&London, pp. 144.
  • Nex, F. and Remondino, F. (2014). “UAV for 3D mapping applications: a review.” Applied Geomatics, Vol. 6, Issue 1, pp.1-15.
  • NIK Construction Tic. Ltd. Sti. http://www.nik.com.tr/content_sistem_alt.asp?id=84 [Accessed 14 Oct. 2019].
  • Ozemir, I. and Uzar, M. (2016). “The generation of photogrammetric data with unmanned aerial vehicle.” 6. Remote Sensing-GIS DEMposium, Adana, Turkey, pp. 245-254.
  • Parrot (2018) “Anafi User Manual v2.2.” pp.1-73.
  • Rawat K. S. and Lawrence E. E. (2014). “A mini-UAV VTOL Platform for Surveying Applications.” International Journal of Robotics and Automation (IJRA) Vol. 3, No. 4, pp. 259-267.
  • Sariturk, B. and Seker D.Z. (2017) “Comparison Of Commercial And Open-Source Software Used In 3d Object Modeling With Sfm Technique.” Afyon Kocatepe University Journal of Science and Engineering, Special Issue, pp. 126-131.
  • Seren, A. M. and Demirel, H. (2016). “3 Dımensıonal Modellıng Of Large Objects In Open-Space: A Comparıson Of Recent Methodologıes In Geomatıcs Engıneerıng”. 8. National Engineering Surveys Symposium, Yıldız Technical University, Istanbul, Turkey.
  • Sweeney, C. (2016). Theia Visison Libraryhttp://www.theia-sfm.org/sfm.html [Accessed 11 Oct. 2019].
  • Whittlesley, J. H. (1970). “Tethered Balloon for Archaeloogical Photos, In Photogrammetric Engineering.” 36 2, pp. 181-186.
  • Yakar, M. and Dogan, Y. (2017). “3D Modelling of Silifke Asagi Dunya Sinkhole by Using UAV.” Afyon Kocatepe University Journal of Science and Engineering, Special Issue, pp. 94-101.
  • Yasayan, A. (2011). “Photogrammetry.” T.C.Anadolu Üniversitesi Yayını, No: 2295. Acıkoğretim Fakültesi Yayını, No:1292, Eskisehir, Turkey
  • Morgan, J. A. and Brogan, D. J. (2016). “How to Visual SFM”. Department of Civil & Environmental Engineering Colorado State University Fort Collins, Colorado.
Year 2020, Volume: 2 Issue: 1, 1 - 9, 01.06.2020

Abstract

References

  • ATLIS Geomatics,http://www.atlisgeo.com/expertise/process/dem-dtm/ [Accessed 17 Oct. 2019].
  • Bogaziçi Construction Consultancy A.Ş. (BIMTAS),https://bimtas.istanbul/lttmDem.aspx [Accessed 15 Oct. 2019a].
  • Bogaziçi Construction Consultancy A.Ş. (BIMTAS), https://bimtas.istanbul/bimtas-galeri-lttm.aspx?kls=DSM [Accessed 15 Oct. 2019b].
  • Ceylan, M., Doner, F. and Ozdemir, S. (2014). “Use of unmanned aerial vehicle systems in data collection and mapping studies.” 5. Remote Sensing-GIS semposium, Istanbul, Turkey.
  • Dellaert, F. Seitz, S. M., Thorpe, C. E. and Thrun, S. (2000). “Structure from motion without correspondence. Proceedings.” IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2000 (Cat. No.PR00662), Hilton Head Island, SC, pp. 557-564 Vol. 2, doi: 10.1109/CVPR.2000.854916.
  • Eisenbeiss, H. (2003). Positions und orientierungsbestimmung eines autonomen helikopters-vergleich zwischen direkter georeferenzierung und aerotriangulation mit videobilddaten, Diploma Thesis, Institute for Photogrammetry and remote sensing, University of Technology, Dresden, Germany.
  • Eisenbeiss, H. (2004) “A mini unmanned aerial vehicle (UAV): system overview and image acquisition.” International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 36, part 5/W1, on CD-ROM.
  • Eisenbeiss, H. (2009). UAV Photogrammetry, ETH Zurich for the degree of Doctor of Science, ISNN 0252-9335, ISBN: 978-3-906467-86-3, Zurich, Switzerland.
  • Furukawa, Y., Hernández, C. (2013). “Multi-View Stereo: A Tutorial.” Foundations and Trends® in Computer Graphics and Vision, Vol. 9, No. 1-2, pp. 1-148.
  • Kraus, K. (2007). “Photogrammetry, Geometry from Images and Laser Scans (2nd edition)”,Walter de Gruyter, Berlin, Germany.
  • Kolzenburg, S., Favalli, M., Fornaciai, A., Isola, I., Harris, A. J. L., Nannipieri, L. And Giordano, D. (2016). “Rapid updating and improvement of airborne lidar DEMs through ground-based sfm 3-d modelling of volcanic features.” IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 11, pp. 6687-6699.
  • Marangoz, A., M. (2014). “Lecture notes on photogrammetry II”, Bülent Ecevit University, Zonguldak, Turkey.
  • Newhall, B. (1969). “Airborne camera: The world from the air and outer space.” Hasting House Trowbridge&London, pp. 144.
  • Nex, F. and Remondino, F. (2014). “UAV for 3D mapping applications: a review.” Applied Geomatics, Vol. 6, Issue 1, pp.1-15.
  • NIK Construction Tic. Ltd. Sti. http://www.nik.com.tr/content_sistem_alt.asp?id=84 [Accessed 14 Oct. 2019].
  • Ozemir, I. and Uzar, M. (2016). “The generation of photogrammetric data with unmanned aerial vehicle.” 6. Remote Sensing-GIS DEMposium, Adana, Turkey, pp. 245-254.
  • Parrot (2018) “Anafi User Manual v2.2.” pp.1-73.
  • Rawat K. S. and Lawrence E. E. (2014). “A mini-UAV VTOL Platform for Surveying Applications.” International Journal of Robotics and Automation (IJRA) Vol. 3, No. 4, pp. 259-267.
  • Sariturk, B. and Seker D.Z. (2017) “Comparison Of Commercial And Open-Source Software Used In 3d Object Modeling With Sfm Technique.” Afyon Kocatepe University Journal of Science and Engineering, Special Issue, pp. 126-131.
  • Seren, A. M. and Demirel, H. (2016). “3 Dımensıonal Modellıng Of Large Objects In Open-Space: A Comparıson Of Recent Methodologıes In Geomatıcs Engıneerıng”. 8. National Engineering Surveys Symposium, Yıldız Technical University, Istanbul, Turkey.
  • Sweeney, C. (2016). Theia Visison Libraryhttp://www.theia-sfm.org/sfm.html [Accessed 11 Oct. 2019].
  • Whittlesley, J. H. (1970). “Tethered Balloon for Archaeloogical Photos, In Photogrammetric Engineering.” 36 2, pp. 181-186.
  • Yakar, M. and Dogan, Y. (2017). “3D Modelling of Silifke Asagi Dunya Sinkhole by Using UAV.” Afyon Kocatepe University Journal of Science and Engineering, Special Issue, pp. 94-101.
  • Yasayan, A. (2011). “Photogrammetry.” T.C.Anadolu Üniversitesi Yayını, No: 2295. Acıkoğretim Fakültesi Yayını, No:1292, Eskisehir, Turkey
  • Morgan, J. A. and Brogan, D. J. (2016). “How to Visual SFM”. Department of Civil & Environmental Engineering Colorado State University Fort Collins, Colorado.
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Mehmet Özgür Çelik 0000-0003-4569-888X

Aydın Alptekin 0000-0002-5605-0758

Fatma Bünyan Ünel This is me 0000-0002-9949-640X

Lütfiye Kuşak 0000-0002-7265-245X

Engin Kanun This is me

Publication Date June 1, 2020
Published in Issue Year 2020 Volume: 2 Issue: 1

Cite

APA Çelik, M. Ö., Alptekin, A., Bünyan Ünel, F., Kuşak, L., et al. (2020). THE EFFECT OF DIFFERENT FLIGHT HEIGHTS ON GENERATED DIGITAL PRODUCTS: DSM AND ORTHOPHOTO. Mersin Photogrammetry Journal, 2(1), 1-9.
AMA Çelik MÖ, Alptekin A, Bünyan Ünel F, Kuşak L, Kanun E. THE EFFECT OF DIFFERENT FLIGHT HEIGHTS ON GENERATED DIGITAL PRODUCTS: DSM AND ORTHOPHOTO. MEPHOJ. June 2020;2(1):1-9.
Chicago Çelik, Mehmet Özgür, Aydın Alptekin, Fatma Bünyan Ünel, Lütfiye Kuşak, and Engin Kanun. “THE EFFECT OF DIFFERENT FLIGHT HEIGHTS ON GENERATED DIGITAL PRODUCTS: DSM AND ORTHOPHOTO”. Mersin Photogrammetry Journal 2, no. 1 (June 2020): 1-9.
EndNote Çelik MÖ, Alptekin A, Bünyan Ünel F, Kuşak L, Kanun E (June 1, 2020) THE EFFECT OF DIFFERENT FLIGHT HEIGHTS ON GENERATED DIGITAL PRODUCTS: DSM AND ORTHOPHOTO. Mersin Photogrammetry Journal 2 1 1–9.
IEEE M. Ö. Çelik, A. Alptekin, F. Bünyan Ünel, L. Kuşak, and E. Kanun, “THE EFFECT OF DIFFERENT FLIGHT HEIGHTS ON GENERATED DIGITAL PRODUCTS: DSM AND ORTHOPHOTO”, MEPHOJ, vol. 2, no. 1, pp. 1–9, 2020.
ISNAD Çelik, Mehmet Özgür et al. “THE EFFECT OF DIFFERENT FLIGHT HEIGHTS ON GENERATED DIGITAL PRODUCTS: DSM AND ORTHOPHOTO”. Mersin Photogrammetry Journal 2/1 (June 2020), 1-9.
JAMA Çelik MÖ, Alptekin A, Bünyan Ünel F, Kuşak L, Kanun E. THE EFFECT OF DIFFERENT FLIGHT HEIGHTS ON GENERATED DIGITAL PRODUCTS: DSM AND ORTHOPHOTO. MEPHOJ. 2020;2:1–9.
MLA Çelik, Mehmet Özgür et al. “THE EFFECT OF DIFFERENT FLIGHT HEIGHTS ON GENERATED DIGITAL PRODUCTS: DSM AND ORTHOPHOTO”. Mersin Photogrammetry Journal, vol. 2, no. 1, 2020, pp. 1-9.
Vancouver Çelik MÖ, Alptekin A, Bünyan Ünel F, Kuşak L, Kanun E. THE EFFECT OF DIFFERENT FLIGHT HEIGHTS ON GENERATED DIGITAL PRODUCTS: DSM AND ORTHOPHOTO. MEPHOJ. 2020;2(1):1-9.