Araştırma Makalesi
BibTex RIS Kaynak Göster

MATEMATİKTE ÜSTÜN YETENEKLİLİĞE TEORİK BİR BAKIŞ

Yıl 2019, Cilt: 48 Sayı: 221, 159 - 174, 15.02.2019

Öz

Bu çalışmada, öncelikle üstün yetenekli kavramı ele alınmış ve üstün
yeteneklilik modellerinden bahsedilmiştir. Sonrasında ise matematikte üstün
yeteneklilik ile ilgili yapılan çeşitli çalışmalara yer verilmiştir. Ülkemizde özellikle
yakın geçmişte üstün yeteneklilik ve dolayısıyla matematik alanında üstün
yeteneklilik alanına ilgi artarak devam etmektedir. Benzer şekilde Dünyada da
araştırmacıları çeşitli platformlarda bir araya gelmeleri, üstün yeteneklilik ve
yaratıcılık ile ilgili farkındalığın arttığının bir göstergesi olarak alınabilir. Literatürde
özellikle son yıllarda üstün yeteneklilik modelleri gündeme gelmektedir.
Bu modellerin matematik eğitimi alanına da çeşitli yansımaları olmuş ve hala
da olmaktadır. Sonuç olarak son 10 yılda matematik eğitimi alanında üstün yeteneklilik
ile ilgili çeşitli modeller öne sürülmüştür. Çalışmalar incelendiğinde
genellikle matematikte üstün yeteneklilik ve yaratıcılığı kavramlarının bir arada
olduğu görülmektedir. Ayrıca matematik eğitimi literatüründe, üstün yeteneklilik
ile ilgili çalışmaların çeşitli açılardan hala göz ardı edildiği de söylenilebilir.

Kaynakça

  • Assmus D. ve Fritzlar T. (2018). Mathematical Giftedness and Creativity in Primary Grades. Singer F. (Editör) Mathematical creativity and mathematical giftedness. (s. 55–81). New York: Springer.
  • Arı, B. (2004). Osmanlı devletinde yüksek bürokrasi için üstün yeteneklilerin tespiti ve sarayda özel eğitim süreci. I. Türkiye üstün yetenekli çocuklar kongresi bildiriler kitabı, (s.21–30), İstanbul: Çocuk Vakfı Yayınları.
  • Bilgili, A. E. (2004). Bir Türk Eğitim Geleneği olarak Enderun’un yeniden inşası. I. Türkiye üstün yetenekli çocuklar kongresi bildiriler kitabı, (s. 31–45), İstanbul: Çocuk Vakfı Yayınları.
  • Csikszentmihalyi, M. (2000). Implications of a systems perspective for the study of creativity. In R. J. Sternberg (Editör), Handbook of creativity (s. 313–338). Cambridge, UK: Cambridge University Press.
  • Dai, D. Y. (2010). The nature and nurture of giftedness: A new framework for understanding gifted education. New York, NY: Teachers College Press.
  • Davidson, J. E. (2009). Contemporary models of giftedness. L. V. Shavinina (Editör) International handbook on giftedness (s. 81–97). Dordrecht, the Netherlands: Springer.
  • Davis, G. A. ve Rimm, S. B. (2004). Education of the gifted and talented. Boston, MA: Pearson Education Press.
  • Demirel, Ş. ve Sak, U. (2011). Yetenek hiyerarşisi: Üstün yetenek türlerinin toplumsal değerleri üzerine bir araştırma. Türk Üstün Zekâ ve Eğitim Dergisi, 1(1), 61–76.
  • Erez, R. (2004). Freedom and creativity: An approach to science education for excellent students and its realization in the Israel arts and science academy’s curriculum. The Journal of Secondary Gifted Education, 25, 33–140.
  • Ervynck, G. (1991). Mathematical creativity. D. Tall (Editör), Advanced mathematical thinking (s. 42–53). Dordrecht, Netherlands: Kluwer.
  • Freiman, V. (2003). Identification and fostering of mathematically gifted children at the elementary school. Yüksek Lisans Tezi. UMI Number: MQ77942, Concordia University, Canada.
  • Freiman, V. ve Sriraman, B. (2007). Does mathematics gifted education need a working philosophy of creativity? Mediterranean Journal for Research in Mathematics Education, 6(1-2), 23-46.
  • MİLLÎ EĞİTİM ● Cilt: 48 ● Sayı: 221, (159-174)
  • Gagné, F. (2003). Transforming gifts into talents: The DMGT as a developmental theory. In: N. Colangelo ve G. A. Davis (Editörler) Handbook of gifted education (s. 60–74). Boston MA: Allyn and Bacon, Inc.
  • Guilford, J. P. (1950). Creativity. American Psychologist, 5, 444–454.
  • Hadamard, J. (1945). Essay on the psychology of invention in the mathematical field. Princeton, NJ: Princeton University Press.
  • Haylock, D. W. (1987). A framework for assessing mathematical creativity in school children. Educational Studies in Mathematics, 18(1), 59–74.
  • Hershkovitz, S., Peled, I. ve Littler, G. (2009). Mathematical creativity and giftedness in elementary school: Task and teacher promoting creativity for all. R. Leikin, A. Berman ve B. Koichu (Editörler), Creativity in mathematics and the education of gifted students (s. 255–269). Rotterdam: Sense Publishers.
  • Kontoyianni, K. N. (2014). Unraveling mathematical giftedness: characteristics, cognitive processes and identification. Yayımlanmamış Doktora Tezi. Universtiy of Cyprus.
  • Koshy, V., Ernest, P. ve Casey, R. (2009). Mathematically gifted and talented learners: Theory and practice. International Journal of Mathematical Education in Science and Technology, 40(2), 213–228.
  • Krutetskii, V. A. (1976). The psychology of mathematical abilities in school children. Chicago, IL: University of Chicago Press.
  • Leikin, R. (2009). Bridging research and theory in mathematics education with research and theory in creativity and giftedness. R. Leikin, A. Berman ve B. Koichu (Editörler), Creativity in mathematics and the education of gifted students (s. 383–409). Rotterdam: Sense Publishers.
  • Leikin, R. (2010). Teaching mathematically gifted. Gifted Education International, 27(2), 161–175.
  • Leikin, R. (2011). The education of mathematically gifted students: Some complexities and questions. The Mathematics Enthusiast, 8(1&2), 167–188.
  • Leikin, R., Koichu, B. ve Berman, A. (2009). Mathematical giftedness as a quality of problem-solving acts. R. Leikin, A. Berman ve B. Koichu (Editörler), Creativity in mathematics and the education of gifted students (s. 115–128). Rotterdam: Sense Publishers.
  • Leikin, R. ve Lev, M. (2013). Mathematical creativity in generally gifted and mathematically excelling adolescents: what makes the difference? ZDM Mathematics Education, 45(2), 183–197.
  • Leikin, R. ve Pitta-Pantazi, P. (2013). Creativity and mathematics education: The state of art. ZDM Mathematics Education, 45(2), 159–165.
  • Leikin, R., Subotnik, R., Pitta-Pantazi, D., Singer, F. ve Pelczer, I. (2013). Teachers’ views on creativity in mathematics education and international survey. ZDM Mathematics Education, 45(2), 309–324.
  • Liljedahl, P. ve Sriraman, B. (2006). Musings on mathematical creativity. For the Learning of Mathematics, 26(1), 20–23. Matematikte Üstün Yetenekliliğe Teorik Bir Bakış
  • Miller, R. C. (1990). Discovering mathematical talent. Reston, VA: Council for Exceptional Children, ERIC Clearinghouse on Disabilities and Gifted Education. ERIC Document Reproduction service No: ED 321 487.
  • Mingus, T. ve Grassl, R. (1999). What constitutes a nurturing environment for the growth of mathematically gifted students? School Sciences and Mathematics, 99(6), 286–293.
  • Poincaré, H. (1948). Science and method. New York, NY: Dover.
  • Pitta-Pantazi, D. (2017). What have we learned about giftedness and creativity? An overview of a five years journey. R. Leikin ve B. Sriraman (Editörler), Creativity and giftedness – Interdisciplinary perspectives from mathematics and beyond (s. 201–224). Switzerland: Springer.
  • Pitta-Pantazi D., Christou C., Kontoyianni K. ve Kattou M. (2011). A model of mathematical giftedness: Integrating natural, creative, and mathematical abilities. Canadian Journal of Science, Mathematics and Technology Education, 11(1), 39–54.
  • Renzulli, J. S. (2003). Conception of giftedness and its relationship to the development of social capital. N. Colangelo ve G. A. Davis (Editörler.) Handbook of gifted education (s. 75–87).
  • Boston MA: Allyn and Bacon, Inc. Sak, U. (2011). Üstün zekâlılar: Özellikleri, tanılanmaları, eğitimleri. Ankara: Maya Akademi.
  • Sak, U., Ayas, M. B., Bal Sezerel, B., Öpengin, E., Özdemir, N. N. ve Demirel Gürbüz, S. (2015). Türkiye’de üstün yeteneklilerin eğitiminin eleştirel bir değerlendirmesi. Türk Üstün Zekâ ve Eğitim Dergisi, 5(2), 110–132.
  • Sheffield, L. J. (2017). Dangerous myths about “gifted” mathematics students. ZDM Mathematics Education,49(1), 13–23.
  • Sheffield, L. J., Bennett, J., Berriozabal, M., DeArmond, M. ve Wertheimer, R. (1999). Report of the NCTM task force on the mathematically promising. L. J. Sheffield (Editör), Developing mathematically promising students (s. 309–316).
  • Singer, F.M., Sheffield, L.J. ve Leikin, R. (2017). Advancements in research on creativity and giftedness in mathematics education: Introduction to the special issue. ZDM Mathematics Education, 49(1): 5–12.
  • Sriraman, B. (2004). The characteristics of mathematical creativity. The Mathematics Educator, 14(1), 19–34.
  • Sriraman, B. (2005). Are mathematical giftedness and mathematical creativity synonyms? A theoretical analysis of constructs. Journal of Secondary Gifted Education, 17(1), 20–36.
  • Sriraman, B., Haavold, P. ve Lee, K. (2013). Mathematical creativity and giftedness: a commentary on and review of theory, new operational views, and ways forward. ZDM Mathematics Education, 45(2), 215–225.
  • Sternberg, R. J. (2000). Handbook of creativity. Cambridge, UK: Cambridge University Press.
  • MİLLÎ EĞİTİM ● Cilt: 48 ● Sayı: 221, (159-174)
  • Sternberg, R. J. (2003). Giftedness according to theory of successful intelligence. N. Colangelo ve G. A. Davis (Editörler) Handbook of gifted education (s. 88–99).
  • Sternberg, R. J. (1986). A triarchic theory of intellectual giftedness. R. J. Sternberg ve J. E. Davidson (Editörler), Conceptions of giftedness, (s. 223–243). Cambridge, MA: Cambridge University Press.
  • Sternberg, R. J. ve Davidson, J. E. (2005). Conceptions of giftedness. Boston, MA: Cambridge University Press.
  • Subotnik, R. F., Olszewski-Kubilius, P. ve Worrell, F. C. (2011). Rethinking giftedness and gifted education: A proposed direction forward based on psychological science. Psychological Science in the Public Interest, 12(1), 3–54.
  • Torrance, E. P. (1974). Torrance tests of creative thinking: Norms-technical manual. Lexington, MA: Ginn.
  • VanTassel-Baska, J. (2005). Domain-specific giftedness: Applications in school and life. R. J. Sternberg ve J. E. Davidson (Editörler), Conceptions of giftedness (s. 358–377). New York: Cambridge University Press.
  • Wagner, H. ve Zimmermann, B. (1986). Identification and fostering of mathematically gifted students. Educational Studies in Mathematics, 17(3), 243–259
  • Wallas, G. (1926). The art of thought. New York, NY: Harcourt, Brace & World.
  • Wieczerkowski, W., Cropley, A. J. ve Prado, T. M. (2000). Nurturing talents/gifts in mathematics. K. A. Heller, F. J. Monks, R. J. Sternberg ve R. F. Subotnik (Editörler), International handbook of giftedness and talent education (s. 413–425). Oxford, United Kingdom: Pergamon.
  • Ziegler, A. ve Heller, K. A. (2000). Conceptions of giftedness from a meta-theoretical perspective. K. A. Heller, F. J. Monks, R. J. Sternberg ve R. F. Subotnik (Editörler), International handbook of giftedness and talent (s. 3–21). New York: Elsevier.
Yıl 2019, Cilt: 48 Sayı: 221, 159 - 174, 15.02.2019

Öz

Kaynakça

  • Assmus D. ve Fritzlar T. (2018). Mathematical Giftedness and Creativity in Primary Grades. Singer F. (Editör) Mathematical creativity and mathematical giftedness. (s. 55–81). New York: Springer.
  • Arı, B. (2004). Osmanlı devletinde yüksek bürokrasi için üstün yeteneklilerin tespiti ve sarayda özel eğitim süreci. I. Türkiye üstün yetenekli çocuklar kongresi bildiriler kitabı, (s.21–30), İstanbul: Çocuk Vakfı Yayınları.
  • Bilgili, A. E. (2004). Bir Türk Eğitim Geleneği olarak Enderun’un yeniden inşası. I. Türkiye üstün yetenekli çocuklar kongresi bildiriler kitabı, (s. 31–45), İstanbul: Çocuk Vakfı Yayınları.
  • Csikszentmihalyi, M. (2000). Implications of a systems perspective for the study of creativity. In R. J. Sternberg (Editör), Handbook of creativity (s. 313–338). Cambridge, UK: Cambridge University Press.
  • Dai, D. Y. (2010). The nature and nurture of giftedness: A new framework for understanding gifted education. New York, NY: Teachers College Press.
  • Davidson, J. E. (2009). Contemporary models of giftedness. L. V. Shavinina (Editör) International handbook on giftedness (s. 81–97). Dordrecht, the Netherlands: Springer.
  • Davis, G. A. ve Rimm, S. B. (2004). Education of the gifted and talented. Boston, MA: Pearson Education Press.
  • Demirel, Ş. ve Sak, U. (2011). Yetenek hiyerarşisi: Üstün yetenek türlerinin toplumsal değerleri üzerine bir araştırma. Türk Üstün Zekâ ve Eğitim Dergisi, 1(1), 61–76.
  • Erez, R. (2004). Freedom and creativity: An approach to science education for excellent students and its realization in the Israel arts and science academy’s curriculum. The Journal of Secondary Gifted Education, 25, 33–140.
  • Ervynck, G. (1991). Mathematical creativity. D. Tall (Editör), Advanced mathematical thinking (s. 42–53). Dordrecht, Netherlands: Kluwer.
  • Freiman, V. (2003). Identification and fostering of mathematically gifted children at the elementary school. Yüksek Lisans Tezi. UMI Number: MQ77942, Concordia University, Canada.
  • Freiman, V. ve Sriraman, B. (2007). Does mathematics gifted education need a working philosophy of creativity? Mediterranean Journal for Research in Mathematics Education, 6(1-2), 23-46.
  • MİLLÎ EĞİTİM ● Cilt: 48 ● Sayı: 221, (159-174)
  • Gagné, F. (2003). Transforming gifts into talents: The DMGT as a developmental theory. In: N. Colangelo ve G. A. Davis (Editörler) Handbook of gifted education (s. 60–74). Boston MA: Allyn and Bacon, Inc.
  • Guilford, J. P. (1950). Creativity. American Psychologist, 5, 444–454.
  • Hadamard, J. (1945). Essay on the psychology of invention in the mathematical field. Princeton, NJ: Princeton University Press.
  • Haylock, D. W. (1987). A framework for assessing mathematical creativity in school children. Educational Studies in Mathematics, 18(1), 59–74.
  • Hershkovitz, S., Peled, I. ve Littler, G. (2009). Mathematical creativity and giftedness in elementary school: Task and teacher promoting creativity for all. R. Leikin, A. Berman ve B. Koichu (Editörler), Creativity in mathematics and the education of gifted students (s. 255–269). Rotterdam: Sense Publishers.
  • Kontoyianni, K. N. (2014). Unraveling mathematical giftedness: characteristics, cognitive processes and identification. Yayımlanmamış Doktora Tezi. Universtiy of Cyprus.
  • Koshy, V., Ernest, P. ve Casey, R. (2009). Mathematically gifted and talented learners: Theory and practice. International Journal of Mathematical Education in Science and Technology, 40(2), 213–228.
  • Krutetskii, V. A. (1976). The psychology of mathematical abilities in school children. Chicago, IL: University of Chicago Press.
  • Leikin, R. (2009). Bridging research and theory in mathematics education with research and theory in creativity and giftedness. R. Leikin, A. Berman ve B. Koichu (Editörler), Creativity in mathematics and the education of gifted students (s. 383–409). Rotterdam: Sense Publishers.
  • Leikin, R. (2010). Teaching mathematically gifted. Gifted Education International, 27(2), 161–175.
  • Leikin, R. (2011). The education of mathematically gifted students: Some complexities and questions. The Mathematics Enthusiast, 8(1&2), 167–188.
  • Leikin, R., Koichu, B. ve Berman, A. (2009). Mathematical giftedness as a quality of problem-solving acts. R. Leikin, A. Berman ve B. Koichu (Editörler), Creativity in mathematics and the education of gifted students (s. 115–128). Rotterdam: Sense Publishers.
  • Leikin, R. ve Lev, M. (2013). Mathematical creativity in generally gifted and mathematically excelling adolescents: what makes the difference? ZDM Mathematics Education, 45(2), 183–197.
  • Leikin, R. ve Pitta-Pantazi, P. (2013). Creativity and mathematics education: The state of art. ZDM Mathematics Education, 45(2), 159–165.
  • Leikin, R., Subotnik, R., Pitta-Pantazi, D., Singer, F. ve Pelczer, I. (2013). Teachers’ views on creativity in mathematics education and international survey. ZDM Mathematics Education, 45(2), 309–324.
  • Liljedahl, P. ve Sriraman, B. (2006). Musings on mathematical creativity. For the Learning of Mathematics, 26(1), 20–23. Matematikte Üstün Yetenekliliğe Teorik Bir Bakış
  • Miller, R. C. (1990). Discovering mathematical talent. Reston, VA: Council for Exceptional Children, ERIC Clearinghouse on Disabilities and Gifted Education. ERIC Document Reproduction service No: ED 321 487.
  • Mingus, T. ve Grassl, R. (1999). What constitutes a nurturing environment for the growth of mathematically gifted students? School Sciences and Mathematics, 99(6), 286–293.
  • Poincaré, H. (1948). Science and method. New York, NY: Dover.
  • Pitta-Pantazi, D. (2017). What have we learned about giftedness and creativity? An overview of a five years journey. R. Leikin ve B. Sriraman (Editörler), Creativity and giftedness – Interdisciplinary perspectives from mathematics and beyond (s. 201–224). Switzerland: Springer.
  • Pitta-Pantazi D., Christou C., Kontoyianni K. ve Kattou M. (2011). A model of mathematical giftedness: Integrating natural, creative, and mathematical abilities. Canadian Journal of Science, Mathematics and Technology Education, 11(1), 39–54.
  • Renzulli, J. S. (2003). Conception of giftedness and its relationship to the development of social capital. N. Colangelo ve G. A. Davis (Editörler.) Handbook of gifted education (s. 75–87).
  • Boston MA: Allyn and Bacon, Inc. Sak, U. (2011). Üstün zekâlılar: Özellikleri, tanılanmaları, eğitimleri. Ankara: Maya Akademi.
  • Sak, U., Ayas, M. B., Bal Sezerel, B., Öpengin, E., Özdemir, N. N. ve Demirel Gürbüz, S. (2015). Türkiye’de üstün yeteneklilerin eğitiminin eleştirel bir değerlendirmesi. Türk Üstün Zekâ ve Eğitim Dergisi, 5(2), 110–132.
  • Sheffield, L. J. (2017). Dangerous myths about “gifted” mathematics students. ZDM Mathematics Education,49(1), 13–23.
  • Sheffield, L. J., Bennett, J., Berriozabal, M., DeArmond, M. ve Wertheimer, R. (1999). Report of the NCTM task force on the mathematically promising. L. J. Sheffield (Editör), Developing mathematically promising students (s. 309–316).
  • Singer, F.M., Sheffield, L.J. ve Leikin, R. (2017). Advancements in research on creativity and giftedness in mathematics education: Introduction to the special issue. ZDM Mathematics Education, 49(1): 5–12.
  • Sriraman, B. (2004). The characteristics of mathematical creativity. The Mathematics Educator, 14(1), 19–34.
  • Sriraman, B. (2005). Are mathematical giftedness and mathematical creativity synonyms? A theoretical analysis of constructs. Journal of Secondary Gifted Education, 17(1), 20–36.
  • Sriraman, B., Haavold, P. ve Lee, K. (2013). Mathematical creativity and giftedness: a commentary on and review of theory, new operational views, and ways forward. ZDM Mathematics Education, 45(2), 215–225.
  • Sternberg, R. J. (2000). Handbook of creativity. Cambridge, UK: Cambridge University Press.
  • MİLLÎ EĞİTİM ● Cilt: 48 ● Sayı: 221, (159-174)
  • Sternberg, R. J. (2003). Giftedness according to theory of successful intelligence. N. Colangelo ve G. A. Davis (Editörler) Handbook of gifted education (s. 88–99).
  • Sternberg, R. J. (1986). A triarchic theory of intellectual giftedness. R. J. Sternberg ve J. E. Davidson (Editörler), Conceptions of giftedness, (s. 223–243). Cambridge, MA: Cambridge University Press.
  • Sternberg, R. J. ve Davidson, J. E. (2005). Conceptions of giftedness. Boston, MA: Cambridge University Press.
  • Subotnik, R. F., Olszewski-Kubilius, P. ve Worrell, F. C. (2011). Rethinking giftedness and gifted education: A proposed direction forward based on psychological science. Psychological Science in the Public Interest, 12(1), 3–54.
  • Torrance, E. P. (1974). Torrance tests of creative thinking: Norms-technical manual. Lexington, MA: Ginn.
  • VanTassel-Baska, J. (2005). Domain-specific giftedness: Applications in school and life. R. J. Sternberg ve J. E. Davidson (Editörler), Conceptions of giftedness (s. 358–377). New York: Cambridge University Press.
  • Wagner, H. ve Zimmermann, B. (1986). Identification and fostering of mathematically gifted students. Educational Studies in Mathematics, 17(3), 243–259
  • Wallas, G. (1926). The art of thought. New York, NY: Harcourt, Brace & World.
  • Wieczerkowski, W., Cropley, A. J. ve Prado, T. M. (2000). Nurturing talents/gifts in mathematics. K. A. Heller, F. J. Monks, R. J. Sternberg ve R. F. Subotnik (Editörler), International handbook of giftedness and talent education (s. 413–425). Oxford, United Kingdom: Pergamon.
  • Ziegler, A. ve Heller, K. A. (2000). Conceptions of giftedness from a meta-theoretical perspective. K. A. Heller, F. J. Monks, R. J. Sternberg ve R. F. Subotnik (Editörler), International handbook of giftedness and talent (s. 3–21). New York: Elsevier.
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Gönül Yazgan Sağ 0000-0002-7237-5683

Yayımlanma Tarihi 15 Şubat 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 48 Sayı: 221

Kaynak Göster

APA Yazgan Sağ, G. (2019). MATEMATİKTE ÜSTÜN YETENEKLİLİĞE TEORİK BİR BAKIŞ. Milli Eğitim Dergisi, 48(221), 159-174.