Araştırma Makalesi
BibTex RIS Kaynak Göster

Tarımsal artıklardan üretilen biyo-briketlerin CO2 emisyonları açısından çevresel etkisi

Yıl 2020, Cilt: 25 Sayı: 2, 217 - 224, 21.08.2020
https://doi.org/10.37908/mkutbd.735750

Öz

Amaç: Bu çalışmada bazı tarımsal artıklardan üretilen biyo-briketlerin baca gazı emisyonları incelenmiştir.

Yöntem ve Bulgular: Briketler, çay (Camellia sinensis) işleme tesislerinin kalıntıları, budama hurması (Diospyros kaki) kalıntıları, domates (Solanum lycopersicum) sapı ve budama şeftali (Prunus persica) ağacının kalıntılarından üretildi. Bu tarımsal artıklar, yatay bir rotaya sahip bir hidrolik briketleme makinesi kullanılarak briketlendi. Katı silindirik briketler, P12: 40 MPa ila 240 MPa arasında değişen, M12 (M12: % 10-% 12) nem içeriğine sahip ve partikül büyüklüğü (PS: 5 mm) olan farklı sıkıştırma basınçları altında üretildi. Biyo briketlerin baca gazı emisyonları ölçüldü.

Genel Yorum: Çalışma, briketleme basınçları arttıkça CO2 emisyonlarında artan bir eğilim bulmuştur. Domates sapı kalıntılarından üretilen briketler için 120 MPa basınçta en düşük CO2 emisyonu (% 2.50), şeftali ağacı budamadan üretilen briketler için en yüksek (% 8.90) 240 MPa briketleme basıncında.

Çalışmanın Önemi ve Etkisi: Özellikle, CO2 gibi en popüler sera gazlarından birinin emisyon değerleri konusuna ve küresel ısınma sorunlarına odaklanılmıştır. Ölçülen tüm CO2 emisyonları, çevre kirliliği için izin verilen sınırlar dahilinde çıkmıştır.

Kaynakça

  • Angın D, Şensöz S (2006) Effect of Drifting Gas (N2) Flow on Prylosis of Safflower Seed Pulps and Characterization of Liquid Product (In Turkish), Fırat University, Journal of Science and Engineering 18 (4): 535-542.
  • Bradna J, Malaťák J, Hájek D (2016) The properties of wheat straw combustion and use of fly ash as a soil amendment. Agron Res 14(4), 1257–1265.
  • Bradna J, Malaťák J, Velebil J (2017) Impact of differences in combustion conditions of rape straw on the amount of flue gases and fly ash properties. Agron Res 15(3), 649–657.
  • Chen T, Wu C, Liu R, Fei W, Liu S (2011) Effect of Hot Vapor Filtration on The Characterization of Bio-Oil From Rice-Husks With Fast Pyrolysis in A Fluidized-Bed Reactor. Bioresource Technol 102: 6178-6185.
  • Coşereanu C, Lica D, Lunguleasa A (2015) Investigation on The Quality of Briquettes Made From Rarely Used Wood Species. Agro-Wastes And Forest Biomass 11(1): 32-39.
  • EN 14774-1 (2009) Solid biofuels - Determination of moisture content - Oven dry method - Part 1: Total moisture - Reference European Committee for Standardization: Management Centre, Avenue Marnix 17, B-1000 Brussels.
  • EN ISO 17225-3 (2015) Solid biofuels -- Fuel specifications and classes -- Part 3: Graded wood briquettes. European Committee for Standardization: Management Centre, Avenue Marnix 17, B-1000 Brussels.
  • Grover PD, Mishra SK (1996) Biomass Briquetting: Technology and Practices. FAO Field Document No.46. Bankok April, 1996, Thailand.
  • Gürdil GAK, Demirel B, Baz Y, Demirel C (2016) Pelleting hazelnut husk residues for biofuel. In: Proceeding of 6th International Conference on Trends in Agricultural Engineering 2016, 162-165, Prague, Czech Republic.
  • Gürdil GAK, Melki S (2018) Determining briquetting parameters for peach tree pruning residues for biofuel. Fresenius Environ Bulletin 27 (12A), 9083-9090.
  • Hájek D, Malaťák J, Hájek P (2013) Combustion of selected biofuels types in furnace turner. Sci Agric Bohemica, 44: 23–31. Hoover AN, Tumuluru JS, Teymouri F, Moore J, Gresham G (2014) Effect of pelleting process variables on physical properties and sugar yields of ammonia fiber expansion pretreated corn stover. Bioresour Technol, 164: 128–135.
  • IKHKKY (2014) Isınmadan Kaynaklanan Hava Kirliliğinin Kontrolü Yönetmeliği, Ankara. (In Turkish).
  • Kaliyan N, Morey RV (2010) Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresour Technol, 101: 1082–1090.
  • Karunanithy C, Wang Y, Muthukumarappan K, Pugalendhi S (2012) Physiochemical Characterization of Briquettes Made from Different Feedstock. Biotechnol Res Int, 2012: 1–12.
  • Kazimirova V, Opath R (2016) Biomass combustion emissions. Res Agric Eng 62(2016): 61-65.
  • Križan P, Šooš L, Matúš M, Beniak J, Svátek M (2015) Research of Significant Densifcation Parameters Influence on Final Briquettes Quality. Wood Research 60 (2): 301-316.
  • Malaták J, Bradna J (2014) Heating and emission properties of waste biomass in burner furnace. Res in Agric Eng, Vol. 63, 2017 (1): 16–22.
  • Malaťák J, Passian L (2011) Heat-emission analysis of small combustion equipment for biomass. Res Agric Eng, 57: 37–50.
  • McBurney B (1995) A Case Study of a Large Scale Wood Waste Power Generating Plant. Biologue – Regional Biomass Energy Program Report. The Official Publication of the National BioEnergy Industries Association, 13: 5– 11.
  • Muazu RI, Stegemann JA (2015) Effects of Oprerating Variables on Durability of Fuel Briquettes From Rice Husks and Corn Cobs. Fuel Processing Technol 133: 137-145.
  • Ndindeng SA, Mbassi JEG, Mbacham WF, Manful J, Graham-Acquaah S, Moreira J, Dossou J, Futakuchi K (2015) Quality optimization in briquettes made from rice milling by-products. Energy Sustain Dev 29: 24–31.
  • Oladeji JT (2015) Theoretical Aspects of Biomass Briquetting: A Review Study. J Energ Technol Pol 5(3): 72-81.
  • Ölçüm T (2006) Biodiesel Technology, MSc. Thesis (In Turkish), Yıldız Technical University, Institute of Science and Technology, Istanbul, Turkey.
  • Prakash N, Karunanithi T (2008) Kinetic Modeling in Biomass Pyrolysis- A Review. J Appl Sci Res 4(12): 1627-1636.
  • Ross AB, Jones JM, Chaiklangmuang S, Pourkashanian M, Williams A, Kubica K, Andersson JT, Kerst M, Danihelka P, Bartle KD (2002) Measurement and Predictioan of The Emission of Pollutants From The Combustion of Coal and Biomass in A Fixed Bed Furnace. Fuel 81: 571-582.
  • Sohni S, Norulaini NAN, Hashim R, Khan SB, Fadhullah W, Omar AKM (2018) Physicochemical Characterization of Malaysian Crop and Agro-Industrial Biomass Residues As Renewable Energy Resources. Industrial Crops & Products 111: 642–650.
  • Sun B, Yu J, Tahmasebi A, Han Y (2014) An Experimental Study on Binderless Briquetting of Chinese Lignite: Effects of Briquetting Conditions. Fuel Process Technol 124: 243–248.
  • Timung R, Mohan M, Chilukoti B, Sasmal S, Banerjee T, Goud VV (2015) Optimization of Dilute Acid and Hot Water Pretreatment of Different Lignocellulosic Biomass: A Comparative Study. Biomass Bioenerg 81: 9-18.
  • Ültanır MO (1996) Solar Energy and Technique at the Edge of Century (In Turkish) (TÜBİTAK) 340: 50-55.
  • Wachira GG, Gitau AN, Kimani MW, Njoroge BNK (2015) Mechanical Properties of Saw Dust Briquettes of Eucalyptus Tree Species of Different Binders and Press Machines. Int J Emerg Technol Adv Eng 5(4): 532-538.
  • Wang Q, Sarkar J (2018) Pyrolysis Behaviours of Waste Coconut Shell and Husk Biomasses. Int. J. of Energy Prod. & Mgmt. 3(1): 34-43.
  • Zhang J, Guo Y (2014) Physical Properties of Solid Fuel Briquettes Made from Caragana Korshinskii Kom. Powder Technol 256: 293–299.

Environmental impact of bio-briquettes produced from agricultural residues concerning to CO2 emissions

Yıl 2020, Cilt: 25 Sayı: 2, 217 - 224, 21.08.2020
https://doi.org/10.37908/mkutbd.735750

Öz

Aims: This study examined the flue gas emissions of bio-briquettes produced from agricultural residues.

Methods and Results: The briquettes were produced from residues of tea (Camellia sinensis) processing plants, pruning residues of persimmon (Diospyros kaki), tomato (Solanum lycopersicum) stalk and pruning residues of peach (Prunus persica) tree. The residues were briquetted using a hydraulic briquetting machine with a horizontal course. Solid cylindrical briquettes were produced under different compression pressures ranging from 40 MPa to 240 MPa, with a moisture content of 10%-12% and having a particle size of 5 mm. Flue gas emissions of bio-briquettes were measured.

Conclusions: The results of the study showed that CO2 emissions increased with increase in the briquetting pressures. The lowest CO2 emission was (2.50%) obtained at 120 MPa pressure for the briquettes produced from tomato stalk residues, where the highest was (8.90%) at 240 MPa for the briquettes produced from peach tree pruning.

Significance and Impact of the Study: This study deals with the CO2 emission of biomass resulted from residues/wastes from the intensive farming of tea (Camellia sinensis), persimmon (Diospyros kaki), tomato (Solanum lycopersicum) and peach (Prunus persica).

Kaynakça

  • Angın D, Şensöz S (2006) Effect of Drifting Gas (N2) Flow on Prylosis of Safflower Seed Pulps and Characterization of Liquid Product (In Turkish), Fırat University, Journal of Science and Engineering 18 (4): 535-542.
  • Bradna J, Malaťák J, Hájek D (2016) The properties of wheat straw combustion and use of fly ash as a soil amendment. Agron Res 14(4), 1257–1265.
  • Bradna J, Malaťák J, Velebil J (2017) Impact of differences in combustion conditions of rape straw on the amount of flue gases and fly ash properties. Agron Res 15(3), 649–657.
  • Chen T, Wu C, Liu R, Fei W, Liu S (2011) Effect of Hot Vapor Filtration on The Characterization of Bio-Oil From Rice-Husks With Fast Pyrolysis in A Fluidized-Bed Reactor. Bioresource Technol 102: 6178-6185.
  • Coşereanu C, Lica D, Lunguleasa A (2015) Investigation on The Quality of Briquettes Made From Rarely Used Wood Species. Agro-Wastes And Forest Biomass 11(1): 32-39.
  • EN 14774-1 (2009) Solid biofuels - Determination of moisture content - Oven dry method - Part 1: Total moisture - Reference European Committee for Standardization: Management Centre, Avenue Marnix 17, B-1000 Brussels.
  • EN ISO 17225-3 (2015) Solid biofuels -- Fuel specifications and classes -- Part 3: Graded wood briquettes. European Committee for Standardization: Management Centre, Avenue Marnix 17, B-1000 Brussels.
  • Grover PD, Mishra SK (1996) Biomass Briquetting: Technology and Practices. FAO Field Document No.46. Bankok April, 1996, Thailand.
  • Gürdil GAK, Demirel B, Baz Y, Demirel C (2016) Pelleting hazelnut husk residues for biofuel. In: Proceeding of 6th International Conference on Trends in Agricultural Engineering 2016, 162-165, Prague, Czech Republic.
  • Gürdil GAK, Melki S (2018) Determining briquetting parameters for peach tree pruning residues for biofuel. Fresenius Environ Bulletin 27 (12A), 9083-9090.
  • Hájek D, Malaťák J, Hájek P (2013) Combustion of selected biofuels types in furnace turner. Sci Agric Bohemica, 44: 23–31. Hoover AN, Tumuluru JS, Teymouri F, Moore J, Gresham G (2014) Effect of pelleting process variables on physical properties and sugar yields of ammonia fiber expansion pretreated corn stover. Bioresour Technol, 164: 128–135.
  • IKHKKY (2014) Isınmadan Kaynaklanan Hava Kirliliğinin Kontrolü Yönetmeliği, Ankara. (In Turkish).
  • Kaliyan N, Morey RV (2010) Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresour Technol, 101: 1082–1090.
  • Karunanithy C, Wang Y, Muthukumarappan K, Pugalendhi S (2012) Physiochemical Characterization of Briquettes Made from Different Feedstock. Biotechnol Res Int, 2012: 1–12.
  • Kazimirova V, Opath R (2016) Biomass combustion emissions. Res Agric Eng 62(2016): 61-65.
  • Križan P, Šooš L, Matúš M, Beniak J, Svátek M (2015) Research of Significant Densifcation Parameters Influence on Final Briquettes Quality. Wood Research 60 (2): 301-316.
  • Malaták J, Bradna J (2014) Heating and emission properties of waste biomass in burner furnace. Res in Agric Eng, Vol. 63, 2017 (1): 16–22.
  • Malaťák J, Passian L (2011) Heat-emission analysis of small combustion equipment for biomass. Res Agric Eng, 57: 37–50.
  • McBurney B (1995) A Case Study of a Large Scale Wood Waste Power Generating Plant. Biologue – Regional Biomass Energy Program Report. The Official Publication of the National BioEnergy Industries Association, 13: 5– 11.
  • Muazu RI, Stegemann JA (2015) Effects of Oprerating Variables on Durability of Fuel Briquettes From Rice Husks and Corn Cobs. Fuel Processing Technol 133: 137-145.
  • Ndindeng SA, Mbassi JEG, Mbacham WF, Manful J, Graham-Acquaah S, Moreira J, Dossou J, Futakuchi K (2015) Quality optimization in briquettes made from rice milling by-products. Energy Sustain Dev 29: 24–31.
  • Oladeji JT (2015) Theoretical Aspects of Biomass Briquetting: A Review Study. J Energ Technol Pol 5(3): 72-81.
  • Ölçüm T (2006) Biodiesel Technology, MSc. Thesis (In Turkish), Yıldız Technical University, Institute of Science and Technology, Istanbul, Turkey.
  • Prakash N, Karunanithi T (2008) Kinetic Modeling in Biomass Pyrolysis- A Review. J Appl Sci Res 4(12): 1627-1636.
  • Ross AB, Jones JM, Chaiklangmuang S, Pourkashanian M, Williams A, Kubica K, Andersson JT, Kerst M, Danihelka P, Bartle KD (2002) Measurement and Predictioan of The Emission of Pollutants From The Combustion of Coal and Biomass in A Fixed Bed Furnace. Fuel 81: 571-582.
  • Sohni S, Norulaini NAN, Hashim R, Khan SB, Fadhullah W, Omar AKM (2018) Physicochemical Characterization of Malaysian Crop and Agro-Industrial Biomass Residues As Renewable Energy Resources. Industrial Crops & Products 111: 642–650.
  • Sun B, Yu J, Tahmasebi A, Han Y (2014) An Experimental Study on Binderless Briquetting of Chinese Lignite: Effects of Briquetting Conditions. Fuel Process Technol 124: 243–248.
  • Timung R, Mohan M, Chilukoti B, Sasmal S, Banerjee T, Goud VV (2015) Optimization of Dilute Acid and Hot Water Pretreatment of Different Lignocellulosic Biomass: A Comparative Study. Biomass Bioenerg 81: 9-18.
  • Ültanır MO (1996) Solar Energy and Technique at the Edge of Century (In Turkish) (TÜBİTAK) 340: 50-55.
  • Wachira GG, Gitau AN, Kimani MW, Njoroge BNK (2015) Mechanical Properties of Saw Dust Briquettes of Eucalyptus Tree Species of Different Binders and Press Machines. Int J Emerg Technol Adv Eng 5(4): 532-538.
  • Wang Q, Sarkar J (2018) Pyrolysis Behaviours of Waste Coconut Shell and Husk Biomasses. Int. J. of Energy Prod. & Mgmt. 3(1): 34-43.
  • Zhang J, Guo Y (2014) Physical Properties of Solid Fuel Briquettes Made from Caragana Korshinskii Kom. Powder Technol 256: 293–299.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Gürkan Gürdil 0000-0001-7764-3977

Yayımlanma Tarihi 21 Ağustos 2020
Gönderilme Tarihi 11 Mayıs 2020
Kabul Tarihi 27 Mayıs 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 25 Sayı: 2

Kaynak Göster

APA Gürdil, G. (2020). Environmental impact of bio-briquettes produced from agricultural residues concerning to CO2 emissions. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 25(2), 217-224. https://doi.org/10.37908/mkutbd.735750

22740137731737513771 13774 15432 1813713775 14624 15016 i2or 1857924881download