Araştırma Makalesi
BibTex RIS Kaynak Göster

Pelleting pruning residues of mandarin for bio-energy

Yıl 2021, Cilt: 26 Sayı: 1, 75 - 81, 19.04.2021
https://doi.org/10.37908/mkutbd.785095

Öz

Aims: This study evaluates the biofuel potential of mandarin orchard pruning residues in the form of pellets.

Methods and Results: Pellets were produced at M10 (8 – 10%) moisture content, from three different particle sizes (ground by sieves having 4, 6 and 8 mm). Some thermal and physical-mechanical properties of the pellets were studied and checked according to the recent EU (European Union) standards. Pellet bulk densities varied between 474 kg m-3 and 507 kg m-3, while the pellet densities varied between 1230 kg m-3 and 1270 kg m-3 Mechanical durability (MD) values varied from 79.46% to 92.14%. Firmness values changed from 2039.34 N to 2807.40 N. Ash content was 5.64% and heating value of the pellets was 18.66 MJ kg-1.

Conclusions: The measured physical-mechanical properties of the produced pellets were in line with the related standards. In addition, flue gas emissions of all the produced pellets were in limits mentioned in heating regulations for the environmental protection aspects for bio-energy resource. Thermal values of pellets are very good as a solid bio-fuel.

Significance and Impact of the Study: Results showed that the pruning residues of mandarin pruning residues were suitable both in technical and environmental.

Kaynakça

  • Anonymous (2009) EN 15103 Solid biofuels – Determination of bulk density. European Committee for Standardization: Management Centre, Avenue Marnix 17, B-1000 Brussels
  • Anonymous (2009) EN 15210-1 Solid biofuels – Determination of mechanical durability of pellets and briquettes – Part 1: Pellets. European Committee for Standardization: Management Centre, Avenue Marnix 17, B-1000 Brussels
  • Anonymous (2010) EN 14961-2 Solid biofuels- Fuel specifications and classes- Part 2: Wood pellets for non-industrial use. European Committee for Standardization: Manage-ment Centre, Avenue Marnix 17, B-1000 Brussels.
  • Anonymous (2011) EN 15150 Solid biofuels – Determination of particle density. European Committee for Standardization: Management Centre, Avenue Marnix 17, B-1000 Brussels.
  • Anonymous (2015) EN ISO 17225-6 Solid biofuels -- Fuel specifications and classes -- Part 6: Graded non-woody pellets. European Committee for Standardization: Manage-ment Centre, Avenue Marnix 17, B-1000 Brussels.
  • Anonymous (2017) Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#home, accessed on May 29, 2017.
  • Anonymous (2018) https://biruni.tuik.gov.tr/bitkiselapp/bitkisel.zul Statistics for plant production. Turkish Statistical Institute, Ankara, accessed on May 17, 2020.
  • Celma AR, Cuadros F, Rodriguez FL (2012) Characterization of pellets from industrial tomato residues. Food and Bi-oproducts Processing. 90(4):700-706.
  • Colley ZJ (2006) Compaction of switchgrass for value added utilization: MSc Thesis. Department of Chemical En-gineering, The Graduate Faculty of Au-burn University. Alabama USA. Website: https://etd.auburn.edu/handle/10415/483, accessed on March 29, 2019.
  • Fasina OO, Sokhansanj S (1996) Stor-age and handling characteristics of alfalfa pellets. Powder Handling and Processing. 8(4):361-365.
  • Holm JK, Henriksen UB, Hustad JE, Sorensen LH (2006) Toward an under-standing of controlling parameters in soft-wood and hardwood pellet production, Energy and Fuel. 20:2686-2694.
  • Karaca C (2019) Agricultural residues potential of Hatay. MKU. Tar. Bil. Derg. 24 (Özel Sayı) :9-15.
  • Liu Z, Quek A, Balasubramanian R (2014) Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydro-chars. Applied Energy. 113:1315-1322.
  • Mani S, Tabil LG, Sokhansanj S (2003) An overview of compaction of bi-omass grinds, Power Handling and Pro-cess. 15:160-168.
  • Mani S, Tabil LG, Sokhansanj S (2006) Effects of compressive force, par-ticle size and moisture content on mechan-ical of biomass pellets from grasses. Bio-mass and Bioenergy. 30(7): 648-654.
  • Nilsson D, Bernesson S, Hansson PA (2011) Pellet production from agricultural raw materials- a systems study, Biomass and Bioenergy. 35:679-689.
  • IKHKKY (2014) Regulations for Air Pol-lution Control Caused by Burning. http://www.mevzuat.gov.tr/.
  • Öztürk HH (2012) Energy plants and biofuel production. Hasad yayıncılık Ltd. Şti, İstanbul, pp: 272.
  • Theerarattananoon K, Xu F, Wilson J, Ballard R, Mckinney L, Staggenborg S, Vadlani P, Pei ZJ, Wang D (2011) Physical properties of pellets made from sorghum stalk, corn stoves, Wheat Straw and Big Bluesterm, Industrial Crops and Products, 33(2);325-332.
  • Tabil LG, Sokhansnj S (1996) Process conditions affecting the physical quality of alfalfa pellets. Applied Engineering in Agriculture. 12(3):345-350.
  • Tabil LG, Sokhansanj S (1997) Bulk properties of alfalfa grind in relation to its compaction characteristics. Applied Engineering in Agriculture, 13(4):499-505.
  • Uysan O, Polatöz S (2020) Dünyada ve Türkiye’de Turunçgil Üretimi ve Dış Ticareti. https://www.turktob.org.tr/dergi/makaleler/dergi22/6-11.pdf. Erişim tarihi: 17.05.2020.
  • Werther J, Saenger M, Hartge EU, Ogada T, Siagi Z (2000) Combustion of agricultural residues, Progress in Energy and Combustion Science. 26:1-27.

Biyoyakıt için mandalina budama atıklarının peletlenmesi

Yıl 2021, Cilt: 26 Sayı: 1, 75 - 81, 19.04.2021
https://doi.org/10.37908/mkutbd.785095

Öz

Amaç: Bu çalışmanın amacı, mandalina bahçesi budama artıklarının pelet şeklinde biyoyakıt potansiyelini değerlendirmektir.

Yöntem ve Bulgular: Peletler, üç farklı parçacık boyutundan (4, 6 ve 8 mm) ve M10 (% 8 - 10) nem içeriğinde üretilmiştir. Peletlerin bazı ısısal ve fiziko-mekanik özellikleri güncel AB (Avrupa Birliği) standartlarına göre incelenmiş ve kontrol edilmiştir. Pelet yığın yoğunlukları 474 kg m-3 ile 507 kg m-3 arasında değişirken, pelet yoğunlukları 1230 kg m-3 ve 1270 kg m 3 arasında gerçekleşmiştir. Mekanik dayanıklılık (MD) değerleri %79.46 ile %92.14 arasında, sertlik değerleri 2039.34 N ile 2807.40 N arasında değişmiştir. Kül içeriği %5.64 ve peletlerin alt ısıl değeri 18.66 MJ kg-1 olarak tespit edilmiştir.

Genel Yorum: Üretilen tüm peletlerin ölçülen fiziko-mekanik özellikleri katı biyoyakıt standartları açısından uygun bulunmuştur. Ayrıca, baca gazı emisyonları, çevre koruma için ısıtma yönetmeliklerinde belirtilen sınırlarlar arasında çıkmıştır. Peletlerin ısıl değerleri katı yakıt olarak kabul edilebilir düzeydedir.

Çalışmanın Önemi ve Etkisi: Elde edilen sonuçlar, mandalina ağaçlarının budama artıklarının biyoyakıt kaynağı için hem teknik hem de çevresel açılardan uygun olduğunu göstermiştir.

Kaynakça

  • Anonymous (2009) EN 15103 Solid biofuels – Determination of bulk density. European Committee for Standardization: Management Centre, Avenue Marnix 17, B-1000 Brussels
  • Anonymous (2009) EN 15210-1 Solid biofuels – Determination of mechanical durability of pellets and briquettes – Part 1: Pellets. European Committee for Standardization: Management Centre, Avenue Marnix 17, B-1000 Brussels
  • Anonymous (2010) EN 14961-2 Solid biofuels- Fuel specifications and classes- Part 2: Wood pellets for non-industrial use. European Committee for Standardization: Manage-ment Centre, Avenue Marnix 17, B-1000 Brussels.
  • Anonymous (2011) EN 15150 Solid biofuels – Determination of particle density. European Committee for Standardization: Management Centre, Avenue Marnix 17, B-1000 Brussels.
  • Anonymous (2015) EN ISO 17225-6 Solid biofuels -- Fuel specifications and classes -- Part 6: Graded non-woody pellets. European Committee for Standardization: Manage-ment Centre, Avenue Marnix 17, B-1000 Brussels.
  • Anonymous (2017) Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#home, accessed on May 29, 2017.
  • Anonymous (2018) https://biruni.tuik.gov.tr/bitkiselapp/bitkisel.zul Statistics for plant production. Turkish Statistical Institute, Ankara, accessed on May 17, 2020.
  • Celma AR, Cuadros F, Rodriguez FL (2012) Characterization of pellets from industrial tomato residues. Food and Bi-oproducts Processing. 90(4):700-706.
  • Colley ZJ (2006) Compaction of switchgrass for value added utilization: MSc Thesis. Department of Chemical En-gineering, The Graduate Faculty of Au-burn University. Alabama USA. Website: https://etd.auburn.edu/handle/10415/483, accessed on March 29, 2019.
  • Fasina OO, Sokhansanj S (1996) Stor-age and handling characteristics of alfalfa pellets. Powder Handling and Processing. 8(4):361-365.
  • Holm JK, Henriksen UB, Hustad JE, Sorensen LH (2006) Toward an under-standing of controlling parameters in soft-wood and hardwood pellet production, Energy and Fuel. 20:2686-2694.
  • Karaca C (2019) Agricultural residues potential of Hatay. MKU. Tar. Bil. Derg. 24 (Özel Sayı) :9-15.
  • Liu Z, Quek A, Balasubramanian R (2014) Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydro-chars. Applied Energy. 113:1315-1322.
  • Mani S, Tabil LG, Sokhansanj S (2003) An overview of compaction of bi-omass grinds, Power Handling and Pro-cess. 15:160-168.
  • Mani S, Tabil LG, Sokhansanj S (2006) Effects of compressive force, par-ticle size and moisture content on mechan-ical of biomass pellets from grasses. Bio-mass and Bioenergy. 30(7): 648-654.
  • Nilsson D, Bernesson S, Hansson PA (2011) Pellet production from agricultural raw materials- a systems study, Biomass and Bioenergy. 35:679-689.
  • IKHKKY (2014) Regulations for Air Pol-lution Control Caused by Burning. http://www.mevzuat.gov.tr/.
  • Öztürk HH (2012) Energy plants and biofuel production. Hasad yayıncılık Ltd. Şti, İstanbul, pp: 272.
  • Theerarattananoon K, Xu F, Wilson J, Ballard R, Mckinney L, Staggenborg S, Vadlani P, Pei ZJ, Wang D (2011) Physical properties of pellets made from sorghum stalk, corn stoves, Wheat Straw and Big Bluesterm, Industrial Crops and Products, 33(2);325-332.
  • Tabil LG, Sokhansnj S (1996) Process conditions affecting the physical quality of alfalfa pellets. Applied Engineering in Agriculture. 12(3):345-350.
  • Tabil LG, Sokhansanj S (1997) Bulk properties of alfalfa grind in relation to its compaction characteristics. Applied Engineering in Agriculture, 13(4):499-505.
  • Uysan O, Polatöz S (2020) Dünyada ve Türkiye’de Turunçgil Üretimi ve Dış Ticareti. https://www.turktob.org.tr/dergi/makaleler/dergi22/6-11.pdf. Erişim tarihi: 17.05.2020.
  • Werther J, Saenger M, Hartge EU, Ogada T, Siagi Z (2000) Combustion of agricultural residues, Progress in Energy and Combustion Science. 26:1-27.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Gürkan Gürdil 0000-0001-7764-3977

Metin Dağtekin 0000-0002-1397-1725

Yayımlanma Tarihi 19 Nisan 2021
Gönderilme Tarihi 25 Ağustos 2020
Kabul Tarihi 14 Ekim 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 26 Sayı: 1

Kaynak Göster

APA Gürdil, G., & Dağtekin, M. (2021). Pelleting pruning residues of mandarin for bio-energy. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 26(1), 75-81. https://doi.org/10.37908/mkutbd.785095

22740137731737513771 13774 15432 1813713775 14624 15016 i2or 1857924881download