Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of the cytotoxic effects of monomer releases of two types of binding agents on pulp fibroblast cells.

Yıl 2021, Cilt: 4 Sayı: 1, 11 - 28, 18.09.2021

Öz

Abstract
Aim: The study was performed for investigating the cytotoxic effects of Single Bond and Adper Prompt-L-Pop dentin bonding agents used for restorations of primary and permanent teeth, on the human pulp fibroblasts. Method: The primary culture of human pulp fibroblast was prepared and the third passage of the fibroblasts were used. The materials used in the study were put into the glass carriers designed for inhibiting the materials' direct contact with the fibroblasts and one group of Single Bond and Adper Prompt-L-Pop were polymerized while the other groups were left unpolymerized. After 24-hour incubation, the cell proliferations were determined respectively by the BrdU assay. The monomer releases of the bonding agents were also determined using HPLC (High performence liquid kromatogrephy) device. The correlation between these values were evaluated. Results: In the study, the cell proliferation of the polymerized Single Bond and Adper Prompt-L-Pop groups were found significantly higher than the unpolymerized Single Bond and Adper Prompt-L-Pop groups. Conclusion: In conclusion, the bonding agents Single Bond and Adper Prompt-L-Pop when used according to the manufacturers' proposal had a minimum cytotoxic effect on the human pulp fibroblasts. However, the results of the study have indicated that degeneration in the monomer-polymer chain caused the monomer release which is cytotoxic on the human pulp. For this reason, dentists have to be careful about the application of the bonding agents for the success of the

Kaynakça

  • 1. Blunck, U. and P. Zaslansky, Enamel margin integrity of Class I one-bottle all-in-one adhesives-based restorations. J Adhes Dent, 2011. 13(1): p. 23-9.
  • 2. Haller, B., Recent developments in dentin bonding. Am J Dent, 2000. 13(1): p. 44-50.
  • 3. De Munck, J., et al., Microtensile bond strengths of one- and two-step self-etch adhesives to bur-cut enamel and dentin. Am J Dent, 2003. 16(6): p. 414-20.
  • 4. Hanks, C.T., et al., Modeling bacterial damage to pulpal cells in vitro. J Endod, 1991. 17(1): p. 21-5.
  • 5. Hannig, M., et al., Microleakage and SEM evaluation of fissure sealants placed by use of self-etching priming agents. J Dent, 2004. 32(1): p. 75-81.
  • 6. Nakabayashi, N., M. Ashizawa, and M. Nakamura, Identification of a resin-dentin hybrid layer in vital human dentin created in vivo: durable bonding to vital dentin. Quintessence Int, 1992. 23(2): p. 135-41.
  • 7. Spencer, P., et al., Interfacial chemistry of the dentin/adhesive bond. J Dent Res, 2000. 79(7): p. 1458-63.
  • 8. Wang, Y. and P. Spencer, Effect of acid etching time and technique on interfacial characteristics of the adhesive-dentin bond using differential staining. Eur J Oral Sci, 2004. 112(3): p. 293-9.
  • 9. Shimada, Y., et al., Histologic evaluation of adhesive restorations on dentin caries in rat molar teeth. Quintessence Int, 2004. 35(3): p. 200-5.
  • 10. Spangberg, L.S., Correlation of in vivo and in vitro screening tests. J Endod, 1978. 4(10): p. 296-9.
  • 11. Elliott, J.E., L.G. Lovell, and C.N. Bowman, Primary cyclization in the polymerization of bis-GMA and TEGDMA: a modeling approach to understanding the cure of dental resins. Dent Mater, 2001. 17(3): p. 221-9.
  • 12. Inoue, K., K. Kurosumi, and Z.P. Deng, An improvement of the device for rapid freezing by use of liquid propane and the application of immunocytochemistry to the resin section of rapid-frozen, substitution-fixed anterior pituitary gland. J Electron Microsc (Tokyo), 1982. 31(1): p. 93-7.
  • 13. Itota, T., et al., Cytotoxicity of a trial resin composite liner containing TiK2F6 on rat dental pulp cells. Dent Mater J, 1999. 18(3): p. 271-7.
  • 14. Hashimoto, M., et al., The effect of hybrid layer thickness on bond strength: demineralized dentin zone of the hybrid layer. Dent Mater, 2000. 16(6): p. 406-11.
  • 15. Geurtsen, W., et al., Cytotoxicity of 35 dental resin composite monomers/additives in permanent 3T3 and three human primary fibroblast cultures. J Biomed Mater Res, 1998. 41(3): p. 474-80.
  • 16. Hanks, C.T., et al., Cytotoxicity of dental composites and other materials in a new in vitro device. J Oral Pathol, 1988. 17(8): p. 396-403.
  • 17. Kaga, M., et al., The in vitro cytotoxicity of eluates from dentin bonding resins and their effect on tyrosine phosphorylation of L929 cells. Dent Mater, 2001. 17(4): p. 333-9.
  • 18. Bouillaguet, S., et al., Bond strength of composite to dentin using conventional, one-step, and self-etching adhesive systems. J Dent, 2001. 29(1): p. 55-61.
  • 19. Kugel, G. and M. Ferrari, The science of bonding: from first to sixth generation. J Am Dent Assoc, 2000. 131 Suppl: p. 20S-25S.
  • 20. Cehreli, Z.C., et al., Short term human primary pulpal response after direct pulp capping with fourth-generation dentin adhesives. J Clin Pediatr Dent, 2000. 25(1): p. 65-71.
  • 21. Kitasako, Y., et al., Monkey pulpal response and microtensile bond strength beneath a one-application resin bonding system in vivo. J Dent, 2000. 28(3): p. 193-8.
  • 22. Magloire, H., A. Joffre, and F. Bleicher, An in vitro model of human dental pulp repair. J Dent Res, 1996. 75(12): p. 1971-8.
  • 23. Imazato, S., et al., Cytotoxic effects of composite restorations employing self-etching primers or experimental antibacterial primers. J Dent, 2000. 28(1): p. 61-7.
  • 24. Kehe, K., et al., Cytotoxicity of dental composite components and mercury compounds in pulmonary cells. Biomaterials, 2001. 22(4): p. 317-22.
  • 25. Tyas, M.J., A method for the in vitro toxicity testing of dental restorative materials. J Dent Res, 1977. 56(10): p. 1285-90.
  • 26. de Souza Costa, C.A., A.B. do Nascimento, and H.M. Teixeira, Response of human pulps following acid conditioning and application of a bonding agent in deep cavities. Dent Mater, 2002. 18(7): p. 543-51.
  • 27. Tang, A.T., et al., Cytotoxicity tests of in situ polymerized resins: methodological comparisons and introduction of a tissue culture insert as a testing device. J Biomed Mater Res, 1999. 45(3): p. 214-22.
  • 28. Pelka, M., et al., A new screening test for toxicity testing of dental materials. J Dent, 2000. 28(5): p. 341-5.
  • 29. Lepekhin, E., et al., Differences in motility pattern between human buccal fibroblasts and periodontal and skin fibroblasts. Eur J Oral Sci, 2002. 110(1): p. 13-20.
  • 30. Schweikl, H. and G. Schmalz, Toxicity parameters for cytotoxicity testing of dental materials in two different mammalian cell lines. Eur J Oral Sci, 1996. 104(3): p. 292-9.
  • 31. Bouillaguet, S., et al., Effect of sub-lethal concentrations of HEMA (2-hydroxyethyl methacrylate) on THP-1 human monocyte-macrophages, in vitro. Dent Mater, 2000. 16(3): p. 213-7.
  • 32. Noda, M., et al., Components of dentinal adhesives modulate heat shock protein 72 expression in heat-stressed THP-1 human monocytes at sublethal concentrations. J Dent Res, 2002. 81(4): p. 265-9.
  • 33. Lefeuvre, M., et al., TEGDMA modulates glutathione transferase P1 activity in gingival fibroblasts. J Dent Res, 2004. 83(12): p. 914-9.
  • 34. Costa, C.A., et al., Cytotoxic effects of current dental adhesive systems on immortalized odontoblast cell line MDPC-23. Dent Mater, 1999. 15(6): p. 434-41.
  • 35. Yoshii, E., Cytotoxic effects of acrylates and methacrylates: relationships of monomer structures and cytotoxicity. J Biomed Mater Res, 1997. 37(4): p. 517-24.
  • 36. Kawahara, T., et al., Leachability of plasticizer and residual monomer from commercial temporary restorative resins. J Dent, 2004. 32(4): p. 277-83.
  • 37. Palmer, G., H.M. Anstice, and G.J. Pearson, The effect of curing regime on the release of hydroxyethyl methacrylate (HEMA) from resin-modified glass-ionomer cements. J Dent, 1999. 27(4): p. 303-11.
  • 38. Chang, Y.C., et al., Cytotoxicity and arecoline mechanisms in human gingival fibroblasts in vitro. Clin Oral Investig, 2001. 5(1): p. 51-6.
  • 39. Casasco, A., et al., Stimulation of DNA synthesis by endothelin-1 in primary cultures of human dental pulp. Arch Oral Biol, 1994. 39(3): p. 245-9.
  • 40. Melin, M., et al., Effects of TGFbeta1 on dental pulp cells in cultured human tooth slices. J Dent Res, 2000. 79(9): p. 1689-96.
  • 41. Liu, H., et al., Dentonin, a fragment of MEPE, enhanced dental pulp stem cell proliferation. J Dent Res, 2004. 83(6): p. 496-9.

İki tip bağlayıcı ajanın monomer salınımlarının pulpa fibroblast hücreleri üzerindeki sitotoksik etkilerinin değerlendirilmesi.

Yıl 2021, Cilt: 4 Sayı: 1, 11 - 28, 18.09.2021

Öz

Amaç: Bu çalışma, süt ve sürekli dişlerin restorasyonlarında kullanılan kompozit dolgu materyallerinin dentine tutunmasını sağlayan bağlayıcı sistemlerin sitotoksik etkilerini belirlemek amacıyla gerçekleştirilmiştir. Yöntem: Tek şişe (one-bottle) sistemler grubu içinde bulunan Single Bond ve kendinden asitlemeli (self-etching) sistemler grubu içinde bulunan Adper Prompt-L-Pop materyallerinin insan pulpası fibroblast hücreleri üzerindeki sitotoksik etkileri incelenmiştir. Her iki ajanın da bir grubu üretici firmaların önerileri doğrultusunda polimerize edilmiş, bir grubu da polimerize edilmeden bırakılmış ve bu grupların pulpa fibroblast hücreleri üzerinde meydana getirdiği değişiklikler hücre proliferasyonu açısından değerlendirilmiştir. İnsan pulpa fibroblastlarının primer hücre kültürü hazırlanmış ve çalışmada üçüncü pasajı kullanılmıştır. Materyaller özel olarak hazırlanmış cam taşıyıcılar içerisinde, hücrelerle doğrudan temas etmesi engellenerek yirmi dörtlü well- platelerdeki kuyucuklara yerleştirilmiştir. 24 saat inkübisyondan BrdU boyama yöntemi ile hücer proliferasyonları belirlenmiştir. Bağlayıcı ajanların monomer salınımları ise HPLC (Yüksek performanslı sıvı kromatografi) cihazı kullanılarak saptanmıştır. Bu iki bulgu arasındaki korelasyon değerlendirilmiştir. Bulgular: Araştırma sonucunda, Single Bond ve Adper Prompt-L-Pop materyallerinin polimerize edilmiş olan gruplarında, hücre proliferasyon oranlarının polimerize edilmemiş gruplarla karşılaştırıldığında belirgin bir şekilde yüksek olduğu saptanmıştır. Sonuç: Sonuç olarak, günümüzde kullanılan Single Bond ve Adper Prompt- L-Pop materyallerinin üretici firma önerileri doğrultusunda kullanılmasının pulpa dokusu üzerinde olumsuz etki göstermeyeceği, ancak yapılarında bulunan monomerlerin polimerlere dönüşümü sağlanamadığında, gerçekleşen monomer salınımının pulpa üzerinde yüksek oranda sitotoksisite gösterdiği belirlenmiştir. Bu nedenle, bağlayıcı ajanları uygularken gerekli özeni göstermek restorasyonun başarısı açısından büyük önem taşımaktadır.

Kaynakça

  • 1. Blunck, U. and P. Zaslansky, Enamel margin integrity of Class I one-bottle all-in-one adhesives-based restorations. J Adhes Dent, 2011. 13(1): p. 23-9.
  • 2. Haller, B., Recent developments in dentin bonding. Am J Dent, 2000. 13(1): p. 44-50.
  • 3. De Munck, J., et al., Microtensile bond strengths of one- and two-step self-etch adhesives to bur-cut enamel and dentin. Am J Dent, 2003. 16(6): p. 414-20.
  • 4. Hanks, C.T., et al., Modeling bacterial damage to pulpal cells in vitro. J Endod, 1991. 17(1): p. 21-5.
  • 5. Hannig, M., et al., Microleakage and SEM evaluation of fissure sealants placed by use of self-etching priming agents. J Dent, 2004. 32(1): p. 75-81.
  • 6. Nakabayashi, N., M. Ashizawa, and M. Nakamura, Identification of a resin-dentin hybrid layer in vital human dentin created in vivo: durable bonding to vital dentin. Quintessence Int, 1992. 23(2): p. 135-41.
  • 7. Spencer, P., et al., Interfacial chemistry of the dentin/adhesive bond. J Dent Res, 2000. 79(7): p. 1458-63.
  • 8. Wang, Y. and P. Spencer, Effect of acid etching time and technique on interfacial characteristics of the adhesive-dentin bond using differential staining. Eur J Oral Sci, 2004. 112(3): p. 293-9.
  • 9. Shimada, Y., et al., Histologic evaluation of adhesive restorations on dentin caries in rat molar teeth. Quintessence Int, 2004. 35(3): p. 200-5.
  • 10. Spangberg, L.S., Correlation of in vivo and in vitro screening tests. J Endod, 1978. 4(10): p. 296-9.
  • 11. Elliott, J.E., L.G. Lovell, and C.N. Bowman, Primary cyclization in the polymerization of bis-GMA and TEGDMA: a modeling approach to understanding the cure of dental resins. Dent Mater, 2001. 17(3): p. 221-9.
  • 12. Inoue, K., K. Kurosumi, and Z.P. Deng, An improvement of the device for rapid freezing by use of liquid propane and the application of immunocytochemistry to the resin section of rapid-frozen, substitution-fixed anterior pituitary gland. J Electron Microsc (Tokyo), 1982. 31(1): p. 93-7.
  • 13. Itota, T., et al., Cytotoxicity of a trial resin composite liner containing TiK2F6 on rat dental pulp cells. Dent Mater J, 1999. 18(3): p. 271-7.
  • 14. Hashimoto, M., et al., The effect of hybrid layer thickness on bond strength: demineralized dentin zone of the hybrid layer. Dent Mater, 2000. 16(6): p. 406-11.
  • 15. Geurtsen, W., et al., Cytotoxicity of 35 dental resin composite monomers/additives in permanent 3T3 and three human primary fibroblast cultures. J Biomed Mater Res, 1998. 41(3): p. 474-80.
  • 16. Hanks, C.T., et al., Cytotoxicity of dental composites and other materials in a new in vitro device. J Oral Pathol, 1988. 17(8): p. 396-403.
  • 17. Kaga, M., et al., The in vitro cytotoxicity of eluates from dentin bonding resins and their effect on tyrosine phosphorylation of L929 cells. Dent Mater, 2001. 17(4): p. 333-9.
  • 18. Bouillaguet, S., et al., Bond strength of composite to dentin using conventional, one-step, and self-etching adhesive systems. J Dent, 2001. 29(1): p. 55-61.
  • 19. Kugel, G. and M. Ferrari, The science of bonding: from first to sixth generation. J Am Dent Assoc, 2000. 131 Suppl: p. 20S-25S.
  • 20. Cehreli, Z.C., et al., Short term human primary pulpal response after direct pulp capping with fourth-generation dentin adhesives. J Clin Pediatr Dent, 2000. 25(1): p. 65-71.
  • 21. Kitasako, Y., et al., Monkey pulpal response and microtensile bond strength beneath a one-application resin bonding system in vivo. J Dent, 2000. 28(3): p. 193-8.
  • 22. Magloire, H., A. Joffre, and F. Bleicher, An in vitro model of human dental pulp repair. J Dent Res, 1996. 75(12): p. 1971-8.
  • 23. Imazato, S., et al., Cytotoxic effects of composite restorations employing self-etching primers or experimental antibacterial primers. J Dent, 2000. 28(1): p. 61-7.
  • 24. Kehe, K., et al., Cytotoxicity of dental composite components and mercury compounds in pulmonary cells. Biomaterials, 2001. 22(4): p. 317-22.
  • 25. Tyas, M.J., A method for the in vitro toxicity testing of dental restorative materials. J Dent Res, 1977. 56(10): p. 1285-90.
  • 26. de Souza Costa, C.A., A.B. do Nascimento, and H.M. Teixeira, Response of human pulps following acid conditioning and application of a bonding agent in deep cavities. Dent Mater, 2002. 18(7): p. 543-51.
  • 27. Tang, A.T., et al., Cytotoxicity tests of in situ polymerized resins: methodological comparisons and introduction of a tissue culture insert as a testing device. J Biomed Mater Res, 1999. 45(3): p. 214-22.
  • 28. Pelka, M., et al., A new screening test for toxicity testing of dental materials. J Dent, 2000. 28(5): p. 341-5.
  • 29. Lepekhin, E., et al., Differences in motility pattern between human buccal fibroblasts and periodontal and skin fibroblasts. Eur J Oral Sci, 2002. 110(1): p. 13-20.
  • 30. Schweikl, H. and G. Schmalz, Toxicity parameters for cytotoxicity testing of dental materials in two different mammalian cell lines. Eur J Oral Sci, 1996. 104(3): p. 292-9.
  • 31. Bouillaguet, S., et al., Effect of sub-lethal concentrations of HEMA (2-hydroxyethyl methacrylate) on THP-1 human monocyte-macrophages, in vitro. Dent Mater, 2000. 16(3): p. 213-7.
  • 32. Noda, M., et al., Components of dentinal adhesives modulate heat shock protein 72 expression in heat-stressed THP-1 human monocytes at sublethal concentrations. J Dent Res, 2002. 81(4): p. 265-9.
  • 33. Lefeuvre, M., et al., TEGDMA modulates glutathione transferase P1 activity in gingival fibroblasts. J Dent Res, 2004. 83(12): p. 914-9.
  • 34. Costa, C.A., et al., Cytotoxic effects of current dental adhesive systems on immortalized odontoblast cell line MDPC-23. Dent Mater, 1999. 15(6): p. 434-41.
  • 35. Yoshii, E., Cytotoxic effects of acrylates and methacrylates: relationships of monomer structures and cytotoxicity. J Biomed Mater Res, 1997. 37(4): p. 517-24.
  • 36. Kawahara, T., et al., Leachability of plasticizer and residual monomer from commercial temporary restorative resins. J Dent, 2004. 32(4): p. 277-83.
  • 37. Palmer, G., H.M. Anstice, and G.J. Pearson, The effect of curing regime on the release of hydroxyethyl methacrylate (HEMA) from resin-modified glass-ionomer cements. J Dent, 1999. 27(4): p. 303-11.
  • 38. Chang, Y.C., et al., Cytotoxicity and arecoline mechanisms in human gingival fibroblasts in vitro. Clin Oral Investig, 2001. 5(1): p. 51-6.
  • 39. Casasco, A., et al., Stimulation of DNA synthesis by endothelin-1 in primary cultures of human dental pulp. Arch Oral Biol, 1994. 39(3): p. 245-9.
  • 40. Melin, M., et al., Effects of TGFbeta1 on dental pulp cells in cultured human tooth slices. J Dent Res, 2000. 79(9): p. 1689-96.
  • 41. Liu, H., et al., Dentonin, a fragment of MEPE, enhanced dental pulp stem cell proliferation. J Dent Res, 2004. 83(6): p. 496-9.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Diş Hekimliği
Bölüm Makaleler
Yazarlar

Başak Eliaçık 0000-0003-1848-3007

Figen Seymen 0000-0001-7010-2035

Yayımlanma Tarihi 18 Eylül 2021
Gönderilme Tarihi 25 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 4 Sayı: 1

Kaynak Göster

Vancouver Eliaçık B, Seymen F. İki tip bağlayıcı ajanın monomer salınımlarının pulpa fibroblast hücreleri üzerindeki sitotoksik etkilerinin değerlendirilmesi. MRR. 2021;4(1):11-28.