Araştırma Makalesi
BibTex RIS Kaynak Göster

Molnupiravir'in Covid-19'a Karşı Moleküler Kenetlenme ve Moleküler Dinamik Simülasyonları

Yıl 2024, Cilt: 12 Sayı: 2, 134 - 141, 30.12.2024
https://doi.org/10.18586/msufbd.1563429

Öz

COVID-19 tedavisinde kullanılan molnupiravir'in (C13H19N3O7) en kararlı konformasyonu Spartan06 programı ile belirlenmiştir. CAVER programı kullanılarak, spike glikoprotein, ACE2 reseptörü ve COVID-19'un ana proteaz enziminin (Mpro) apo ve holo formlarına ait potansiyel aktif bağlanma bölgeleri tanımlanmıştır. Molnupiravir'in hedef reseptörlere bağlanma afinitesini belirlemek için Autodock Vina kullanılarak moleküler kenetlenme analizleri gerçekleştirilmiştir. Molnupiravir'in spike glikoprotein (PDB ID: 6VXX), ACE2 (PDB ID: 6M0J; 1R42), apo formu (PDB ID: 6M03) ve COVID-19 M^pro'nun holo formu (PDB ID: 6LU7) ile moleküler kenetlenme hesaplamalarının sonuçları sırasıyla -7,8, -7,7, -7,7, -7,1 ve -7,4 kcal/mol'de güçlü bağlanma afinitesi göstermiştir. Ayrıca, ligand-reseptör etkileşimlerini daha detaylı incelemek amacıyla molnupiravirin ACE2 (1R42) ile en yüksek skor alan ligand-reseptör kompleksinin 50 ns MD simülasyonu yapılmıştır.

Kaynakça

  • Yang, P., Wang, X. COVID-19: a new challenge for human beings, Cellular & Molecular Immunology, 17(5), 555-557, 2020.
  • Ullrich, S., Nitsche, C. The SARS-CoV-2 main protease as drug target, Bioorganic & Medicinal Chemistry Letters, 30(17), 127377, 2020.
  • Qiao, J., Li, Y. S., Zeng, R., Liu, F. L., Luo, R. H., Huang, C., Wang, Y. F., Zhang, J., Quan, B., Shen, C., Mao, X., Liu, X., Sun, W., Yang, W., Ni, X., Wang, K., Xu, L., Duan, Z. L., Zou, Q. C., Zhang, H. L., Qu, W., Long, Y. H. P., Li, M. H., Yang, R. C., Liu, X., You, J., Zhou, Y., Yao, R., Li, W. P., Liu, J. M., Chen, P., Liu, Y., Lin, G. F., Yang, X., Zou, J., Li, L., Hu, Y., Lu, G. W., Li, W. M., Wei, Y. Q., Zheng, Y. T., Lei, J., Yang, S. SARS-CoV-2 M^pro inhibitors with antiviral activity in a transgenic mouse model, Science, 371(6536), 1374-1378, 2021.
  • Benkovics, T., McIntosh, J. A., Silverman, S. M., Kong, J., Maligres, P., Itoh, T., Yang, H., Huffman, M. A., Verma, D., Pan, W., Ho, H., Vroom, J., Knight, A., Hurtak, J., Morris, W., Strotman, N.A., Murphy, G., Maloney, K. M., Fier, P. S. Evolving to an Ideal Synthesis of Molnupiravir, an Investigational Treatment for COVID‐19, 2020.
  • Zarenezhad, E., Marzi, M. Review on molnupiravir as a promising oral drug for the treatment of COVID-19, Medicinal Chemistry Research, 1-12, 2022.
  • Cox, R. M., Wolf, J. D., Plemper, R. K. Therapeutically administered ribonucleoside analogue MK-4482/EIDD-2801 blocks SARS-CoV-2 transmission in ferrets, Nature microbiology, 6(1), 11-18, 2020.
  • Painter, G. R., Natchus. M. G., Cohen, O., Holman W., Painter, W. P. Developing a direct acting, orally available antiviral agent in a pandemic: the evolution of molnupiravir as a potential treatment for COVID-19, Current opinion in virology, 50, 17-22, 2021.
  • Fischer, W., Eron Jr, J. J., Holman, W., Cohen, M. S., Fang, L., Szewczyk, L. J., Sheahan, T. P., Baric, R., Mollan, K. R., Wolfe, C. R., Duke, E. R., Azizad, M. M., Borroto-Esoda, K., Wohl, D. A., Loftis, A. J., Alabanza, P., Lipansky, F., Painter, W. P. Molnupiravir, an Oral Antiviral Treatment for COVID-19, MedRxiv, 2021-06., 2021.
  • Singh, A. K., Singh, A., Singh, R., Misra, A. An updated practical guideline on use of molnupiravir and comparison with agents having emergency use authorization for treatment of COVID-19, Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 16(2), 102396, 2022.
  • Painter, W. P., Holman W., Bush J.A., Almazedi F., Malik H., Eraut N. C. J. E., Morin M. J., Szewczyk L. J., Painter G. R. Human Safety, Tolerability, and Pharmacokinetics of a Novel Broad-Spectrum Oral Antiviral Compound, Molnupiravir, with Activity Against SARS-CoV-2, medrxiv, 2020-12., 2020.
  • Abdel-Maksoud, K., al-Badri, M. A., Lorenz, C., Essex, J. W. Allosteric regulation of SARS-CoV-2 protease: towards informed structure-based drug discovery, 2020.
  • Baindara, P., Roy, D., Mandal, S. M. Omicron favors neuropilin1 binding over ACE2: Increased infectivity and available drugs, 2022.
  • Shao, Y., Molnar, L. F., Jung, Y., Kussmann, J., Ochsenfeld, C., Brown, S. T., Gilbert, A. T. B., Slipchenko, L. V., Levchenko, S. V., O’Neill, D. P., DiStasio, R. A., Lochan, R. C., Wang, T., Beran, G. J. O., Besley, N. A., Herbert, J. M., Lin, C. Y., Van Voorhis, T., Chien, S. H., Head Gordon, M. Advances in methods and algorithms in a modern quantum chemistry program package, Physical Chemistry Chemical Physics, 8(27), 3172–3191, 2006.
  • Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., Stewart, J. J. AM1: A new general purpose quantum mechanical molecular model, Journal of the American Chemical Society, 107(13), 3902–3909, 1985.
  • Jurcik, A., Bednar, D., Byska, J., Marques, S. M., Furmanova, K., Daniel, L., Kozlikova, B. CAVER Analyst 2.0: analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories, Bioinformatics, 34(20), 3586-3588, 2018.
  • Trott, O., Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, Journal of computational chemistry, 31(2), 455-461, 2010.
  • Hao, G. F., Jiang, W., Ye, Y. N., Wu, F. X., Zhu, X. L., Guo, F. B., Yang, G. F. ACFIS: a web server for fragment-based drug discovery, Nucleic acids research, 44(W1), W550-W556, 2016.
  • Hao, G. F., Wang, F., Li, H., Zhu, X. L., Yang, W. C., Huang, L. S., Yang, G. F. Computational discovery of picomolar Q o site inhibitors of cytochrome bc 1 complex, Journal of the American Chemical Society, 134(27), 11168-11176, 2012.
  • Yang, J. F., Wang, F., Jiang, W., Zhou, G. Y., Li, C. Z., Zhu, X. L., Yang, G. F. PADFrag: a database built for the exploration of bioactive fragment space for drug discovery, Journal of chemical information and modeling, 58(9), 1725-1730, 2018.
  • Cheron, N., Jasty, N., Shakhnovich, E. I. OpenGrowth: an automated and rational algorithm for finding new protein ligands, Journal of medicinal chemistry, 59(9), 4171-4188, 2016.
  • Abraham, M. J., Murtola, T., Schulz, R., Pall, S., Smith, J. C., Hess, B., & Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, 1–2,19–25, 2015.
  • Bekker, H., Berendsen, H. J. C., Dijkstra, E. J., Achterop, S., Vondrumen, R., Vanderspoel, D., Sijbers, A., Keegstra, H., Renardus, M. K. R. Gromacs–A parallel computer for molecular-dynamics simulations, In 4th International Conference on Computational Physics (PC 92) (pp. 252–256), World Scientific Publishing, 1993.
  • Bjelkmar, P., Larsson, P., Cuendet, M. A., Hess, B., Lindahl, E. Implementation of the CHARMM force field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models, Journal of Chemical Theory and Computation, 6(2), 459–466, 2010.
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., Shaw, D. E. Improved side-chain torsion potentials for the Amber ff99SB protein force field, Proteins, 78(8), 1950–1958, 2010.
  • van Gunsteren, W. F., Billeter, S. R., Eising, A. A., Hünenberger, P. H., Krüger, P. K. H. C., Mark, A. E., Scott, W.R.P., Tironi, I. G. Biomolecular simulation: The GROMOS96 manual and user guide, Vdf Hochschulverlag AG an der ETH Zürich, Zürich, 86,1–1044, 1996.
  • Daura, X., Mark, A. E., Van Gunsteren, W. F. Parametrization of aliphatic CHn united atoms of GROMOS96 force field, Journal of Computational Chemistry, 19(5), 535–547, 1998.
  • Gorai, S., Junghare, V., Kundu, K., Gharui, S., Kumar, M., Patro, B. S., Nayak, S. K., Hazra, S., Mula, S. Synthesis of dihydrobenzo furo [3,2-b] chromenes as potential 3CLpro inhibitors of SARS-CoV-2: A molecular docking and molecular dynamics study, ChemMedChem, 17(8), e202100782, 2022.
  • Kalimuthu, A. K., Panneerselvam, T., Pavadai, P., Pandian, S. R. K., Sundar, K., Murugesan, S., Ammunje, D. N., Kumar, S., Arunachalam, S., Kunjiappan, S. Pharmacoinformatics-based investigation of bio active compounds of Rasam (South Indian recipe) against human cancer, Scientific Reports, 11(1), 21488, 2021.
  • Oostenbrink, C., Villa, A., Mark, A. E., & Van Gunsteren, W. F. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6, Journal of Computational Chemistry, 25(13), 1656–1676, 2004.
  • Prasanna, D., Runthala, A., Shantier, S. W. NudF-boosted strategy to improve the yield of DXS pathway, bioRxiv, 2022-03, 2022.
  • Tumskiy, R. S., Tumskaia, A. V. Multistep rational molecular design and combined docking for discovery of novel classes of inhibitors of SARS-CoV-2 main protease 3CLpro, Chemical Physics Letters, 780, 138894, 2021.
  • Vishvakarma, V. K., Singh, M. B., Jain, P., Kumari, K., Singh, P. Hunting the main protease of SARS-CoV-2 by plitidepsin: Molecular docking and temperature-dependent molecular dynamics simulations, Amino Acids, 54(2), 205–213, 2022.
  • Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein, Cell, 181(2), 281-292, 2020.
  • Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Wang, X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor, Nature, 581(7807), 215-220, 2020.
  • Cetin, A., Donmez, A., Dalar, A., Bildirici, I. Amino acid and dicyclohexylurea linked pyrazole analogues: synthesis, in silico and in vitro studies, ChemistrySelect 8, e202204926, 2023.
  • Zhang, B., Zhao, Y., Jin, Z., Liu, X., Yang, H., Rao, Z. The Crystal Structure of COVID-19 Main Protease in Apo Form, Publ. Online, 2020.
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors, Nature, 582, 289-293, 2020.
  • Mahdian, S., Zarrabi, M., Panahi, Y., Dabbagh, S. Repurposing FDA-approved drugs to fight COVID-19 using in silico methods: targeting SARS-CoV-2 RdRp enzyme and host cell receptors (ACE2, CD147) through virtual screening and molecular dynamic simulations, Informatics in medicine unlocked, 23, 100541, 2021.
  • Rahman, M. R., Banik, A., Chowdhury, I. M., Sajib, E. H., Sarkar, S. Identification of potential antivirals against SARS-CoV-2 using virtual screening method, Informatics in medicine unlocked, 23, 100531, 2021.
  • Celik, S., Akyuz, S., Ozel, A. E. Vibrational spectroscopic characterization and structural investigations of Cepharanthine, a natural alkaloid, Journal of Molecular Structure, 1258, 132693, 2022.
  • Sagaama, A., Brandan, S. A., Issa, T. B., Issaoui, N. Searching potential antiviral candidates for the treatment of the 2019 novel coronavirus based on DFT calculations and molecular docking, Heliyon, 6(8), e04640, 2020.
  • Cetin, A. Some flavolignans as potent Sars-Cov-2 inhibitors via molecular docking, molecular dynamic simulations and ADME analysis. Current Computer-Aided Drug Design, 18(5), 337-346, 2022.
  • Romeo, A., Iacovelli, F., Falconi, M. Fighting Sars-Cov-2 using natural compounds: a virtual screening analysis, High Performance Computing on CRESCO Infrastructure: research activity and results 2020, 159, 2021.
  • Srivastava, A., Siddiqui, S., Ahmad, R., Mehrotra, S., Ahmad, B., Srivastava, A. N. Exploring nature’s bounty: identification of Withania somnifera as a promising source of therapeutic agents against COVID-19 by virtual screening and in silico evaluation, Journal of Biomolecular Structure and Dynamics, 40(4), 1858-1908, 2022.
  • Khan, N., Fazal, S., Malik, R. M., Azam, S., Jan, S. A., Kanwal, A., Jan, S. A. N-silico analysis of turmeric as an anti-inflammatory agent against ace2 receptor, Pak. J. Bot., 55(2): 763-778, 2023.
  • Quang, N. M., Linh, B. T. T., Uyen, T. T., Ngoc, V. T. B., Hoa, T. T., Van Tat, P. Discovery of novel thiazole derivatives as anti‐breast cancer agents (MCF‐7) and validation of homologous effects on SARS‐CoV‐2 virus using in silico approaches, Vietnam Journal of Chemistry, 61, 17-29, 2023.
  • Mohan, M., Rekha, P., Gokulraj, P., Samy, P. A., Thirumalaisamy, R., Khan, R., Aroulmoji, V. Molecular Studies of Antiviral Drug Atazanavir and Hyaluronic Acid-Atazanavir conjugate as Novel Drugs to Target SARS-CoV-2 Viral Proteins, International journal of advanced Science and Engineering, 10(3), 3581-3592, 2024.

Molecular Docking and Molecular Dynamics Simulations of Molnupiravir Against Covid-19

Yıl 2024, Cilt: 12 Sayı: 2, 134 - 141, 30.12.2024
https://doi.org/10.18586/msufbd.1563429

Öz

The most stable conformation of molnupiravir (C13H19N3O7), which is frequently used in the COVID-19 treatment, was elucidated by the Spartan06 program. Using the CAVER program, the potential active binding sites that belong to the spike glycoprotein, ACE2 receptor, and both the apo and holo forms of the main protease enzyme(Mpro) of COVID-19 were identified. To determine the binding affinity of molnupiravir to target receptors, molecular docking analyses were carried out using Autodock Vina. The results of molecular docking calculations of the molnupiravir with the spike glycoprotein (PDB ID:6VXX), ACE2 (PDB ID:6M0J;1R42), the apo form (PDB ID: 6M03) and the holo form of COVID-19 Mpro (PDB ID: 6LU7) showed strong binding affinities at -7.8, -7.7, -7.7, -7.1, and -7.4 kcal/mol, respectively. Moreover, top-scoring ligand-receptor complex of the molnupiravir with ACE2 (1R42) were subjected to 50 ns all-atom MD simulations to investigate the ligand-receptor interactions in more detail.

Kaynakça

  • Yang, P., Wang, X. COVID-19: a new challenge for human beings, Cellular & Molecular Immunology, 17(5), 555-557, 2020.
  • Ullrich, S., Nitsche, C. The SARS-CoV-2 main protease as drug target, Bioorganic & Medicinal Chemistry Letters, 30(17), 127377, 2020.
  • Qiao, J., Li, Y. S., Zeng, R., Liu, F. L., Luo, R. H., Huang, C., Wang, Y. F., Zhang, J., Quan, B., Shen, C., Mao, X., Liu, X., Sun, W., Yang, W., Ni, X., Wang, K., Xu, L., Duan, Z. L., Zou, Q. C., Zhang, H. L., Qu, W., Long, Y. H. P., Li, M. H., Yang, R. C., Liu, X., You, J., Zhou, Y., Yao, R., Li, W. P., Liu, J. M., Chen, P., Liu, Y., Lin, G. F., Yang, X., Zou, J., Li, L., Hu, Y., Lu, G. W., Li, W. M., Wei, Y. Q., Zheng, Y. T., Lei, J., Yang, S. SARS-CoV-2 M^pro inhibitors with antiviral activity in a transgenic mouse model, Science, 371(6536), 1374-1378, 2021.
  • Benkovics, T., McIntosh, J. A., Silverman, S. M., Kong, J., Maligres, P., Itoh, T., Yang, H., Huffman, M. A., Verma, D., Pan, W., Ho, H., Vroom, J., Knight, A., Hurtak, J., Morris, W., Strotman, N.A., Murphy, G., Maloney, K. M., Fier, P. S. Evolving to an Ideal Synthesis of Molnupiravir, an Investigational Treatment for COVID‐19, 2020.
  • Zarenezhad, E., Marzi, M. Review on molnupiravir as a promising oral drug for the treatment of COVID-19, Medicinal Chemistry Research, 1-12, 2022.
  • Cox, R. M., Wolf, J. D., Plemper, R. K. Therapeutically administered ribonucleoside analogue MK-4482/EIDD-2801 blocks SARS-CoV-2 transmission in ferrets, Nature microbiology, 6(1), 11-18, 2020.
  • Painter, G. R., Natchus. M. G., Cohen, O., Holman W., Painter, W. P. Developing a direct acting, orally available antiviral agent in a pandemic: the evolution of molnupiravir as a potential treatment for COVID-19, Current opinion in virology, 50, 17-22, 2021.
  • Fischer, W., Eron Jr, J. J., Holman, W., Cohen, M. S., Fang, L., Szewczyk, L. J., Sheahan, T. P., Baric, R., Mollan, K. R., Wolfe, C. R., Duke, E. R., Azizad, M. M., Borroto-Esoda, K., Wohl, D. A., Loftis, A. J., Alabanza, P., Lipansky, F., Painter, W. P. Molnupiravir, an Oral Antiviral Treatment for COVID-19, MedRxiv, 2021-06., 2021.
  • Singh, A. K., Singh, A., Singh, R., Misra, A. An updated practical guideline on use of molnupiravir and comparison with agents having emergency use authorization for treatment of COVID-19, Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 16(2), 102396, 2022.
  • Painter, W. P., Holman W., Bush J.A., Almazedi F., Malik H., Eraut N. C. J. E., Morin M. J., Szewczyk L. J., Painter G. R. Human Safety, Tolerability, and Pharmacokinetics of a Novel Broad-Spectrum Oral Antiviral Compound, Molnupiravir, with Activity Against SARS-CoV-2, medrxiv, 2020-12., 2020.
  • Abdel-Maksoud, K., al-Badri, M. A., Lorenz, C., Essex, J. W. Allosteric regulation of SARS-CoV-2 protease: towards informed structure-based drug discovery, 2020.
  • Baindara, P., Roy, D., Mandal, S. M. Omicron favors neuropilin1 binding over ACE2: Increased infectivity and available drugs, 2022.
  • Shao, Y., Molnar, L. F., Jung, Y., Kussmann, J., Ochsenfeld, C., Brown, S. T., Gilbert, A. T. B., Slipchenko, L. V., Levchenko, S. V., O’Neill, D. P., DiStasio, R. A., Lochan, R. C., Wang, T., Beran, G. J. O., Besley, N. A., Herbert, J. M., Lin, C. Y., Van Voorhis, T., Chien, S. H., Head Gordon, M. Advances in methods and algorithms in a modern quantum chemistry program package, Physical Chemistry Chemical Physics, 8(27), 3172–3191, 2006.
  • Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., Stewart, J. J. AM1: A new general purpose quantum mechanical molecular model, Journal of the American Chemical Society, 107(13), 3902–3909, 1985.
  • Jurcik, A., Bednar, D., Byska, J., Marques, S. M., Furmanova, K., Daniel, L., Kozlikova, B. CAVER Analyst 2.0: analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories, Bioinformatics, 34(20), 3586-3588, 2018.
  • Trott, O., Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, Journal of computational chemistry, 31(2), 455-461, 2010.
  • Hao, G. F., Jiang, W., Ye, Y. N., Wu, F. X., Zhu, X. L., Guo, F. B., Yang, G. F. ACFIS: a web server for fragment-based drug discovery, Nucleic acids research, 44(W1), W550-W556, 2016.
  • Hao, G. F., Wang, F., Li, H., Zhu, X. L., Yang, W. C., Huang, L. S., Yang, G. F. Computational discovery of picomolar Q o site inhibitors of cytochrome bc 1 complex, Journal of the American Chemical Society, 134(27), 11168-11176, 2012.
  • Yang, J. F., Wang, F., Jiang, W., Zhou, G. Y., Li, C. Z., Zhu, X. L., Yang, G. F. PADFrag: a database built for the exploration of bioactive fragment space for drug discovery, Journal of chemical information and modeling, 58(9), 1725-1730, 2018.
  • Cheron, N., Jasty, N., Shakhnovich, E. I. OpenGrowth: an automated and rational algorithm for finding new protein ligands, Journal of medicinal chemistry, 59(9), 4171-4188, 2016.
  • Abraham, M. J., Murtola, T., Schulz, R., Pall, S., Smith, J. C., Hess, B., & Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, 1–2,19–25, 2015.
  • Bekker, H., Berendsen, H. J. C., Dijkstra, E. J., Achterop, S., Vondrumen, R., Vanderspoel, D., Sijbers, A., Keegstra, H., Renardus, M. K. R. Gromacs–A parallel computer for molecular-dynamics simulations, In 4th International Conference on Computational Physics (PC 92) (pp. 252–256), World Scientific Publishing, 1993.
  • Bjelkmar, P., Larsson, P., Cuendet, M. A., Hess, B., Lindahl, E. Implementation of the CHARMM force field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models, Journal of Chemical Theory and Computation, 6(2), 459–466, 2010.
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., Shaw, D. E. Improved side-chain torsion potentials for the Amber ff99SB protein force field, Proteins, 78(8), 1950–1958, 2010.
  • van Gunsteren, W. F., Billeter, S. R., Eising, A. A., Hünenberger, P. H., Krüger, P. K. H. C., Mark, A. E., Scott, W.R.P., Tironi, I. G. Biomolecular simulation: The GROMOS96 manual and user guide, Vdf Hochschulverlag AG an der ETH Zürich, Zürich, 86,1–1044, 1996.
  • Daura, X., Mark, A. E., Van Gunsteren, W. F. Parametrization of aliphatic CHn united atoms of GROMOS96 force field, Journal of Computational Chemistry, 19(5), 535–547, 1998.
  • Gorai, S., Junghare, V., Kundu, K., Gharui, S., Kumar, M., Patro, B. S., Nayak, S. K., Hazra, S., Mula, S. Synthesis of dihydrobenzo furo [3,2-b] chromenes as potential 3CLpro inhibitors of SARS-CoV-2: A molecular docking and molecular dynamics study, ChemMedChem, 17(8), e202100782, 2022.
  • Kalimuthu, A. K., Panneerselvam, T., Pavadai, P., Pandian, S. R. K., Sundar, K., Murugesan, S., Ammunje, D. N., Kumar, S., Arunachalam, S., Kunjiappan, S. Pharmacoinformatics-based investigation of bio active compounds of Rasam (South Indian recipe) against human cancer, Scientific Reports, 11(1), 21488, 2021.
  • Oostenbrink, C., Villa, A., Mark, A. E., & Van Gunsteren, W. F. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6, Journal of Computational Chemistry, 25(13), 1656–1676, 2004.
  • Prasanna, D., Runthala, A., Shantier, S. W. NudF-boosted strategy to improve the yield of DXS pathway, bioRxiv, 2022-03, 2022.
  • Tumskiy, R. S., Tumskaia, A. V. Multistep rational molecular design and combined docking for discovery of novel classes of inhibitors of SARS-CoV-2 main protease 3CLpro, Chemical Physics Letters, 780, 138894, 2021.
  • Vishvakarma, V. K., Singh, M. B., Jain, P., Kumari, K., Singh, P. Hunting the main protease of SARS-CoV-2 by plitidepsin: Molecular docking and temperature-dependent molecular dynamics simulations, Amino Acids, 54(2), 205–213, 2022.
  • Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein, Cell, 181(2), 281-292, 2020.
  • Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Wang, X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor, Nature, 581(7807), 215-220, 2020.
  • Cetin, A., Donmez, A., Dalar, A., Bildirici, I. Amino acid and dicyclohexylurea linked pyrazole analogues: synthesis, in silico and in vitro studies, ChemistrySelect 8, e202204926, 2023.
  • Zhang, B., Zhao, Y., Jin, Z., Liu, X., Yang, H., Rao, Z. The Crystal Structure of COVID-19 Main Protease in Apo Form, Publ. Online, 2020.
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors, Nature, 582, 289-293, 2020.
  • Mahdian, S., Zarrabi, M., Panahi, Y., Dabbagh, S. Repurposing FDA-approved drugs to fight COVID-19 using in silico methods: targeting SARS-CoV-2 RdRp enzyme and host cell receptors (ACE2, CD147) through virtual screening and molecular dynamic simulations, Informatics in medicine unlocked, 23, 100541, 2021.
  • Rahman, M. R., Banik, A., Chowdhury, I. M., Sajib, E. H., Sarkar, S. Identification of potential antivirals against SARS-CoV-2 using virtual screening method, Informatics in medicine unlocked, 23, 100531, 2021.
  • Celik, S., Akyuz, S., Ozel, A. E. Vibrational spectroscopic characterization and structural investigations of Cepharanthine, a natural alkaloid, Journal of Molecular Structure, 1258, 132693, 2022.
  • Sagaama, A., Brandan, S. A., Issa, T. B., Issaoui, N. Searching potential antiviral candidates for the treatment of the 2019 novel coronavirus based on DFT calculations and molecular docking, Heliyon, 6(8), e04640, 2020.
  • Cetin, A. Some flavolignans as potent Sars-Cov-2 inhibitors via molecular docking, molecular dynamic simulations and ADME analysis. Current Computer-Aided Drug Design, 18(5), 337-346, 2022.
  • Romeo, A., Iacovelli, F., Falconi, M. Fighting Sars-Cov-2 using natural compounds: a virtual screening analysis, High Performance Computing on CRESCO Infrastructure: research activity and results 2020, 159, 2021.
  • Srivastava, A., Siddiqui, S., Ahmad, R., Mehrotra, S., Ahmad, B., Srivastava, A. N. Exploring nature’s bounty: identification of Withania somnifera as a promising source of therapeutic agents against COVID-19 by virtual screening and in silico evaluation, Journal of Biomolecular Structure and Dynamics, 40(4), 1858-1908, 2022.
  • Khan, N., Fazal, S., Malik, R. M., Azam, S., Jan, S. A., Kanwal, A., Jan, S. A. N-silico analysis of turmeric as an anti-inflammatory agent against ace2 receptor, Pak. J. Bot., 55(2): 763-778, 2023.
  • Quang, N. M., Linh, B. T. T., Uyen, T. T., Ngoc, V. T. B., Hoa, T. T., Van Tat, P. Discovery of novel thiazole derivatives as anti‐breast cancer agents (MCF‐7) and validation of homologous effects on SARS‐CoV‐2 virus using in silico approaches, Vietnam Journal of Chemistry, 61, 17-29, 2023.
  • Mohan, M., Rekha, P., Gokulraj, P., Samy, P. A., Thirumalaisamy, R., Khan, R., Aroulmoji, V. Molecular Studies of Antiviral Drug Atazanavir and Hyaluronic Acid-Atazanavir conjugate as Novel Drugs to Target SARS-CoV-2 Viral Proteins, International journal of advanced Science and Engineering, 10(3), 3581-3592, 2024.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Atom ve Molekül Fiziği
Bölüm Araştırma Makalesi
Yazarlar

Tugce Sinem Oktemer 0009-0001-9059-1216

Zeynep Önem 0000-0003-0662-0641

Sefa Çelik 0000-0001-6216-1297

Ayşen Özel 0000-0002-8680-8830

Sevim Akyüz 0000-0003-3313-6927

Erken Görünüm Tarihi 21 Aralık 2024
Yayımlanma Tarihi 30 Aralık 2024
Gönderilme Tarihi 8 Ekim 2024
Kabul Tarihi 15 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 2

Kaynak Göster

APA Oktemer, T. S., Önem, Z., Çelik, S., Özel, A., vd. (2024). Molecular Docking and Molecular Dynamics Simulations of Molnupiravir Against Covid-19. Mus Alparslan University Journal of Science, 12(2), 134-141. https://doi.org/10.18586/msufbd.1563429
AMA Oktemer TS, Önem Z, Çelik S, Özel A, Akyüz S. Molecular Docking and Molecular Dynamics Simulations of Molnupiravir Against Covid-19. MAUN Fen Bil. Dergi. Aralık 2024;12(2):134-141. doi:10.18586/msufbd.1563429
Chicago Oktemer, Tugce Sinem, Zeynep Önem, Sefa Çelik, Ayşen Özel, ve Sevim Akyüz. “Molecular Docking and Molecular Dynamics Simulations of Molnupiravir Against Covid-19”. Mus Alparslan University Journal of Science 12, sy. 2 (Aralık 2024): 134-41. https://doi.org/10.18586/msufbd.1563429.
EndNote Oktemer TS, Önem Z, Çelik S, Özel A, Akyüz S (01 Aralık 2024) Molecular Docking and Molecular Dynamics Simulations of Molnupiravir Against Covid-19. Mus Alparslan University Journal of Science 12 2 134–141.
IEEE T. S. Oktemer, Z. Önem, S. Çelik, A. Özel, ve S. Akyüz, “Molecular Docking and Molecular Dynamics Simulations of Molnupiravir Against Covid-19”, MAUN Fen Bil. Dergi., c. 12, sy. 2, ss. 134–141, 2024, doi: 10.18586/msufbd.1563429.
ISNAD Oktemer, Tugce Sinem vd. “Molecular Docking and Molecular Dynamics Simulations of Molnupiravir Against Covid-19”. Mus Alparslan University Journal of Science 12/2 (Aralık 2024), 134-141. https://doi.org/10.18586/msufbd.1563429.
JAMA Oktemer TS, Önem Z, Çelik S, Özel A, Akyüz S. Molecular Docking and Molecular Dynamics Simulations of Molnupiravir Against Covid-19. MAUN Fen Bil. Dergi. 2024;12:134–141.
MLA Oktemer, Tugce Sinem vd. “Molecular Docking and Molecular Dynamics Simulations of Molnupiravir Against Covid-19”. Mus Alparslan University Journal of Science, c. 12, sy. 2, 2024, ss. 134-41, doi:10.18586/msufbd.1563429.
Vancouver Oktemer TS, Önem Z, Çelik S, Özel A, Akyüz S. Molecular Docking and Molecular Dynamics Simulations of Molnupiravir Against Covid-19. MAUN Fen Bil. Dergi. 2024;12(2):134-41.