Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of high school students’ chemistry knowledge on liquids via multiple represantations

Yıl 2021, Cilt: 8 Sayı: 1, 250 - 273, 01.05.2021
https://doi.org/10.21666/muefd.825851

Öz

The aim of the study is to investigate high school students’ ideas about liquids by using multiple representations. The research was conducted as a case study among qualitative research designs. The participants are high school students from various grade levels. The data collection tool is a questionnaire developed by the researchers. The questionnaire involves questions designed to determine students’ ways of thinking about the same concept with different representations of chemistry (macroscopic, submicroscopic and symbolic levels). The questions aimed to investigate students' thinking on the molecular representation of various liquids, surface tension, viscosity and the effects of temperature on the properties of liquids. Some drawing questions are also included to measure students’ views at the submicroscopic level. Written responses to the survey questions were evaluated with content analysis; frequency and percentage calculations were also made. The research findings revealed that high school students possess limited knowledge on liquids and held misconception especially at the submicroscopic level. The majority of students have misinformation on subjects such as representation of molecules in water, glycerin and cologne, submicroscopic explanations of subjects such as surface tension and viscosity, and representation of intermolecular interactions. The use of animations, visuals and three-dimensional models will enable students to relate the three levels of chemistry.

Kaynakça

  • Adadan, E. (2013). Using multiple representations to promote grade 11 students’ scientific understanding of the particle theory of matter. Research in Science Education, 43(3), 1079-1105. DOI: https://doi.org/10.1007/s11165-012-9299-9
  • Adadan, E. (2014). Model-tabanlı öğrenme ortamının kimya öğretmen adaylarının maddenin tanecikli yapısı kavramını ve bilimsel modellerin doğasını anlamaları üzerine etkisinin incelenmesi. Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi, 33(2), 378-403. DOI: 10.7822/omuefd.33.2.5
  • Ainsworth, S. (2008). The educational value of multiple-representations when learning complex scientific concepts. In Visualization: Theory and practice in science education (pp. 191-208). Springer, Dordrecht.
  • Anilan, B., Atalay, N., & Kiliç, Z. (2018). Teacher candidates' levels of relating the scientific knowledge to their daily lives. International Journal of Instruction, 11(4), 733-748.
  • Becker, N., Stanford, C., Towns, M., & Cole, R. (2015). Translating across macroscopic, submicroscopic, and symbolic levels: the role of instructor facilitation in an inquiry-oriented physical chemistry class. Chemistry Education Research and Practice, 16(4), 769-785. DOI: 10.1039/C5RP00064E
  • Bradley, J. D. (2014). The chemist’s triangle and a general systemic approach to teaching, learning and research in chemistry education. African Journal of Chemical Education, 4(2), 64-79.
  • Bogdan, R. C. & Biklen, S. K. (1998). Qualitative research in education: An introduction to theory and methods (3rd ed.). Needham Heights, MA: Allyn & Bacon.
  • Chandrasegaran, A. L., Treagust, D. F., & Mocerino, M. (2007). The development of a twotier multiple-choice diagnostic instrument for evaluating secondary school student’s ability to describe and explain chemical reactions using multiple levels of representation. Chemistry Education Research and Practice, 8(3), 293–307. DOI: 10.1039/B7RP90006F
  • Cooper, M. M., & Stowe, R. L. (2018). Chemistry education research—From personal empiricism to evidence, theory, and informed practice. Chemical Reviews, 118(12), 6053-6087. https://doi.org/10.1021/acs.chemrev.8b00020
  • Çökelez, A. (2009). İlköğretim ikinci kademe öğrencilerinin tanecik kavramı hakkındaki görüşleri: bilgi dönüşümü. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 36(36), 64-75.
  • Devetak, I., & Glazar, S. A. (2009). The influence of 16-year-old students' gender, mental abilities, and motivation on their reading and drawing submicro representations achievements. International Journal of Science Education, 32, 1561-1593. DOI: https://doi.org/10.1080/09500690903150609
  • Devetak, I., Vogrinc, J., & Glazar, S. A. (2009). Assessing 16-year-old students’ understanding of aqueous solution at submicroscopic level. Research in Science Education, 39, 157-179. DOI: https://doi.org/10.1007/s11165-007-9077-2
  • Erduran, S., Bravo, A. A., & Mamlok-Naaman, R. (2007). Developing epistemology empowered teachers: Examining the role of philosophy of chemistry in teacher education. Science & Education, 16(9-10), 975-989. DOI: https://doi.org/10.1007/s11191-006-9072-4
  • Ergün, A., & Sarıkaya, M. (2014). Maddenin parçacıklı yapısı ile ilgili kavram yanılgılarının giderilmesinde modele dayalı aktivitelerin etkisi. Education Sciences, 9(3), 248-275. Retrieved from https://dergipark.org.tr/en/pub/nwsaedu/issue/19807/211868
  • Gilbert J. K. and Treagust D. F., (2009), Introduction: macro, submicro and symbolic representations and the relationship between them: key models in chemical education, in Gilbert J. K. and Treagust D. F. (ed.), Multiple Representations in Chemical Education, Dordecht: Springer, pp. 1–8.
  • Gobert, J. D., & Buckley, B. C. (2000). Introduction to model-based teaching and learning in science education. International Journal of Science Education, 22(9), 891-894. DOI: 10.1080/095006900416839
  • Gobert, J. D., & Clement, J. J. (1999). Effects of student-generated diagrams versus student-generated summaries on conceptual understanding of causal and dynamic knowledge in plate tectonics. Journal of Research in Science Teaching, 36(1), 39–53. DOI: https://doi.org/10.1002/(SICI)1098-2736(199901)36:1<39::AID-TEA4>3.0.CO;2-I
  • Harrison, A. G., & Treagust, D. F. (1998). Modelling in science lessons: Are there better ways to learn with models?. School Science and Mathematics, 98(8), 420-429. DOI: https://doi.org/10.1111/j.1949-8594.1998.tb17434.x
  • Jaber, L. Z., & BouJaoude, S. (2012). A macro–micro–symbolic teaching to promote relational understanding of chemical reactions. International Journal of Science Education, 34(7), 973-998. DOI: https://doi.org/10.1080/09500693.2011.569959
  • Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of Computer Assisted Learning, 7(2), 75-83. doi: https://doi.org/10.1111/j.1365-2729.1991.tb00230.x
  • Kabapınar, F. (1998). Teaching for conceptual understanding: developing and evaluating Turkish students’ understanding of the solubility concept through a specific teaching intervention, Yayımlanmamış Doktora Tezi, The University of Leeds.
  • Margel, H., Eylon, B., & Scherz, Z. (2008). A longitudinal study of junior high school students’ conceptions of the structure of materials. Journal of Research in Science Teaching, 45(1), 132-152. DOI: https://doi.org/10.1002/tea.20214
  • Mete, P. ve Yıldırım, A . (2016). Yaşam temelli öğrenme yaklaşımının kimya derslerindeki uygulamaları hakkında öğretim elemanlarının görüşleri. Bayburt Eğitim Fakültesi Dergisi, 11 (1) , 100-116 .Retrieved from https://dergipark.org.tr/en/pub/befdergi/issue/23129/247047
  • Milli Eğitim Bakanlığı (MEB) (2018). Ortaöğretim Kimya Dersi (9, 10, 11 ve 12. Sınıflar) Öğretim Programı. Ankara: Talim Terbiye Kurulu Başkanlığı.
  • Nakhleh, M. B. (1992). Why some students don’t learn chemistry. Journal of Chemical Education, 69, 191-196. DOI: https://doi.org/10.1021/ed069p191
  • National Research Council [NRC] (1996). National Science Education Standards. Washington, DC: National Academy Press.
  • Okumuş, S., Çavdar, O., Alyar, M., & Doymuş, K. (2017). Kimyasal denge konusunun mikro boyutta anlaşılmasına farklı öğretim yöntemlerinin etkisi. Elementary Education Online, 16(2).727-745. DOI: 10.17051/ilkonline.2017.304730
  • Pekdağ, B. (2010). Kimya öğreniminde alternatif yollar: animasyon, simülasyon, video ve multimedya ile öğrenme. Türk Fen Eğitimi Dergisi, 2 (7), 79-110.
  • Petrucci, R. H., Harwood, W. S., & Herring, F. G. (2010). General Chemistry: Principles and Modern Applications (Genel Kimya: İlkeler ve Modern Uygulamalar). T. Uyar, & S. Aksoy (Translation Eds.), Ankara: Palme Yayıncılık.
  • Prain, V., & Waldrip, B. (2006). An exploratory study of teachers’ and students’ use of multi‐modal representations of concepts in primary science. International Journal of Science Education, 28(15), 1843-1866. DOI: https://doi.org/10.1080/09500690600718294
  • Schwarz, C. V., Passmore, C., & Reiser, B. J. (2016). Helping students make sense of the world using next generation science and engineering practices. Arlington, VA: National Science Teachers' Association Press.
  • Taber, K. S. (2009). Learning at the symbolic level. In J. K. Gilbert, & D. F. Treagust (Eds.), Multiple representations in chemical education, (pp. 75–108). Dordrecht:Springer.
  • Talanquer, V. (2011). Macro, submicro, and symbolic: the many faces of the chemistry “triplet”. International Journal of Science Education, 33 (2), 179–195. DOI: https://doi.org/10.1080/09500690903386435
  • Treagust, D., Chittleborough, G., & Mamiala, T. (2003). The role of submicroscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25(11), 1353-1368. DOI: https://doi.org/10.1080/0950069032000070306
  • Wu, H. K. (2003). Linking the microscopic view of chemistry to real-life experiences: Intertextuality in a high-school science classroom. Science Education, 87(6), 868-891. DOI: https://doi.org/10.1002/sce.10090.
  • Yin, R. K. (2003). Case study research: Design and methods (3rd Edition). Thousand Oaks: Sage Publications.

Lise Öğrencilerinin Kimya Dersi Sıvılar Konusuna İlişkin Bilgilerinin Çoklu Gösterimler ile Belirlenmesi

Yıl 2021, Cilt: 8 Sayı: 1, 250 - 273, 01.05.2021
https://doi.org/10.21666/muefd.825851

Öz

Bu çalışmanın amacı lise öğrencilerinin sıvılar konusuna ilişkin sahip oldukları bilgileri çoklu gösterimlerden yararlanarak incelemektir. Araştırma nitel araştırma desenlerinden durum çalışması olarak yürütülmüştür. Çalışmaya devlet lisesinde öğrenim gören 9., 10., 11. ve 12. sınıflardan toplam 160 öğrenci katılmıştır. Veri toplama aracı araştırmacılar tarafından geliştirilen açık uçlu sorulardan oluşan bir ankettir. Bu ankette, aynı kavrama ilişkin düşünce biçimlerinin belirlenmesine olanak tanıyan ancak kimyanın farklı temsil biçimlerini (makroskopik, altmikroskopik ve sembolik seviyeler) içeren tarzda sorular bulunmaktadır. Sorular çeşitli sıvıların moleküler gösterimi, yüzey gerilimi, viskozite ve sıcaklığın sıvıların özellikleri üzerine etkilerine dair öğrencilerin düşünce biçimlerini araştırmayı amaçlamaktadır. Ankette öğrencilerin altmikroskopik seviyeye ilişkin düşüncelerini belirlemek için çizim gerektiren sorular da yer almaktadır. Öğrencilerin anket sorularına verdikleri yazılı yanıtlar içerik analizi ile değerlendirilmiştir; frekans ve yüzde hesaplamaları yapılmıştır. Araştırma bulguları lise öğrencilerinin konuya ilişkin bilgilerinin özellikle altmikroskopik seviyede yanlış olduğunu ortaya koymuştur. Çalışmaya katılan öğrencilerin büyük çoğunluğu; su, gliserin ve kolonyayı oluşturan moleküllerin gösterimi, yüzey gerilimi ve viskozite gibi kavramların altmikroskopik açıklamaları, moleküller arası etkileşimlerin gösterimi gibi konularda yanlış bilgilere sahiptir. Öğrencilerin kimyanın farklı gösterimleri arasında geçiş yapabilmelerini sağlamak için; derslerde çoklu gösterimleri içeren animasyonlar, görseller ve üç boyutlu modellerin kullanılması kimya öğretmenlerine önerilebilir.

Kaynakça

  • Adadan, E. (2013). Using multiple representations to promote grade 11 students’ scientific understanding of the particle theory of matter. Research in Science Education, 43(3), 1079-1105. DOI: https://doi.org/10.1007/s11165-012-9299-9
  • Adadan, E. (2014). Model-tabanlı öğrenme ortamının kimya öğretmen adaylarının maddenin tanecikli yapısı kavramını ve bilimsel modellerin doğasını anlamaları üzerine etkisinin incelenmesi. Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi, 33(2), 378-403. DOI: 10.7822/omuefd.33.2.5
  • Ainsworth, S. (2008). The educational value of multiple-representations when learning complex scientific concepts. In Visualization: Theory and practice in science education (pp. 191-208). Springer, Dordrecht.
  • Anilan, B., Atalay, N., & Kiliç, Z. (2018). Teacher candidates' levels of relating the scientific knowledge to their daily lives. International Journal of Instruction, 11(4), 733-748.
  • Becker, N., Stanford, C., Towns, M., & Cole, R. (2015). Translating across macroscopic, submicroscopic, and symbolic levels: the role of instructor facilitation in an inquiry-oriented physical chemistry class. Chemistry Education Research and Practice, 16(4), 769-785. DOI: 10.1039/C5RP00064E
  • Bradley, J. D. (2014). The chemist’s triangle and a general systemic approach to teaching, learning and research in chemistry education. African Journal of Chemical Education, 4(2), 64-79.
  • Bogdan, R. C. & Biklen, S. K. (1998). Qualitative research in education: An introduction to theory and methods (3rd ed.). Needham Heights, MA: Allyn & Bacon.
  • Chandrasegaran, A. L., Treagust, D. F., & Mocerino, M. (2007). The development of a twotier multiple-choice diagnostic instrument for evaluating secondary school student’s ability to describe and explain chemical reactions using multiple levels of representation. Chemistry Education Research and Practice, 8(3), 293–307. DOI: 10.1039/B7RP90006F
  • Cooper, M. M., & Stowe, R. L. (2018). Chemistry education research—From personal empiricism to evidence, theory, and informed practice. Chemical Reviews, 118(12), 6053-6087. https://doi.org/10.1021/acs.chemrev.8b00020
  • Çökelez, A. (2009). İlköğretim ikinci kademe öğrencilerinin tanecik kavramı hakkındaki görüşleri: bilgi dönüşümü. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 36(36), 64-75.
  • Devetak, I., & Glazar, S. A. (2009). The influence of 16-year-old students' gender, mental abilities, and motivation on their reading and drawing submicro representations achievements. International Journal of Science Education, 32, 1561-1593. DOI: https://doi.org/10.1080/09500690903150609
  • Devetak, I., Vogrinc, J., & Glazar, S. A. (2009). Assessing 16-year-old students’ understanding of aqueous solution at submicroscopic level. Research in Science Education, 39, 157-179. DOI: https://doi.org/10.1007/s11165-007-9077-2
  • Erduran, S., Bravo, A. A., & Mamlok-Naaman, R. (2007). Developing epistemology empowered teachers: Examining the role of philosophy of chemistry in teacher education. Science & Education, 16(9-10), 975-989. DOI: https://doi.org/10.1007/s11191-006-9072-4
  • Ergün, A., & Sarıkaya, M. (2014). Maddenin parçacıklı yapısı ile ilgili kavram yanılgılarının giderilmesinde modele dayalı aktivitelerin etkisi. Education Sciences, 9(3), 248-275. Retrieved from https://dergipark.org.tr/en/pub/nwsaedu/issue/19807/211868
  • Gilbert J. K. and Treagust D. F., (2009), Introduction: macro, submicro and symbolic representations and the relationship between them: key models in chemical education, in Gilbert J. K. and Treagust D. F. (ed.), Multiple Representations in Chemical Education, Dordecht: Springer, pp. 1–8.
  • Gobert, J. D., & Buckley, B. C. (2000). Introduction to model-based teaching and learning in science education. International Journal of Science Education, 22(9), 891-894. DOI: 10.1080/095006900416839
  • Gobert, J. D., & Clement, J. J. (1999). Effects of student-generated diagrams versus student-generated summaries on conceptual understanding of causal and dynamic knowledge in plate tectonics. Journal of Research in Science Teaching, 36(1), 39–53. DOI: https://doi.org/10.1002/(SICI)1098-2736(199901)36:1<39::AID-TEA4>3.0.CO;2-I
  • Harrison, A. G., & Treagust, D. F. (1998). Modelling in science lessons: Are there better ways to learn with models?. School Science and Mathematics, 98(8), 420-429. DOI: https://doi.org/10.1111/j.1949-8594.1998.tb17434.x
  • Jaber, L. Z., & BouJaoude, S. (2012). A macro–micro–symbolic teaching to promote relational understanding of chemical reactions. International Journal of Science Education, 34(7), 973-998. DOI: https://doi.org/10.1080/09500693.2011.569959
  • Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of Computer Assisted Learning, 7(2), 75-83. doi: https://doi.org/10.1111/j.1365-2729.1991.tb00230.x
  • Kabapınar, F. (1998). Teaching for conceptual understanding: developing and evaluating Turkish students’ understanding of the solubility concept through a specific teaching intervention, Yayımlanmamış Doktora Tezi, The University of Leeds.
  • Margel, H., Eylon, B., & Scherz, Z. (2008). A longitudinal study of junior high school students’ conceptions of the structure of materials. Journal of Research in Science Teaching, 45(1), 132-152. DOI: https://doi.org/10.1002/tea.20214
  • Mete, P. ve Yıldırım, A . (2016). Yaşam temelli öğrenme yaklaşımının kimya derslerindeki uygulamaları hakkında öğretim elemanlarının görüşleri. Bayburt Eğitim Fakültesi Dergisi, 11 (1) , 100-116 .Retrieved from https://dergipark.org.tr/en/pub/befdergi/issue/23129/247047
  • Milli Eğitim Bakanlığı (MEB) (2018). Ortaöğretim Kimya Dersi (9, 10, 11 ve 12. Sınıflar) Öğretim Programı. Ankara: Talim Terbiye Kurulu Başkanlığı.
  • Nakhleh, M. B. (1992). Why some students don’t learn chemistry. Journal of Chemical Education, 69, 191-196. DOI: https://doi.org/10.1021/ed069p191
  • National Research Council [NRC] (1996). National Science Education Standards. Washington, DC: National Academy Press.
  • Okumuş, S., Çavdar, O., Alyar, M., & Doymuş, K. (2017). Kimyasal denge konusunun mikro boyutta anlaşılmasına farklı öğretim yöntemlerinin etkisi. Elementary Education Online, 16(2).727-745. DOI: 10.17051/ilkonline.2017.304730
  • Pekdağ, B. (2010). Kimya öğreniminde alternatif yollar: animasyon, simülasyon, video ve multimedya ile öğrenme. Türk Fen Eğitimi Dergisi, 2 (7), 79-110.
  • Petrucci, R. H., Harwood, W. S., & Herring, F. G. (2010). General Chemistry: Principles and Modern Applications (Genel Kimya: İlkeler ve Modern Uygulamalar). T. Uyar, & S. Aksoy (Translation Eds.), Ankara: Palme Yayıncılık.
  • Prain, V., & Waldrip, B. (2006). An exploratory study of teachers’ and students’ use of multi‐modal representations of concepts in primary science. International Journal of Science Education, 28(15), 1843-1866. DOI: https://doi.org/10.1080/09500690600718294
  • Schwarz, C. V., Passmore, C., & Reiser, B. J. (2016). Helping students make sense of the world using next generation science and engineering practices. Arlington, VA: National Science Teachers' Association Press.
  • Taber, K. S. (2009). Learning at the symbolic level. In J. K. Gilbert, & D. F. Treagust (Eds.), Multiple representations in chemical education, (pp. 75–108). Dordrecht:Springer.
  • Talanquer, V. (2011). Macro, submicro, and symbolic: the many faces of the chemistry “triplet”. International Journal of Science Education, 33 (2), 179–195. DOI: https://doi.org/10.1080/09500690903386435
  • Treagust, D., Chittleborough, G., & Mamiala, T. (2003). The role of submicroscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25(11), 1353-1368. DOI: https://doi.org/10.1080/0950069032000070306
  • Wu, H. K. (2003). Linking the microscopic view of chemistry to real-life experiences: Intertextuality in a high-school science classroom. Science Education, 87(6), 868-891. DOI: https://doi.org/10.1002/sce.10090.
  • Yin, R. K. (2003). Case study research: Design and methods (3rd Edition). Thousand Oaks: Sage Publications.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler - Makaleler
Yazarlar

Oya Ağlarcı Özdemir 0000-0003-2073-8734

Merve Ok 0000-0001-6131-5127

Filiz Kabapınar 0000-0001-5937-0880

Yayımlanma Tarihi 1 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 1

Kaynak Göster

APA Ağlarcı Özdemir, O., Ok, M., & Kabapınar, F. (2021). Lise Öğrencilerinin Kimya Dersi Sıvılar Konusuna İlişkin Bilgilerinin Çoklu Gösterimler ile Belirlenmesi. Muğla Sıtkı Koçman Üniversitesi Eğitim Fakültesi Dergisi, 8(1), 250-273. https://doi.org/10.21666/muefd.825851