Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of Floating Floor and Phase Changing Materials on Energy Efficiency and Comfort Conditions in Individual Heating

Yıl 2020, Cilt: 61 Sayı: 700, 180 - 197, 15.08.2020
https://doi.org/10.46399/muhendismakina.779735

Öz

The energy takes an important shares in the nowadays classifications on the country development level. The energy consumption rate is considered as an effective parameter in all the future planning of the countries. Accordingly, scientific studies are important to reduce energy consumption. In this study, the effects of using insulation and phase change material (PCM) on the floors were investigated on energy efficiency and comfort conditions. In a building consisting of basement, ground floor and two normal floors, different scenarios were studied for simultaneously heated and unheated zones. In these scenarios, the effects of these parameters on the heat loads, zone temperature and energy consumption were investigated using three different types of flooring (uninsulated, insulated, and insulated and including PCM). According to the findings obtained from the study, the heat load of the zones decreased with the use of the insulation and PCM on the floor and ceiling. At the same time, it was determined that the thermal comfort conditions were improving as the zone temperatures were closer to the set point temperature. The results show that the use of insulation and PCM in floors and ceilings decrease the annual energy consumption and provides a significant increase in the energy efficiency.

Kaynakça

  • 1. Kyoto Protokolü, 1998. “Kyoto Protocol to the United Nations Framework Convention on Climate Change”, http://unfccc.int/resource/docs/convkp/kpeng.pdf, erişim tarihi 05.03.2020.
  • 2. Paris İklim Değişikliği Anlaşması, 2015. “Paris Agreement,” https://unfccc.int/sites/def ault/files/english_paris_agreement.pdf, erişim tarihi 08.02.2020.
  • 3. EPBD, 2002. “Directive 2002/91/EC of the European Parliament and of the Council of 16 December 2002 on the energy performance of buildings,” Official Journal of the European Union.
  • 4. EPBD recast, 2010. “Directive 2010/31/EU of the European Parliament and of Council of 19 May 2010 on the energy performance of buildings (recast),” Official Journal of the European Union.
  • 5. Kaynaklı, O. 2008. “A Study on Residential Heating Energy Requirement and Optimum Insulation Thickness,” Renewable Energy, vol. 33, p. 1164-1172.
  • 6. European Union, 2020. “Topics of the European Union,” https://europa.eu/european-union/topics_en, erişim tarihi: 06.01.2020.
  • 7. Cheung, C.K., Fuller, R.J. Luther, M.B. 2005. “Energy-Efficient Envelope Design for High-Rise Apartments,” Energy and Buildings, vol. 37, p.37-48.
  • 8. Daouas, N. 2011. “A Study on Optimum Insulation Thickness in Walls and Energy Savings in Tunisian Buildings Based on Analytical Calculation of Cooling and Heating Transmission Loads,” Applied Energy, vol. 88, p. 156-164.
  • 9. Yaşar, Y., Maçka Kalfa, S. 2012. “The Effects of Window Alternatives on Energy Efficiency and Building Economy in High-Rise Residential Buildings in Moderate to Humid climates,” Energy Conversion and Management, vol. 64, p. 170-181.
  • 10. Delmastro, C., Mutani, G., Schranz, L. 2015. “Advantages of Coupling a Woody Biomass Cogeneration Plant With a District Heating Network for a Sustainable Built Environment: A Case Study in Luserna San Giovanni (Torino, Italy),” Energy Procedia, vol. 78, p. 794 – 799.
  • 11. Ferrara, M., Fabrizio, E. 2017. “Building Simulation (Innovation, Rapid Design, Design Support) & ICT Cost Optimal nZEBs in Future Climate Scenarios,” Energy Procedia, vol. 122 p. 877-882.
  • 12. Kurnitski, J., Kuusk, K. 2014. “Energy and Investment Intensity of Integrated Renovation and 2030 Cost Optimal Savings,” Energy and Buildings, vol. 75, p. 51–59.
  • 13. Çuhadaroğlu B. 1997. “Kat Isıtmasında Tasarım Kriterleri,” Makine Mühendisleri Odası 97’ Teskon Ek Bildiriler Kitabı, s. 905-913.
  • 14. IEA, 2017. “International Energy Agency Energy Technology Perspectives,” https://www.iea.org/topics/energy-technology-perspectives, sonerişim tarihi: 20.03.2020.
  • 15. The Strategic Energy Technology (SET) Plan, 2017. “Energy Research and Innovation in Europe,” European Commission.
  • 16. Kosny, J. 2015. “PCM-Enhanced Building Components An Application of Phase Change Materials in Building Envelopes and Internal Structures,” ISBN 978-3-319-14286-9, Springer International Publishing, Switzerland.
  • 17. Depe, D. 2017. “Yenilikçi ısı depolama sistemi faz değiştiren malzemelerin bina enerji verimliliği üzerindeki etkisinin analizine yönelik yaklaşım: Diyarbakır ve Erzurum örnekleri, “ Yüksek Lisans, İstanbul Teknik Üniversitesi, İstanbul.
  • 18. Alam, M., Jamil, H., Sanjayan, J., Wilson, J. 2014. “Energy saving potential of phase change materials in majör Australian Cities,” Energy and Buildings, vol. 78, p.192-201.
  • 19. Evola, G., Marletta, L., Sicurella, E. 2014. “Simulation of a Ventilated Cavity to Enhance the Effectiveness of PCM Wallboards for Summer Thermal Comfort in Buildings,” Energy and Buildings, vol. 70, p. 480-489.
  • 20. Auzeby, M., Wei, S., Underwood, C., Chen, c., Ling, H., Pan, S., Ng, B., Tindall, J., Buswell, R, 2017. “Using phase change materials to reduce overheating issues in UK residential buildings,” Energy Procedia, vol. 105, p. 4072 – 4077.
  • 21. Li, L., Yu, H., Liu, R. 2017. “Research on Composite-Phase Change Materials (PCMs)-Bricks in the West Wall of Room-Scale Cubicle: Mid-Season and Summer Day Cases,” Building and Environment, vol. 123, p. 494-503.
  • 22. Wang, Q., Wu, R., Wu, Y., Zhao, C.Y. 2018. “Parametric Analysis of Using PCM Walls for Heating Loads Reduction,” Energy & Buildings, vol. 172, p. 328-336.
  • 23. Bianco, L., Komerska, A., Cascone, Y., Serra, V., Zinzi, M., Carnielo, E., Ksionek, D. 2018. “Thermal and Optical Characterisation of Dynamic Shading Systems With PCMs Through Laboratory Experimental Measurements,” Energy and Buildings, vol. 163, p. 92-110.
  • 24. Zhu, L., Yang, Y., Chen, S., Sun, Y. 2018. “Numerical Study on the Thermal Performance of Lightweight Temporary Building Integrated with Phase Change Materials,” Applied Thermal Engineering, vol. 138, p. 35-47.
  • 25. Thantong, P., Khedari, J., Chantawong, P. 2018. “Study of Solar– PCM Walls for Domestic hot Water Production Under the Tropical Climate of Thailand,” Materials Today: Proceeding, vol. 5, p. 14880-14885.
  • 26. Iten, M., Liu, S., Shukla, A. 2016. “Experimental Study on the Thermal Performance of Air-PCM Unit,” Building and Environment, vol. 105, p. 128-139.
  • 27. Devaux, P., Farid, M.M. 2017. “Benefits of PCM Underfloor Heating with PCM Wallboards for Space Heating in Winter,” Applied Energy, vol. 191, p. 593–602.
  • 28. Maccarini, A., Hultmark, G., Bersgoe, N. C., Afshari, A. 2018. “Free Cooling Potential of a PCM-Based Heat Exchanger Coupled with a Novel HVAC System for Simultaneous Heating and Cooling of Buildings,” Sustainable Cities and Society, vol. 42, p. 384-395.
  • 29. Jaworski, M. 2019. “Mathematical Model of Heat Transfer in PCM Incorporated Fabrics Subjected to Different Thermal Loads,” Applied Thermal Engineering, vol. 150, p. 506-511.
  • 30. Biswas, K., Abhari, R. 2014. “Low-Cost Phase Change Material as an Energy Storage Medium in Building Envelopes: Experimental and Numerical Analyses,” Energy Conversion and Management, vol. 88, p.1020-1031.
  • 31. Kong, X., Lu, S., Li, Y., Huang, J., Liu, S. 2014. “Numerical study on the thermal performance of building wall and roof incorporating phase change material panel for passive cooling application,” Energy and Buildings, vol. 81, p. 404-415.
  • 32. Solgi, E., Memarian, S., Moud, G. N. 2018. “Financial Viability of PCMs in Countries with Low Energy Cost: A Case Study of Different Climates in Iran,” Energy & Buildings, vol. 173, p. 128-137.
  • 33. Karaoulis, A. 2017. “Investigation of Energy Performance in Conventional and Lightweight Building Components with the use of Phase Change Materials (PCMS): Energy Savings in Summer Season”, Procedia Environmental Sciences, 38, 796-803.
  • 34. Strand, R.K., Pedersen, C.O., Crawley, D.B. 2001. “Modularization and simulation techniques for heat balance based energy and load calculation programs: the experience of the ashrae loads toolkit and energyplus,” Seventh International IBPSA Conference, August 13-15, 2001, Brazil.
  • 35. EnergyPlus Documentation, 2020. “EnergyPlus Documentation Engineering Reference,” https://energyplus.net/sites/all/modules/custom/nrel_custom/pdfs/pdfs_v9.3.0/EngineeringReference.pdf, son erişim tarihi: 15.04.2020.
  • 36. TS 825 Binalarda Isı Yalıtım Kuralları, 2009. Türk Standartları Enstitüsü, Ankara.
  • 37. Binalarda Enerji Performansı Yönetmeliği (BEP TR), 2008. Bayındırlık ve İskan Bakanlığı, Türkiye Cumhuriyeti Resmi Gazetesi, Ankara.
  • 38. TS 2164 Kalorifer Tesisatı Projelendirme Kuralları, 1983. Türk Standartları Enstitüsü, Ankara.
  • 39. Kuznik, F., Virgone, J. 2009. “Experimental investigation of wallboard containing phase change material: Data for validation of numerical modeling,” Energy and Buildings, vol. 41, p. 561-570.
  • 40. DesignBuilder User Guide, 2020. “DesignBuilder User Guide,” https://designbuilder.co.uk/helpv6.0/, erişim tarihi: 01.04.2020.

Kat Isıtmasında Yüzer Döşeme ve Faz Değiştiren Malzeme Kullanımının Enerji Verimliliğine ve Konfor Koşullarına Etkisi

Yıl 2020, Cilt: 61 Sayı: 700, 180 - 197, 15.08.2020
https://doi.org/10.46399/muhendismakina.779735

Öz

Günümüzde ülkelerin gelişmişlik düzeylerine ilişkin tüm sınıflandırmalarda enerji önemli bir yer tutmaktadır. Ülkelerin geleceğe yönelik yaptığı bütün planlamalarda enerji kullanım oranı etkin bir parametre olarak göz önüne alınmaktadır. Buna bağlı olarak enerji kullanımının düşürülmesi amacıyla yapılan bilimsel çalışmalar önem kazanmaktadır. Bu çalışmada, ara kat döşemelerinde yalıtım ve faz değiştiren malzeme (FDM) kullanılmasının enerji verimliliği ve konfor koşulları üzerindeki etkileri incelenmiştir. Bodrum, zemin ve iki normal kattan oluşan örnek bir binada eş zamanlı olarak ısıtılan ve ısıtılmayan ortamlardan oluşan farklı senaryolar üzerinde çalışma yapılmıştır. Bu senaryolarda yalıtımsız, yalıtımlı ve yalıtıma ek FDM içeren bir katmanın olduğu üç farklı döşeme tipi kullanılarak, bu parametrelerin ortamların ısı yüklerine, ortam sıcaklığına ve enerji kullanımına etkileri incelenmiştir. Çalışmada elde edilmiş olan bulgulara göre; döşeme ve tavanda yalıtım ve FDM kullanılması ile ortamların ısı yükü düşmektedir. Aynı zamanda ortam sıcaklıklarının ayar sıcaklığına daha yakın olması ile birlikte ısıl konfor koşullarının iyileşmekte olduğu belirlenmiştir. Çalışma sonuçları göstermektedir ki; döşeme ve tavanlarda yalıtım ve FDM kullanımı, yıllık enerji kullanımını aşağıya çekmekte ve enerji verimliliğinde önemli bir artış sağlamaktadır.

Kaynakça

  • 1. Kyoto Protokolü, 1998. “Kyoto Protocol to the United Nations Framework Convention on Climate Change”, http://unfccc.int/resource/docs/convkp/kpeng.pdf, erişim tarihi 05.03.2020.
  • 2. Paris İklim Değişikliği Anlaşması, 2015. “Paris Agreement,” https://unfccc.int/sites/def ault/files/english_paris_agreement.pdf, erişim tarihi 08.02.2020.
  • 3. EPBD, 2002. “Directive 2002/91/EC of the European Parliament and of the Council of 16 December 2002 on the energy performance of buildings,” Official Journal of the European Union.
  • 4. EPBD recast, 2010. “Directive 2010/31/EU of the European Parliament and of Council of 19 May 2010 on the energy performance of buildings (recast),” Official Journal of the European Union.
  • 5. Kaynaklı, O. 2008. “A Study on Residential Heating Energy Requirement and Optimum Insulation Thickness,” Renewable Energy, vol. 33, p. 1164-1172.
  • 6. European Union, 2020. “Topics of the European Union,” https://europa.eu/european-union/topics_en, erişim tarihi: 06.01.2020.
  • 7. Cheung, C.K., Fuller, R.J. Luther, M.B. 2005. “Energy-Efficient Envelope Design for High-Rise Apartments,” Energy and Buildings, vol. 37, p.37-48.
  • 8. Daouas, N. 2011. “A Study on Optimum Insulation Thickness in Walls and Energy Savings in Tunisian Buildings Based on Analytical Calculation of Cooling and Heating Transmission Loads,” Applied Energy, vol. 88, p. 156-164.
  • 9. Yaşar, Y., Maçka Kalfa, S. 2012. “The Effects of Window Alternatives on Energy Efficiency and Building Economy in High-Rise Residential Buildings in Moderate to Humid climates,” Energy Conversion and Management, vol. 64, p. 170-181.
  • 10. Delmastro, C., Mutani, G., Schranz, L. 2015. “Advantages of Coupling a Woody Biomass Cogeneration Plant With a District Heating Network for a Sustainable Built Environment: A Case Study in Luserna San Giovanni (Torino, Italy),” Energy Procedia, vol. 78, p. 794 – 799.
  • 11. Ferrara, M., Fabrizio, E. 2017. “Building Simulation (Innovation, Rapid Design, Design Support) & ICT Cost Optimal nZEBs in Future Climate Scenarios,” Energy Procedia, vol. 122 p. 877-882.
  • 12. Kurnitski, J., Kuusk, K. 2014. “Energy and Investment Intensity of Integrated Renovation and 2030 Cost Optimal Savings,” Energy and Buildings, vol. 75, p. 51–59.
  • 13. Çuhadaroğlu B. 1997. “Kat Isıtmasında Tasarım Kriterleri,” Makine Mühendisleri Odası 97’ Teskon Ek Bildiriler Kitabı, s. 905-913.
  • 14. IEA, 2017. “International Energy Agency Energy Technology Perspectives,” https://www.iea.org/topics/energy-technology-perspectives, sonerişim tarihi: 20.03.2020.
  • 15. The Strategic Energy Technology (SET) Plan, 2017. “Energy Research and Innovation in Europe,” European Commission.
  • 16. Kosny, J. 2015. “PCM-Enhanced Building Components An Application of Phase Change Materials in Building Envelopes and Internal Structures,” ISBN 978-3-319-14286-9, Springer International Publishing, Switzerland.
  • 17. Depe, D. 2017. “Yenilikçi ısı depolama sistemi faz değiştiren malzemelerin bina enerji verimliliği üzerindeki etkisinin analizine yönelik yaklaşım: Diyarbakır ve Erzurum örnekleri, “ Yüksek Lisans, İstanbul Teknik Üniversitesi, İstanbul.
  • 18. Alam, M., Jamil, H., Sanjayan, J., Wilson, J. 2014. “Energy saving potential of phase change materials in majör Australian Cities,” Energy and Buildings, vol. 78, p.192-201.
  • 19. Evola, G., Marletta, L., Sicurella, E. 2014. “Simulation of a Ventilated Cavity to Enhance the Effectiveness of PCM Wallboards for Summer Thermal Comfort in Buildings,” Energy and Buildings, vol. 70, p. 480-489.
  • 20. Auzeby, M., Wei, S., Underwood, C., Chen, c., Ling, H., Pan, S., Ng, B., Tindall, J., Buswell, R, 2017. “Using phase change materials to reduce overheating issues in UK residential buildings,” Energy Procedia, vol. 105, p. 4072 – 4077.
  • 21. Li, L., Yu, H., Liu, R. 2017. “Research on Composite-Phase Change Materials (PCMs)-Bricks in the West Wall of Room-Scale Cubicle: Mid-Season and Summer Day Cases,” Building and Environment, vol. 123, p. 494-503.
  • 22. Wang, Q., Wu, R., Wu, Y., Zhao, C.Y. 2018. “Parametric Analysis of Using PCM Walls for Heating Loads Reduction,” Energy & Buildings, vol. 172, p. 328-336.
  • 23. Bianco, L., Komerska, A., Cascone, Y., Serra, V., Zinzi, M., Carnielo, E., Ksionek, D. 2018. “Thermal and Optical Characterisation of Dynamic Shading Systems With PCMs Through Laboratory Experimental Measurements,” Energy and Buildings, vol. 163, p. 92-110.
  • 24. Zhu, L., Yang, Y., Chen, S., Sun, Y. 2018. “Numerical Study on the Thermal Performance of Lightweight Temporary Building Integrated with Phase Change Materials,” Applied Thermal Engineering, vol. 138, p. 35-47.
  • 25. Thantong, P., Khedari, J., Chantawong, P. 2018. “Study of Solar– PCM Walls for Domestic hot Water Production Under the Tropical Climate of Thailand,” Materials Today: Proceeding, vol. 5, p. 14880-14885.
  • 26. Iten, M., Liu, S., Shukla, A. 2016. “Experimental Study on the Thermal Performance of Air-PCM Unit,” Building and Environment, vol. 105, p. 128-139.
  • 27. Devaux, P., Farid, M.M. 2017. “Benefits of PCM Underfloor Heating with PCM Wallboards for Space Heating in Winter,” Applied Energy, vol. 191, p. 593–602.
  • 28. Maccarini, A., Hultmark, G., Bersgoe, N. C., Afshari, A. 2018. “Free Cooling Potential of a PCM-Based Heat Exchanger Coupled with a Novel HVAC System for Simultaneous Heating and Cooling of Buildings,” Sustainable Cities and Society, vol. 42, p. 384-395.
  • 29. Jaworski, M. 2019. “Mathematical Model of Heat Transfer in PCM Incorporated Fabrics Subjected to Different Thermal Loads,” Applied Thermal Engineering, vol. 150, p. 506-511.
  • 30. Biswas, K., Abhari, R. 2014. “Low-Cost Phase Change Material as an Energy Storage Medium in Building Envelopes: Experimental and Numerical Analyses,” Energy Conversion and Management, vol. 88, p.1020-1031.
  • 31. Kong, X., Lu, S., Li, Y., Huang, J., Liu, S. 2014. “Numerical study on the thermal performance of building wall and roof incorporating phase change material panel for passive cooling application,” Energy and Buildings, vol. 81, p. 404-415.
  • 32. Solgi, E., Memarian, S., Moud, G. N. 2018. “Financial Viability of PCMs in Countries with Low Energy Cost: A Case Study of Different Climates in Iran,” Energy & Buildings, vol. 173, p. 128-137.
  • 33. Karaoulis, A. 2017. “Investigation of Energy Performance in Conventional and Lightweight Building Components with the use of Phase Change Materials (PCMS): Energy Savings in Summer Season”, Procedia Environmental Sciences, 38, 796-803.
  • 34. Strand, R.K., Pedersen, C.O., Crawley, D.B. 2001. “Modularization and simulation techniques for heat balance based energy and load calculation programs: the experience of the ashrae loads toolkit and energyplus,” Seventh International IBPSA Conference, August 13-15, 2001, Brazil.
  • 35. EnergyPlus Documentation, 2020. “EnergyPlus Documentation Engineering Reference,” https://energyplus.net/sites/all/modules/custom/nrel_custom/pdfs/pdfs_v9.3.0/EngineeringReference.pdf, son erişim tarihi: 15.04.2020.
  • 36. TS 825 Binalarda Isı Yalıtım Kuralları, 2009. Türk Standartları Enstitüsü, Ankara.
  • 37. Binalarda Enerji Performansı Yönetmeliği (BEP TR), 2008. Bayındırlık ve İskan Bakanlığı, Türkiye Cumhuriyeti Resmi Gazetesi, Ankara.
  • 38. TS 2164 Kalorifer Tesisatı Projelendirme Kuralları, 1983. Türk Standartları Enstitüsü, Ankara.
  • 39. Kuznik, F., Virgone, J. 2009. “Experimental investigation of wallboard containing phase change material: Data for validation of numerical modeling,” Energy and Buildings, vol. 41, p. 561-570.
  • 40. DesignBuilder User Guide, 2020. “DesignBuilder User Guide,” https://designbuilder.co.uk/helpv6.0/, erişim tarihi: 01.04.2020.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm icindekiler-sunuş
Yazarlar

Ersin Haydaraslan 0000-0002-3142-9518

Burhan Çuhadaroğlu 0000-0002-9144-498X

Yalçın Yaşar 0000-0003-1899-750X

Yayımlanma Tarihi 15 Ağustos 2020
Gönderilme Tarihi 8 Mayıs 2020
Kabul Tarihi 30 Haziran 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 61 Sayı: 700

Kaynak Göster

APA Haydaraslan, E., Çuhadaroğlu, B., & Yaşar, Y. (2020). Kat Isıtmasında Yüzer Döşeme ve Faz Değiştiren Malzeme Kullanımının Enerji Verimliliğine ve Konfor Koşullarına Etkisi. Mühendis Ve Makina, 61(700), 180-197. https://doi.org/10.46399/muhendismakina.779735

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520