Araştırma Makalesi
BibTex RIS Kaynak Göster

Multiple Mechanisms Improving The Mechanical Properties Of Surface Metal Matrix Composites Obtained By Friction Stir Processing

Yıl 2021, Cilt: 62 Sayı: 705, 681 - 701, 08.12.2021
https://doi.org/10.46399/muhendismakina.930170

Öz

Friction stir processing (FSP), a technique based on the principles of friction stir welding (FSW), is a solid-state method that was developed to enhance the properties of metallic materials. The possibility of the addition of hard second phase particles to matrix structure by distributing, subsequently caused that this method has also been used commonly in surface metal matrix composite (SMMC) manufacturing. By means of the advantages of being a simple, environmentally friendly, and cost-effective solid-state method, FSP has come into prominence more than various liquid and gas-phase methods that are used to manufacture SMMCs. In the FSP method, multiple mechanisms take part together in enhancing the microstructure and mechanical properties of the material during processing. These strengthening mechanisms in matrix structure obtained by hybridizing the specific properties gained to processed material by the FSP method and the enhanced properties by distributing the hard second phase particles in the matrix material. In this study, the effects of hard second phase particles, dynamic recrystallization (DRX), Zener pinning, and Orowan mechanism in the enhancement of mechanical properties of the SMMCs manufactured by FSP were investigated.

Kaynakça

  • Chawla, N., Chawla, K. K. 2006. Metal Matrix Composites, ISBN-13: 9780387233062, Springer Science & Business Media, United States of America.
  • Kalemtaş, A. 2014. “Metal Matrisli Kompozitlere Genel Bir Bakış,” Putech&Composites, Ekim-Kasım-Aralık sayısı, s.18-30.
  • Gürbüz, M., Mutuk, T. 2019. “Karbon Esaslı Malzeme Takviyeli Titanyum Kompozitler ve Grafen Üzerine Yeni Eğilimler,” Mühendis ve Makina, vol. 60, no. 695, p. 101-118.
  • Nturanabo, F., Masu, L., Kirabira, J.B. 2020. “Novel Applications of Aluminium Metal Matrix Composites,” - Aluminium Alloys and Composites, ed. Cooke, K., ISBN: 978-1-78984-514-3, IntechOpen. DOI: 10.5772/intechopen.81519
  • Kainer, K.U. 2006. Metal Matrix Composites: Custom‐made Materials for Automotive and Aerospace Engineering, ISBN-13: 978-3-527-31360-0, WILEY-VCH Verlag GmbH & Co. KGaA,Weinheim.
  • Sharifitabar, M., Sarani, A., Khorshahian, S., Afarani, M. S. 2011. “Fabrication of 5052Al/Al2O3 Nanoceramic Particle Reinforced Composite via Friction Stir Processing Route,” Materials and Design, vol. 32, no. 8-9, p. 4164–4172. https://doi.org/10.1016/j.matdes.2011.04.048
  • Cavaliere, P. 2005. “Mechanical Properties of Friction Stir Processed 2618/Al2O3/20p Metal Matrix Composite,” Composites: Part A, vol. 36, no. 12, p. 1657–1665. https://doi.org/10.1016/j.compositesa.2005.03.016
  • Gülcan, O., Tekkanat, K., Çetinkaya, B. 2019. “Fiber Metal Laminatlar ve Uçak Sanayiinde Kullanımı Üzerine Bir İnceleme,” Mühendis ve Makina, vol. 60, no. 697, p. 262-288.
  • Gangil, N., Maheshwari, S., Siddiquee, A.N., Abidi, M.H., El-Meligy, M.A., Mohammed, J.A. 2019. “Investigation on Friction Stir Welding of Hybrid Composites Fabricated on Al–Zn–Mg–Cu Alloy Through Friction Stir Processing,” Journal of Materials Research and Technology, vol. 8, no. 5, p. 3733-3740. https://doi.org/10.1016/j.jmrt.2019.06.033
  • Mavhungu, S.T., Akinlabi, E.T., Onitiri, M.A., Varachia, F.M. 2017. “Aluminum Matrix Composites for Industrial Use: Advances and Trends,” Procedia Manufacturing, vol. 7, p. 178-182. https://doi.org/10.1016/j.promfg.2016.12.045
  • Şenel, M. C., Gürbüz, M., Koç, E. 2018. “Toz Metalürjisi Metoduyla Üretilen Al-Si3N4 Metal Matrisli Kompozitlerin Mekanik Özelliklerinin İncelenmesi,” Mühendis ve Makina, vol. 59, no. 693, p. 33-46.
  • Kraiklang, R., Onwong, J., Santhaweesuk, C. 2020. “Multi-Performance Characteristics of AA5052 + 10% SiC Surface Composite by Friction Stir Processing,” Journal of Composites Science, vol. 4, no. 2. https://doi.org/10.3390/jcs4020036
  • Gangil, N., Siddiquee; A.N., Maheshwari, S. 2017. “Aluminium Based In-Situ Composite Fabrication Through Friction Stir Processing: A Review,” Journal of Alloys and Compounds, vol. 715, p. 91-104. https://doi.org/10.1016/j.jallcom.2017.04.309
  • Ye, H.Z., Liu, X.Y. 2004. “Review of Recent Studies in Magnesium Matrix Composites,” Journal of Materials Science, vol. 39, p. 6153–6171. https://doi.org/10.1023/B:JMSC.0000043583.47148.31
  • Gutman, E.M., Unigovski, Y., Levkovitch, M., Koren, Z. 1998. “Influence of Porosity and Casting Conditions on Creep of Die-Cast Mg Alloy,” Journal of Materials Science Letters, vol. 17, p.1787-1789. https://doi.org/10.1023/A:1006601419020
  • Abbas, A., Rajagopal, V., Huang, S.-J. 2021. “Magnesium Metal Matrix Composites and Their Applications,” - Magnesium Alloys, ed. Tański, T.A. & Jarka, P., IntechOpen. DOI: 10.5772/intechopen.96241
  • Calin, R., Pul, M., Pehlivanli, Z.O. 2012. “The Effect of Reinforcement Volume Ratio on Porosity and Thermal Conductivity in Al-MgO Composites,” Materials Research. vol.15, no. 6, p. 1057-1063. https://doi.org/10.1590/S1516-14392012005000131
  • Iqbal, A. K. M. A., Arai, Y., Araki, W. 2013. “Effect of Reinforcement Clustering on Crack Initiation Mechanism in a Cast Hybrid Metal Matrix Composite During Low Cycle Fatigue,” Open Journal of Composite Materials, vol. 3, no. 4, p. 97-106. DOI: 10.4236/ojcm.2013.34010
  • Li, Y.Z., Wang, Q.Z., Wang, W.G., Xiao, B.L., Ma, Z.Y. 2015. “Interfacial Reaction Mechanism Between Matrix and Reinforcement in B4C/6061Al Composites,” Materials Chemistry and Physics, vol. 154, p. 107-117. https://doi.org/10.1016/j.matchemphys.2015.01.052
  • Rajan, T. P. D., Pillai, R. M., Pai, B. C. 1998. “Review Reinforcement Coatings and Interfaces in Aluminium Metal Matrix Composites,” Journal of Materials Science, vol. 33, p. 3491-3503. https://doi.org/10.1023/A:1004674822751
  • Davidson, D. L. 1991. “The Effect of Particulate SiC on Fatigue Crack Growth in a Cast-Extruded Aluminum Alloy Composite,” Metallurgical Transactions A, vol. 22, p. 97–112. https://doi.org/10.1007/BF03350952
  • Garcia, R., Lopez, V. H., Kennedy, A. R., Arias G. 2007. “Welding of Al-359/20%SiCp Metal Matrix Composites by The Novel MIG Process with Indirect Electric Arc (IEA),” Journal of Materials Science, vol. 42, p. 7794–7800. DOI:10.1007/s10853-007-1632-8
  • Attia, A.N. 2001. “Surface Metal Matrix Composites,” Materials and Design, vol. 22, no. 6, p. 451-457. https://doi.org/10.1016/S0261-3069(00)00081-9
  • Sunil, B. R. 2015. “Developing Surface Metal Matrix Composites: A Comparative Survey,” International Journal of Advances in Materials Science and Engineering, vol. 4, no. 3, p. 9-16. DOI: 10.14810/ijamse.2015.4302
  • Huang, Y., Wang, T., Guo, W., Wan, L., Lv, S. 2014. “Microstructure and Surface Mechanical Property of AZ31 Mg/SiCp Surface Composite Fabricated by Direct Friction Stir Processing,” Materials and Design, vol. 59, p. 274–278. https://doi.org/10.1016/j.matdes.2014.02.067
  • Liu, H., Fujii, H., Maeda, M., Nogi, K. 2003. “Tensile properties and fracture locations of friction-stir welded joints of 6061-T6 aluminum alloy,” Journal of Materials Science Letters, vol. 22, p. 1061–1063. https://doi.org/10.1023/A:1024970421082
  • Oh-Ishi, K., McNelley, T. R. 2004. “Microstructural Modification of As-Cast NiAl Bronze By Friction Stir Processing,” Metallurgical and Materials Transactions A, vol. 35, p. 2951–2961. https://doi.org/10.1007/s11661-004-0242-1
  • Su, J.-Q., Nelson, T. W., Sterling, C. J. 2005. “Friction Stir Processing of Large-Area Bulk UFG Aluminum Alloys,” Scripta Materialia, vol. 52, p. 135–140. https://doi.org/10.1016/j.scriptamat.2004.09.014
  • Hofmann, D. C., Vecchio, K. S. 2005. “Submerged Friction Stir Processing (SFSP): An Improved Method for Creating Ultra-Fine-Grained Bulk Materials,” Materials Science and Engineering A, vol. 402, no. 1-2, p. 234–241. https://doi.org/10.1016/j.msea.2005.04.032
  • Mishra, R. S., Mahoney, M. W. 2007. “Friction Stir Processing,” - Friction Stir Welding and Processing, ed. Mishra, R.S. & Mahoney, M.W., ISBN-13: 978-0-87170-848-9, ASM International, United States of America.
  • Reddy, K. V., Naik, R. B., Rao, G. R., Reddy, G. M., Kumar, R. A. 2020. “Microstructure and Damping Capacity of AA6061/Graphite Surface Composites Produced Through Friction Stir Processing,” Composites Communications vol. 20. https://doi.org/10.1016/j.coco.2020.04.018
  • Naghshehkesh, N., Mousavi, S. E., Karimzadeh, F., Ashrafi, A., Nosko, M., Trembošová, V., Sadeghi, B. 2019. “Effect of Graphene Oxide and Friction Stir Processing on Microstructure and Mechanical Properties of Al5083 Matrix Composite,” Materials Research Express, vol. 6, no. 10. https://doi.org/10.1088/2053-1591/ab3a6f
  • Moustafa, E. B., Melaibari, A., Basha, M. 2020. “Wear and Microhardness Behaviors of AA7075/SiC-BN Hybrid Nanocomposite Surfaces Fabricated by Friction Stir Processing,” Ceramics International, vol. 46, no. 10, p. 16938-16943. https://doi.org/10.1016/j.ceramint.2020.03.274
  • Barati, M., Abbasi, M., Abedini, M. 2019. “The Effects of Friction Stir Processing and Friction Stir Vibration Processing on Mechanical, Wear and Corrosion Characteristics of Al6061/SiO2 Surface Composite,” Journal of Manufacturing Processes, vol. 45, p. 491–497. https://doi.org/10.1016/j.jmapro.2019.07.034
  • El-Danaf, E. A., El-Rayes, M. M., Soliman, M. S. 2011. “Low Temperature Enhanced Ductility of Friction Stir Processed 5083 Aluminum Alloy,” Bulletin of Materials Science, vol. 34, no. 7, p.1447–1453. https://doi.org/10.1007/s12034-011-0341-8
  • Kurt, A., Uygur, I. Cete, E. 2011. “Surface Modification of Aluminium by Friction Stir Processing,” Journal of Materials Processing Technology, vol. 211, p. 313–317. https://doi.org/10.1016/j.jmatprotec.2010.09.020
  • Ma, Z.Y. 2008. “Friction Stir Processing Technology: A Review,” Metallurgical and Materials Transactions A, vol. 39, p. 642–658. https://doi.org/10.1007/s11661-007-9459-0
  • Xue, P., Xiao, B. L., Wang, W. G., Zhang, Q., Wang, D., Wang, Q. Z., Ma, Z. Y. 2013. “Achieving Ultrafine Dual-Phase Structure with Superior Mechanical Property in Friction Stir Processed Plain Low Carbon Steel,” Materials Science & Engineering A, vol. 575, p. 30–34. https://doi.org/10.1016/j.msea.2013.03.033
  • Ghasemi-Kahrizsangi, A., Kashani-Bozorg, S. F. 2012. “Microstructure and Mechanical Properties of Steel/TiC Nano-Composite Surface Layer Produced by Friction Stir Processing,” Surface & Coatings Technology, vol. 209, p. 15–22. https://doi.org/10.1016/j.surfcoat.2012.08.005
  • Deore, H. A., Bhardwaj, A., Rao, A. G., Mishra, J., Hiwarkar, V. D. 2020. “Consequence of Reinforced SiC Particles and Post Process Artificial Ageing on Microstructure and Mechanical Properties of Friction Stir Processed AA7075,” Defence Technology, vol. 16, no. 5, p. 1039-1050. https://doi.org/10.1016/j.dt.2019.12.001
  • Sharma, V., Prakash, U., Kumar, B. V. M. 2015. “Surface Composites by Friction Stir Processing: A review,” Journal of Materials Processing Technology, vol. 224, p. 117–134. https://doi.org/10.1016/j.jmatprotec.2015.04.019
  • Sunil, B. R., Reddy, G. P. K., Patle, H., Dumpala, R. 2016. “Magnesium Based Surface Metal Matrix Composites by Friction Stir Processing,” Journal of Magnesium and Alloys, vol. 4, no. 1, p. 52-61. https://doi.org/10.1016/j.jma.2016.02.001
  • Zykova, A. P., Tarasov, S. Y., Chumaevskiy, A. V., Kolubaev, E. A. 2020. “A Review of Friction Stir Processing of Structural Metallic Materials: Process, Properties, and Methods,” Metals, vol. 10, no. 6. https://doi.org/10.3390/met10060772
  • Kumar, H., Prasad, R., Kumar, P., Tewari, S.P., Singh, J. K. 2020. “Mechanical and Tribological Characterization of Industrial Wastes Reinforced Aluminum Alloy Composites Fabricated via Friction Stir Processing,” Journal of Alloys and Compounds, vol. 831. https://doi.org/10.1016/j.jallcom.2020.154832
  • Dolatkhah, A., Golbabaei, P., Givi, M. K. B., Molaiekiya, F. 2012. “Investigating Effects of Process Parameters on Microstructural and Mechanical Properties of Al5052/SiC Metal Matrix Composite Fabricated via Friction Stir Processing,” Materials and Design, vol. 37, p. 458–464. https://doi.org/10.1016/j.matdes.2011.09.035
  • Dhayalan, R., Kalaiselvan, K., Sathiskumar, R. 2014. “Characterization of AA6063/SiC-Gr Surface Composites Produced by FSP Technique,” Procedia Engineering, vol. 97, p. 625 – 631. https://doi.org/10.1016/j.proeng.2014.12.291
  • Mirshekari, B., Zarei-Hanzaki, A., Barabi, A., Abedi, H. R., Lee, S. J., Fujii, H. 2021. “An Anomalous Effect of Grain Refinement on Yield Stress in Friction Stir Processed Lightweight Steel,” Materials Science and Engineering: A, vol. 799. https://doi.org/10.1016/j.msea.2020.140057
  • Su, J.-Q., Nelson, T. W., Mishra, R., Mahoney, M. 2003. “Microstructural Investigation of Friction Stir Welded 7050-T651 Aluminium,” Acta Materialia, vol. 51, no. 3, p. 713-729. https://doi.org/10.1016/S1359-6454(02)00449-4
  • Huang, K., Logé, R.E. 2016. “A Review of Dynamic Recrystallization Phenomena in Metallic Materials,” Materials and Design, vol. 111, p. 548–574. https://doi.org/10.1016/j.matdes.2016.09.012
  • Su, J.-Q., Nelson, T. W., Sterling, C. J. 2003. “A New Route to Bulk Nanocrystalline Materials” Journal of Materials Research, vol. 18, p.1757–1760. https://doi.org/10.1557/JMR.2003.0243
  • Yadav, D., Bauri, R. 2012. “Effect of Friction Stir Processing on Microstructure and Mechanical Properties of Aluminium,” Materials Science and Engineering A, vol. 539, p. 85–92. https://doi.org/10.1016/j.msea.2012.01.055
  • Wu, Q., Li, M., Guo, Y., Shan, J., Wang, H., Chang, Y. 2020. “Microstructural Evolution and Mechanical Properties of Friction Stir Welded 12Cr-ODS Steel,” Nuclear Materials and Energy, vol. 25. https://doi.org/10.1016/j.nme.2020.100804
  • Han, W., Liu, P., Yi, X., Zhan, Q., Wan, F., Yabuuchi, K., Serizawa, H., Kimura, A. 2018. “Impact of Friction Stir Welding on Recrystallization of Oxide Dispersion Strengthened Ferritic Steel,” Journal of Materials Science & Technology, vol. 34, p. 209–213. https://doi.org/10.1016/j.jmst.2017.11.032
  • Gandra, J., Miranda, R. M., Vilaça, P. 2011. “Effect of Overlapping Direction in Multipass Friction Stir Processing,” Materials Science and Engineering A, vol. 528, p. 5592–5599. https://doi.org/10.1016/j.msea.2011.03.105
  • Pradeep, S., Pancholi, V. 2013. “Effect of Microstructural in Homogeneity on Superplastic Behaviour of Multipass Friction Stir Processed Aluminium Alloy,” Materials Science & Engineering A, vol. 561, p. 78–87. https://doi.org/10.1016/j.msea.2012.10.050
  • Harwani, D., Badheka, V., Patel, V., Li, W., Andersson, J. 2021. “Developing superplasticity in magnesium alloys with the help of friction stir processing and its variants – A review,” Journal of Materials Research and Technology, vol. 12, p. 2055-2075. https://doi.org/10.1016/j.jmrt.2021.03.115
  • Sabbaghian, M., Mahmudi, R. 2021. “Superplasticity of The Fine-Grained Friction Stir Processed Mg–3Gd–1Zn Sheets,” Materials Characterization, vol. 172. https://doi.org/10.1016/j.matchar.2021.110902
  • Bauri, R., Yadav, D., Suhas, G. 2011. “Effect of Friction Stir Processing (FSP) on Microstructure and Properties of Al–TiC in Situ Composite,” Materials Science and Engineering A, vol. 528, p. 4732–4739. https://doi.org/10.1016/j.msea.2011.02.085
  • Koju, R. K., Darling, K. A., Kecskes, L. J., Mishin, Y. 2016. “Zener Pinning of Grain Boundaries and Structural Stability of Immiscible Alloys,” The Journal of The Minerals, Metals & Materials Society (TMS), vol. 68, no. 6, p. 1596–1604. https://doi.org/10.1007/s11837-016-1899-9
  • Terahsima, S., Bhadeshia, H. K. D. H. 2005. “Grain Growth: Zener Pinning of Grain Boundaries by Oxide Particles,” https://www.phase-trans.msm.cam.ac.uk/2005/Zener/, 23/04/2021.
  • Wu, Y. 2015. “Effect of Second Phase Particles on Grain Growth for Nanocrystalline AZ31 Mg Alloy by Phase Field Methods,” International Conference on Energy, Materials and Manufacturing Engineering (EMME 2015), 15-16 October 2015, Kuala Lumpur/Malaysia. https://doi.org/10.1051/matecconf/20152502006
  • Ali, Y., Qiu, D., Jiang, B., Pan, F., Zhang, M.-X. 2015. “Current Research Progress in Grain Refinement of Cast Magnesium Alloys: A Review Article,” Journal of Alloys and Compounds, vol. 619, p. 639–651. https://doi.org/10.1016/j.jallcom.2014.09.061
  • Svyetlichnyy, D. S. 2013. “Modeling of Grain Refinement by Cellular Automata,” Computational Materials Science, vol. 77, p. 408–416. https://doi.org/10.1016/j.commatsci.2013.04.065
  • Chang, K., Feng, W., Chen, L.-Q. 2009. “Effect of Second-Phase Particle Morphology on Grain Growth Kinetics,” Acta Materialia, vol. 57, p. 5229–5236. https://doi.org/10.1016/j.actamat.2009.07.025
  • Bhadeshia, H. K. D. H. 2015. Bainite in Steels, ISBN: 978-1-909662-74-2, W. S. Maney & Son Ltd, UK.
  • Guo, L., Roelofs, H., Lembke, M. I., Bhadeshia, H. K. D. H. 2016. “Effect of Manganese Sulphide Particle Shape on The Pinning of Grain Boundary,” Materials Science and Technology, vol. 33, no. 8, p. 1013-1018. https://doi.org/10.1080/02670836.2016.1258157
  • Rios, P. R., Fonseca, G. S. 2010. “Grain Boundary Pinning by Particles,” Materials Science Forum, vol. 638-642, p. 3907-3912. https://doi.org/10.4028/www.scientific.net/MSF.638-642.3907
  • Du, L., Yang, S., Zhang, P., Du, H. 2018. “Pinning Effect of Different Shape Second-Phase Particles on Grain Growth in Polycrystalline: Numerical and Analytical Investigations,” Composite Interfaces, vol. 25, no. 4, p. 357–368. https://doi.org/10.1080/09276440.2018.1439625
  • Liu, Q., Cui, X., Zhang, C., Huang, S. 2016. “Experimental Investigation of Suspended Particles Transport Through Porous Media: Particle and Grain Size Effect,” Environmental Technology, vol. 37, no. 7, p. 854–864. DOI: 10.1080/09593330.2015.1088578
  • Novikov, V. Y. 2016. “Grain Growth Jointly Affected by Immobile and Mobile Particles,” Materials Letters, vol. 178, p. 276–279. https://doi.org/10.1016/j.matlet.2016.05.017
  • Quested, T. E., Greer, A. L. 2004. “The Effect of The Size Distribution of Inoculant Particles on As-Cast Grain Size in Aluminium Alloys,” Acta Materialia, vol. 52, p. 3859–3868. https://doi.org/10.1016/j.actamat.2004.04.035
  • Fu, H. M., Zhang, M.-X., Qiu, D., Kelly, P. M., Taylor, J. A. 2009. “Grain Refinement by AlN Particles in Mg–Al Based Alloys,” Journal of Alloys and Compounds, vol. 478, p. 809–812. https://doi.org/10.1016/j.jallcom.2008.12.029
  • Zhang, Z., Chen, D. L. 2006. “Consideration of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites: A Model for Predicting Their Yield Strength,” Scripta Materialia, vol. 54, p. 1321–1326. https://doi.org/10.1016/j.scriptamat.2005.12.017
  • Matsukawa, Y. 2019. “Crystallography of Precipitates in Metals and Alloys: (2) Impact of Crystallography on Precipitation Hardening” - Crystallography, ed. Akitsu, T., ISBN: 978-1-83881-879-1, IntechOpen. DOI: 10.5772/intechopen.78499
  • Humphreys, F. J., Hatherly, M. 2004. Recrystallization and Related Annealing Phenomena, ISBN: 0 08 044164 5, Elsevier Ltd.

Sürtünme Karıştırma Prosesi ile Elde Edilen Yüzey Metal Matrisli Kompozitlerin Mekanik Özelliklerini Geliştiren Çoklu Mekanizmalar

Yıl 2021, Cilt: 62 Sayı: 705, 681 - 701, 08.12.2021
https://doi.org/10.46399/muhendismakina.930170

Öz

Sürtünme karıştırma prosesi (SKP), sürtünme karıştırma kaynağı (SKK) yöntemi esaslı olup, metalik malzemelerin özelliklerini iyileştirmek için geliştirilmiş bir katı hal yöntemidir. Yöntem ile sert ikincil faz partiküllerin matris yapısına dağıtılarak eklenebilme (yerleştirilebilme) imkanı, yöntemin sonradan yüzey metal matrisli kompozit (YMMK) üretiminde de yaygın şekilde kullanılmasını sağlamıştır. Basit, çevreci ve düşük maliyetli bir katı hal yöntemi olması, yüzey kompoziti üretiminde kullanılan birçok sıvı ve gaz hal yöntemlerine göre daha ön plana çıkmasını sağlamıştır. Sürünme karıştırma prosesiyle yüzey metal matrisli kompozit elde ederken malzemenin mikroyapısının ve mekanik özelliklerinin geliştirilmesinde birçok farklı mekanizma birlikte rol oynamaktadır. Matris yapısında elde edilen bu mukavemet arttırıcı mekanizmalar, yöntemin işlem gören malzemeye kazandırdığı kendine has özellikler ile kullanılan sert ikincil faz partiküllerin matris yapısına dağılmasıyla gelişen özelliklerin melezlenmesi ile sağlanmaktadır. Çalışmada SKP ile elde edilen YMMK’lerin mekanik özelliklerindeki gelişmede sert ikincil faz partiküllerin, dinamik rekristalizasyonun, Zener sabitlemenin (iğneleme) ve Orowan mekanizmasının etkileri incelenmiştir.

Kaynakça

  • Chawla, N., Chawla, K. K. 2006. Metal Matrix Composites, ISBN-13: 9780387233062, Springer Science & Business Media, United States of America.
  • Kalemtaş, A. 2014. “Metal Matrisli Kompozitlere Genel Bir Bakış,” Putech&Composites, Ekim-Kasım-Aralık sayısı, s.18-30.
  • Gürbüz, M., Mutuk, T. 2019. “Karbon Esaslı Malzeme Takviyeli Titanyum Kompozitler ve Grafen Üzerine Yeni Eğilimler,” Mühendis ve Makina, vol. 60, no. 695, p. 101-118.
  • Nturanabo, F., Masu, L., Kirabira, J.B. 2020. “Novel Applications of Aluminium Metal Matrix Composites,” - Aluminium Alloys and Composites, ed. Cooke, K., ISBN: 978-1-78984-514-3, IntechOpen. DOI: 10.5772/intechopen.81519
  • Kainer, K.U. 2006. Metal Matrix Composites: Custom‐made Materials for Automotive and Aerospace Engineering, ISBN-13: 978-3-527-31360-0, WILEY-VCH Verlag GmbH & Co. KGaA,Weinheim.
  • Sharifitabar, M., Sarani, A., Khorshahian, S., Afarani, M. S. 2011. “Fabrication of 5052Al/Al2O3 Nanoceramic Particle Reinforced Composite via Friction Stir Processing Route,” Materials and Design, vol. 32, no. 8-9, p. 4164–4172. https://doi.org/10.1016/j.matdes.2011.04.048
  • Cavaliere, P. 2005. “Mechanical Properties of Friction Stir Processed 2618/Al2O3/20p Metal Matrix Composite,” Composites: Part A, vol. 36, no. 12, p. 1657–1665. https://doi.org/10.1016/j.compositesa.2005.03.016
  • Gülcan, O., Tekkanat, K., Çetinkaya, B. 2019. “Fiber Metal Laminatlar ve Uçak Sanayiinde Kullanımı Üzerine Bir İnceleme,” Mühendis ve Makina, vol. 60, no. 697, p. 262-288.
  • Gangil, N., Maheshwari, S., Siddiquee, A.N., Abidi, M.H., El-Meligy, M.A., Mohammed, J.A. 2019. “Investigation on Friction Stir Welding of Hybrid Composites Fabricated on Al–Zn–Mg–Cu Alloy Through Friction Stir Processing,” Journal of Materials Research and Technology, vol. 8, no. 5, p. 3733-3740. https://doi.org/10.1016/j.jmrt.2019.06.033
  • Mavhungu, S.T., Akinlabi, E.T., Onitiri, M.A., Varachia, F.M. 2017. “Aluminum Matrix Composites for Industrial Use: Advances and Trends,” Procedia Manufacturing, vol. 7, p. 178-182. https://doi.org/10.1016/j.promfg.2016.12.045
  • Şenel, M. C., Gürbüz, M., Koç, E. 2018. “Toz Metalürjisi Metoduyla Üretilen Al-Si3N4 Metal Matrisli Kompozitlerin Mekanik Özelliklerinin İncelenmesi,” Mühendis ve Makina, vol. 59, no. 693, p. 33-46.
  • Kraiklang, R., Onwong, J., Santhaweesuk, C. 2020. “Multi-Performance Characteristics of AA5052 + 10% SiC Surface Composite by Friction Stir Processing,” Journal of Composites Science, vol. 4, no. 2. https://doi.org/10.3390/jcs4020036
  • Gangil, N., Siddiquee; A.N., Maheshwari, S. 2017. “Aluminium Based In-Situ Composite Fabrication Through Friction Stir Processing: A Review,” Journal of Alloys and Compounds, vol. 715, p. 91-104. https://doi.org/10.1016/j.jallcom.2017.04.309
  • Ye, H.Z., Liu, X.Y. 2004. “Review of Recent Studies in Magnesium Matrix Composites,” Journal of Materials Science, vol. 39, p. 6153–6171. https://doi.org/10.1023/B:JMSC.0000043583.47148.31
  • Gutman, E.M., Unigovski, Y., Levkovitch, M., Koren, Z. 1998. “Influence of Porosity and Casting Conditions on Creep of Die-Cast Mg Alloy,” Journal of Materials Science Letters, vol. 17, p.1787-1789. https://doi.org/10.1023/A:1006601419020
  • Abbas, A., Rajagopal, V., Huang, S.-J. 2021. “Magnesium Metal Matrix Composites and Their Applications,” - Magnesium Alloys, ed. Tański, T.A. & Jarka, P., IntechOpen. DOI: 10.5772/intechopen.96241
  • Calin, R., Pul, M., Pehlivanli, Z.O. 2012. “The Effect of Reinforcement Volume Ratio on Porosity and Thermal Conductivity in Al-MgO Composites,” Materials Research. vol.15, no. 6, p. 1057-1063. https://doi.org/10.1590/S1516-14392012005000131
  • Iqbal, A. K. M. A., Arai, Y., Araki, W. 2013. “Effect of Reinforcement Clustering on Crack Initiation Mechanism in a Cast Hybrid Metal Matrix Composite During Low Cycle Fatigue,” Open Journal of Composite Materials, vol. 3, no. 4, p. 97-106. DOI: 10.4236/ojcm.2013.34010
  • Li, Y.Z., Wang, Q.Z., Wang, W.G., Xiao, B.L., Ma, Z.Y. 2015. “Interfacial Reaction Mechanism Between Matrix and Reinforcement in B4C/6061Al Composites,” Materials Chemistry and Physics, vol. 154, p. 107-117. https://doi.org/10.1016/j.matchemphys.2015.01.052
  • Rajan, T. P. D., Pillai, R. M., Pai, B. C. 1998. “Review Reinforcement Coatings and Interfaces in Aluminium Metal Matrix Composites,” Journal of Materials Science, vol. 33, p. 3491-3503. https://doi.org/10.1023/A:1004674822751
  • Davidson, D. L. 1991. “The Effect of Particulate SiC on Fatigue Crack Growth in a Cast-Extruded Aluminum Alloy Composite,” Metallurgical Transactions A, vol. 22, p. 97–112. https://doi.org/10.1007/BF03350952
  • Garcia, R., Lopez, V. H., Kennedy, A. R., Arias G. 2007. “Welding of Al-359/20%SiCp Metal Matrix Composites by The Novel MIG Process with Indirect Electric Arc (IEA),” Journal of Materials Science, vol. 42, p. 7794–7800. DOI:10.1007/s10853-007-1632-8
  • Attia, A.N. 2001. “Surface Metal Matrix Composites,” Materials and Design, vol. 22, no. 6, p. 451-457. https://doi.org/10.1016/S0261-3069(00)00081-9
  • Sunil, B. R. 2015. “Developing Surface Metal Matrix Composites: A Comparative Survey,” International Journal of Advances in Materials Science and Engineering, vol. 4, no. 3, p. 9-16. DOI: 10.14810/ijamse.2015.4302
  • Huang, Y., Wang, T., Guo, W., Wan, L., Lv, S. 2014. “Microstructure and Surface Mechanical Property of AZ31 Mg/SiCp Surface Composite Fabricated by Direct Friction Stir Processing,” Materials and Design, vol. 59, p. 274–278. https://doi.org/10.1016/j.matdes.2014.02.067
  • Liu, H., Fujii, H., Maeda, M., Nogi, K. 2003. “Tensile properties and fracture locations of friction-stir welded joints of 6061-T6 aluminum alloy,” Journal of Materials Science Letters, vol. 22, p. 1061–1063. https://doi.org/10.1023/A:1024970421082
  • Oh-Ishi, K., McNelley, T. R. 2004. “Microstructural Modification of As-Cast NiAl Bronze By Friction Stir Processing,” Metallurgical and Materials Transactions A, vol. 35, p. 2951–2961. https://doi.org/10.1007/s11661-004-0242-1
  • Su, J.-Q., Nelson, T. W., Sterling, C. J. 2005. “Friction Stir Processing of Large-Area Bulk UFG Aluminum Alloys,” Scripta Materialia, vol. 52, p. 135–140. https://doi.org/10.1016/j.scriptamat.2004.09.014
  • Hofmann, D. C., Vecchio, K. S. 2005. “Submerged Friction Stir Processing (SFSP): An Improved Method for Creating Ultra-Fine-Grained Bulk Materials,” Materials Science and Engineering A, vol. 402, no. 1-2, p. 234–241. https://doi.org/10.1016/j.msea.2005.04.032
  • Mishra, R. S., Mahoney, M. W. 2007. “Friction Stir Processing,” - Friction Stir Welding and Processing, ed. Mishra, R.S. & Mahoney, M.W., ISBN-13: 978-0-87170-848-9, ASM International, United States of America.
  • Reddy, K. V., Naik, R. B., Rao, G. R., Reddy, G. M., Kumar, R. A. 2020. “Microstructure and Damping Capacity of AA6061/Graphite Surface Composites Produced Through Friction Stir Processing,” Composites Communications vol. 20. https://doi.org/10.1016/j.coco.2020.04.018
  • Naghshehkesh, N., Mousavi, S. E., Karimzadeh, F., Ashrafi, A., Nosko, M., Trembošová, V., Sadeghi, B. 2019. “Effect of Graphene Oxide and Friction Stir Processing on Microstructure and Mechanical Properties of Al5083 Matrix Composite,” Materials Research Express, vol. 6, no. 10. https://doi.org/10.1088/2053-1591/ab3a6f
  • Moustafa, E. B., Melaibari, A., Basha, M. 2020. “Wear and Microhardness Behaviors of AA7075/SiC-BN Hybrid Nanocomposite Surfaces Fabricated by Friction Stir Processing,” Ceramics International, vol. 46, no. 10, p. 16938-16943. https://doi.org/10.1016/j.ceramint.2020.03.274
  • Barati, M., Abbasi, M., Abedini, M. 2019. “The Effects of Friction Stir Processing and Friction Stir Vibration Processing on Mechanical, Wear and Corrosion Characteristics of Al6061/SiO2 Surface Composite,” Journal of Manufacturing Processes, vol. 45, p. 491–497. https://doi.org/10.1016/j.jmapro.2019.07.034
  • El-Danaf, E. A., El-Rayes, M. M., Soliman, M. S. 2011. “Low Temperature Enhanced Ductility of Friction Stir Processed 5083 Aluminum Alloy,” Bulletin of Materials Science, vol. 34, no. 7, p.1447–1453. https://doi.org/10.1007/s12034-011-0341-8
  • Kurt, A., Uygur, I. Cete, E. 2011. “Surface Modification of Aluminium by Friction Stir Processing,” Journal of Materials Processing Technology, vol. 211, p. 313–317. https://doi.org/10.1016/j.jmatprotec.2010.09.020
  • Ma, Z.Y. 2008. “Friction Stir Processing Technology: A Review,” Metallurgical and Materials Transactions A, vol. 39, p. 642–658. https://doi.org/10.1007/s11661-007-9459-0
  • Xue, P., Xiao, B. L., Wang, W. G., Zhang, Q., Wang, D., Wang, Q. Z., Ma, Z. Y. 2013. “Achieving Ultrafine Dual-Phase Structure with Superior Mechanical Property in Friction Stir Processed Plain Low Carbon Steel,” Materials Science & Engineering A, vol. 575, p. 30–34. https://doi.org/10.1016/j.msea.2013.03.033
  • Ghasemi-Kahrizsangi, A., Kashani-Bozorg, S. F. 2012. “Microstructure and Mechanical Properties of Steel/TiC Nano-Composite Surface Layer Produced by Friction Stir Processing,” Surface & Coatings Technology, vol. 209, p. 15–22. https://doi.org/10.1016/j.surfcoat.2012.08.005
  • Deore, H. A., Bhardwaj, A., Rao, A. G., Mishra, J., Hiwarkar, V. D. 2020. “Consequence of Reinforced SiC Particles and Post Process Artificial Ageing on Microstructure and Mechanical Properties of Friction Stir Processed AA7075,” Defence Technology, vol. 16, no. 5, p. 1039-1050. https://doi.org/10.1016/j.dt.2019.12.001
  • Sharma, V., Prakash, U., Kumar, B. V. M. 2015. “Surface Composites by Friction Stir Processing: A review,” Journal of Materials Processing Technology, vol. 224, p. 117–134. https://doi.org/10.1016/j.jmatprotec.2015.04.019
  • Sunil, B. R., Reddy, G. P. K., Patle, H., Dumpala, R. 2016. “Magnesium Based Surface Metal Matrix Composites by Friction Stir Processing,” Journal of Magnesium and Alloys, vol. 4, no. 1, p. 52-61. https://doi.org/10.1016/j.jma.2016.02.001
  • Zykova, A. P., Tarasov, S. Y., Chumaevskiy, A. V., Kolubaev, E. A. 2020. “A Review of Friction Stir Processing of Structural Metallic Materials: Process, Properties, and Methods,” Metals, vol. 10, no. 6. https://doi.org/10.3390/met10060772
  • Kumar, H., Prasad, R., Kumar, P., Tewari, S.P., Singh, J. K. 2020. “Mechanical and Tribological Characterization of Industrial Wastes Reinforced Aluminum Alloy Composites Fabricated via Friction Stir Processing,” Journal of Alloys and Compounds, vol. 831. https://doi.org/10.1016/j.jallcom.2020.154832
  • Dolatkhah, A., Golbabaei, P., Givi, M. K. B., Molaiekiya, F. 2012. “Investigating Effects of Process Parameters on Microstructural and Mechanical Properties of Al5052/SiC Metal Matrix Composite Fabricated via Friction Stir Processing,” Materials and Design, vol. 37, p. 458–464. https://doi.org/10.1016/j.matdes.2011.09.035
  • Dhayalan, R., Kalaiselvan, K., Sathiskumar, R. 2014. “Characterization of AA6063/SiC-Gr Surface Composites Produced by FSP Technique,” Procedia Engineering, vol. 97, p. 625 – 631. https://doi.org/10.1016/j.proeng.2014.12.291
  • Mirshekari, B., Zarei-Hanzaki, A., Barabi, A., Abedi, H. R., Lee, S. J., Fujii, H. 2021. “An Anomalous Effect of Grain Refinement on Yield Stress in Friction Stir Processed Lightweight Steel,” Materials Science and Engineering: A, vol. 799. https://doi.org/10.1016/j.msea.2020.140057
  • Su, J.-Q., Nelson, T. W., Mishra, R., Mahoney, M. 2003. “Microstructural Investigation of Friction Stir Welded 7050-T651 Aluminium,” Acta Materialia, vol. 51, no. 3, p. 713-729. https://doi.org/10.1016/S1359-6454(02)00449-4
  • Huang, K., Logé, R.E. 2016. “A Review of Dynamic Recrystallization Phenomena in Metallic Materials,” Materials and Design, vol. 111, p. 548–574. https://doi.org/10.1016/j.matdes.2016.09.012
  • Su, J.-Q., Nelson, T. W., Sterling, C. J. 2003. “A New Route to Bulk Nanocrystalline Materials” Journal of Materials Research, vol. 18, p.1757–1760. https://doi.org/10.1557/JMR.2003.0243
  • Yadav, D., Bauri, R. 2012. “Effect of Friction Stir Processing on Microstructure and Mechanical Properties of Aluminium,” Materials Science and Engineering A, vol. 539, p. 85–92. https://doi.org/10.1016/j.msea.2012.01.055
  • Wu, Q., Li, M., Guo, Y., Shan, J., Wang, H., Chang, Y. 2020. “Microstructural Evolution and Mechanical Properties of Friction Stir Welded 12Cr-ODS Steel,” Nuclear Materials and Energy, vol. 25. https://doi.org/10.1016/j.nme.2020.100804
  • Han, W., Liu, P., Yi, X., Zhan, Q., Wan, F., Yabuuchi, K., Serizawa, H., Kimura, A. 2018. “Impact of Friction Stir Welding on Recrystallization of Oxide Dispersion Strengthened Ferritic Steel,” Journal of Materials Science & Technology, vol. 34, p. 209–213. https://doi.org/10.1016/j.jmst.2017.11.032
  • Gandra, J., Miranda, R. M., Vilaça, P. 2011. “Effect of Overlapping Direction in Multipass Friction Stir Processing,” Materials Science and Engineering A, vol. 528, p. 5592–5599. https://doi.org/10.1016/j.msea.2011.03.105
  • Pradeep, S., Pancholi, V. 2013. “Effect of Microstructural in Homogeneity on Superplastic Behaviour of Multipass Friction Stir Processed Aluminium Alloy,” Materials Science & Engineering A, vol. 561, p. 78–87. https://doi.org/10.1016/j.msea.2012.10.050
  • Harwani, D., Badheka, V., Patel, V., Li, W., Andersson, J. 2021. “Developing superplasticity in magnesium alloys with the help of friction stir processing and its variants – A review,” Journal of Materials Research and Technology, vol. 12, p. 2055-2075. https://doi.org/10.1016/j.jmrt.2021.03.115
  • Sabbaghian, M., Mahmudi, R. 2021. “Superplasticity of The Fine-Grained Friction Stir Processed Mg–3Gd–1Zn Sheets,” Materials Characterization, vol. 172. https://doi.org/10.1016/j.matchar.2021.110902
  • Bauri, R., Yadav, D., Suhas, G. 2011. “Effect of Friction Stir Processing (FSP) on Microstructure and Properties of Al–TiC in Situ Composite,” Materials Science and Engineering A, vol. 528, p. 4732–4739. https://doi.org/10.1016/j.msea.2011.02.085
  • Koju, R. K., Darling, K. A., Kecskes, L. J., Mishin, Y. 2016. “Zener Pinning of Grain Boundaries and Structural Stability of Immiscible Alloys,” The Journal of The Minerals, Metals & Materials Society (TMS), vol. 68, no. 6, p. 1596–1604. https://doi.org/10.1007/s11837-016-1899-9
  • Terahsima, S., Bhadeshia, H. K. D. H. 2005. “Grain Growth: Zener Pinning of Grain Boundaries by Oxide Particles,” https://www.phase-trans.msm.cam.ac.uk/2005/Zener/, 23/04/2021.
  • Wu, Y. 2015. “Effect of Second Phase Particles on Grain Growth for Nanocrystalline AZ31 Mg Alloy by Phase Field Methods,” International Conference on Energy, Materials and Manufacturing Engineering (EMME 2015), 15-16 October 2015, Kuala Lumpur/Malaysia. https://doi.org/10.1051/matecconf/20152502006
  • Ali, Y., Qiu, D., Jiang, B., Pan, F., Zhang, M.-X. 2015. “Current Research Progress in Grain Refinement of Cast Magnesium Alloys: A Review Article,” Journal of Alloys and Compounds, vol. 619, p. 639–651. https://doi.org/10.1016/j.jallcom.2014.09.061
  • Svyetlichnyy, D. S. 2013. “Modeling of Grain Refinement by Cellular Automata,” Computational Materials Science, vol. 77, p. 408–416. https://doi.org/10.1016/j.commatsci.2013.04.065
  • Chang, K., Feng, W., Chen, L.-Q. 2009. “Effect of Second-Phase Particle Morphology on Grain Growth Kinetics,” Acta Materialia, vol. 57, p. 5229–5236. https://doi.org/10.1016/j.actamat.2009.07.025
  • Bhadeshia, H. K. D. H. 2015. Bainite in Steels, ISBN: 978-1-909662-74-2, W. S. Maney & Son Ltd, UK.
  • Guo, L., Roelofs, H., Lembke, M. I., Bhadeshia, H. K. D. H. 2016. “Effect of Manganese Sulphide Particle Shape on The Pinning of Grain Boundary,” Materials Science and Technology, vol. 33, no. 8, p. 1013-1018. https://doi.org/10.1080/02670836.2016.1258157
  • Rios, P. R., Fonseca, G. S. 2010. “Grain Boundary Pinning by Particles,” Materials Science Forum, vol. 638-642, p. 3907-3912. https://doi.org/10.4028/www.scientific.net/MSF.638-642.3907
  • Du, L., Yang, S., Zhang, P., Du, H. 2018. “Pinning Effect of Different Shape Second-Phase Particles on Grain Growth in Polycrystalline: Numerical and Analytical Investigations,” Composite Interfaces, vol. 25, no. 4, p. 357–368. https://doi.org/10.1080/09276440.2018.1439625
  • Liu, Q., Cui, X., Zhang, C., Huang, S. 2016. “Experimental Investigation of Suspended Particles Transport Through Porous Media: Particle and Grain Size Effect,” Environmental Technology, vol. 37, no. 7, p. 854–864. DOI: 10.1080/09593330.2015.1088578
  • Novikov, V. Y. 2016. “Grain Growth Jointly Affected by Immobile and Mobile Particles,” Materials Letters, vol. 178, p. 276–279. https://doi.org/10.1016/j.matlet.2016.05.017
  • Quested, T. E., Greer, A. L. 2004. “The Effect of The Size Distribution of Inoculant Particles on As-Cast Grain Size in Aluminium Alloys,” Acta Materialia, vol. 52, p. 3859–3868. https://doi.org/10.1016/j.actamat.2004.04.035
  • Fu, H. M., Zhang, M.-X., Qiu, D., Kelly, P. M., Taylor, J. A. 2009. “Grain Refinement by AlN Particles in Mg–Al Based Alloys,” Journal of Alloys and Compounds, vol. 478, p. 809–812. https://doi.org/10.1016/j.jallcom.2008.12.029
  • Zhang, Z., Chen, D. L. 2006. “Consideration of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites: A Model for Predicting Their Yield Strength,” Scripta Materialia, vol. 54, p. 1321–1326. https://doi.org/10.1016/j.scriptamat.2005.12.017
  • Matsukawa, Y. 2019. “Crystallography of Precipitates in Metals and Alloys: (2) Impact of Crystallography on Precipitation Hardening” - Crystallography, ed. Akitsu, T., ISBN: 978-1-83881-879-1, IntechOpen. DOI: 10.5772/intechopen.78499
  • Humphreys, F. J., Hatherly, M. 2004. Recrystallization and Related Annealing Phenomena, ISBN: 0 08 044164 5, Elsevier Ltd.
Toplam 75 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Gökçe Mehmet Gençer 0000-0003-1084-7240

Yayımlanma Tarihi 8 Aralık 2021
Gönderilme Tarihi 30 Nisan 2021
Kabul Tarihi 1 Temmuz 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 62 Sayı: 705

Kaynak Göster

APA Gençer, G. M. (2021). Sürtünme Karıştırma Prosesi ile Elde Edilen Yüzey Metal Matrisli Kompozitlerin Mekanik Özelliklerini Geliştiren Çoklu Mekanizmalar. Mühendis Ve Makina, 62(705), 681-701. https://doi.org/10.46399/muhendismakina.930170

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520