Araştırma Makalesi
BibTex RIS Kaynak Göster

Al-4.5%Cu/TiB2/3p MMK'nın Çok Katmanlı Kaplamalı Kesici Takımlarla İşlenebilirliğinin Karşılaştırılması: Doğrulanmış FEM ve İstatistiksel Yaklaşımlar

Yıl 2024, Cilt: 65 Sayı: 714, 49 - 77, 29.04.2024
https://doi.org/10.46399/muhendismakina.1329342

Öz

Alüminyum bazlı Metal Matris Kompozitler (MMK), yüksek mukavemet, sertlik ve düşük ağırlık gibi daha iyi mekanik ve fiziksel özelliklerinden dolayı metal kesme uygulamalarında yaygın olarak kullanılmaktadır. Ayrıca, modern kaplama uygulamaları, özellikle çok katmanlı kaplamalı takımlar, kesici takım performanslarını iyileştirerek MMK'ları işleme konusundaki zorlukları ortadan kaldırmada üstün bir potansiyele sahiptir. Bu nedenle, çalışmada, doğrulanmış FEM ve istatistiksel yaklaşımla çok katmanlı kaplamalı semente karbür bir kesici takımın Al-4.5%Cu/TiB2/3p MMK’nın tornalama performansını ortaya çıkarmak amaçlanmıştır. Deneysel olarak kalibre edilmiş ve seçilmiş bir similasyon için farklı kalınlık ve dizilimlerde (iki adet yumuşak ve üç adet sert kaplama malzemesi için) istatiksel olarak similasyon tasarımı kurulmuştur. Gri İlişki Analizi (GRA) yardımı ile MMK malzemenin tornalanmasında çok katmanlı kaplamalı uç performansını kesme kuvvetlerinin bileşkesi (FR) ve maksimum uç sıcaklığı (Tmax) baz alınarak araştırılmıştır. Optimum çok katmanlı kaplama, kaplama malzemeleri faktörleri için 4-2-4-3-2 seviyelerinde bulunmuş olup bu koşul sırasıyla: tungsten disülfid (WS2), molibden disülfür (MoS2), titanyum nitrür (TiN), alüminyum oksit (Al2O3), ve titanyum karbo-nitrürdür (TiCN). Her bir faktörün katkı oranları, Genel Doğrusal Model (GLM) ile incelenmiş, WS2 ve Al2O3 kaplama malzemeleri için sırasıyla %47,13 ve %24,43 oranında anlamlı olduğu tespit edilmiştir. Gelecekte çok katmanlı kaplamalar, MMK'ların işlenmesindeki zorlukları aşmak için değerli bir çözüm olabilirler.

Destekleyen Kurum

Yok

Proje Numarası

Yok

Teşekkür

YOK

Kaynakça

  • Akgün, M., Özlü, B., & Kara, F. (2023). Effect of PVD-TiN and CVD-Al2O3 Coatings on Cutting Force, Surface Roughness, Cutting Power, and Temperature in Hard Turning of AISI H13 Steel. Journal of Materials Engineering and Performance, 32(3), 1390-1401. doi: https://link.springer.com/article/10.1007/s11665-022-07190-9
  • Baris, O., & Levent, U. (2021). Optimization of cutting forces on turning of Ti-6Al-4V Alloy by 3D FEM simulation analysis. Journal of Engineering Research and Applied Science, 10(2). Retrieved from https://www.journaleras.com/index.php/jeras/article/view/256
  • Bathula, D. B., Buddi, T., Shagwira, H., Mwema, F. M., & Rajesh, K. V. D. (2022). Analysis on behavior of Ti-6al-4v & Ti-5553 by performing turning operation using deform-3d. Advances in Materials and Processing Technologies, 1-18. doi: https://doi.org/10.1080/2374068X.2022.2037064
  • Bhushan, R. K. (2021). Multi-Response Optimization of Parameters during Turning of AA7075/SiC Composite for Minimum Surface Roughness and Maximum Tool Life. Silicon, 13(9), 2845-2856. doi: https://link.springer.com/article/10.1007/s12633-020-00640-w
  • Bobrovskij, I., Khaimovich, A., Bobrovskij, N., Travieso-Rodriguez, J. A., & Grechnikov, F. (2022). Derivation of the Coefficients in the Coulomb Constant Shear Friction Law from Experimental Data on the Extrusion of a Material into V-Shaped Channels with Different Convergence Angles: New Method and Algorithm. Metals, 12(2). doi: https://doi.org/10.3390/met12020239
  • Channabasavaraja, H. K., Nagaraj, P. M., & Srinivasan, D. (2016). Determination of Optimum Cutting Parameters for Surface Roughness in Turning AL-B4C Composites. International Conference on Advances in Materials and Manufacturing Applications (Iconamma-2016), 149. doi: https://iopscience.iop.org/article/10.1088/1757-899X/149/1/012029
  • Chen, J. P., Gu, L., & He, G. J. (2020). A review on conventional and nonconventional machining of SiC particle-reinforced aluminium matrix composites. Advances in Manufacturing, 8(3), 279-315. doi: https://link.springer.com/article/10.1007/s40436-020-00313-2
  • Chen, X., Xie, L., Xue, X., & Wang, X. (2017). Research on 3D milling simulation of SiCp/Al composite based on a phenomenological model. The International Journal of Advanced Manufacturing Technology, 92(5), 2715-2723. doi: https://doi.org/10.1007/s00170-017-0315-0
  • Choi, S. W. (2020). Influences of Precipitation of Secondary Phase by Heat Treatment on Thermal Properties of Al-4.5%Cu Alloy. KOREAN JOURNAL OF MATERIALS RESEARCH,30(8), 435-440. doi: https://doi.org/10.3740/MRSK.2020.30.8.435
  • Corporation, S. F. T. (2014). Deform, Version 11.0 (PC);.
  • Das, D., & Chakraborty, V. (2018). Dry condition machining performance of T6 treated aluminium matrix composites. Materials Today-Proceedings, 5(9), 20145-20151. doi: https://doi.org/10.1016/j.matpr.2018.06.383
  • Denkena, B., Tonshoff, H. K., & Boehnke, D. (2005). An assessment of the machinability of iron-rich iron-aluminium alloys. Steel Research International, 76(2-3), 261-264. doi: https://doi.org/10.1002/srin.200506007
  • Du, Q., Eskin, D., & Katgerman, L. (2006). Modelling macrosegregation during DC casting of a binary aluminium alloy. Modeling of Casting, Welding and Advanced Solidification Processes - XI, 1, 235-242. doi: https://link.springer.com/article/10.1007/s11661-006-9042-0
  • Ghandehariun, A., Kishawy, H. A., Umer, U., & Hussein, H. M. (2016). Analysis of tool-particle interactions during cutting process of metal matrix composites. International Journal of Advanced Manufacturing Technology, 82(1-4), 143-152. doi: https://link.springer.com/article/10.1007/s00170-015-7346-1
  • Gürbüz, M., Şenel, M. C., & Koç, E. (2015). Grafen takviyeli alüminyum matrisli yeni nesil kompozitler. [New generation composites with graphene reinforced aluminum matrix]. Mühendis ve Makina, 56(669), 36-47. Retrieved from https://dergipark.org.tr/en/pub/muhendismakina/issue/54339/736188
  • Harris, S. G., Vlasveld, A. C., Doyle, E. D., & Dolder, P. J. (2000). Dry machining - commercial viability through filtered arc vapour deposited coatings. Surface & Coatings Technology, 133, 383-388. doi: https://doi.org/10.1016/S0257-8972(00)00895-1
  • Hiremath, V., Auradi, V., & Dundur, S. T. (2016). Experimental Investigations on Effect of Ceramic B4C Particulate Addition on Cutting Forces and Surface Roughness during Turning of 6061Al Alloy. Transactions of the Indian Ceramic Society, 75(2), 126-132. doi: https://doi.org/10.1080/0371750X.2016.1164626
  • İynen, O., Ekşi, A. K., Akyıldız, H. K., & Özdemir, M. (2021). Real 3D turning simulation of materials with cylindrical shapes using ABAQUS/Explicit. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(8), 374. doi: https://doi.org/10.1007/s40430-021-03075-5
  • Jadhav, M. R., & Dabade, U. A. (2016). Modelling and Simulation of Al/SiCp MMCs During Hot Machining. Paper presented at the ASME 2016 International Mechanical Engineering Congress and Exposition. doi: https://doi.org/10.1115/IMECE2016-66071
  • Joel, J., & Xavior, M. A. (2018). Aluminium Alloy Composites and its Machinability studies; A Review. Materials Today-Proceedings, 5(5), 13556-13562. doi: https://doi.org/10.1016/j.matpr.2018.02.351
  • Josyula, S. K., & Narala, S. K. R. (2018). Study of TiC particle distribution in Al-MMCs using finite element modeling. International Journal of Mechanical Sciences, 141, 341-358. doi: https://doi.org/10.1016/j.ijmecsci.2018.04.004
  • Kara, F., Aslantas, K., & Çiçek, A. (2016). Prediction of cutting temperature in orthogonal machining of AISI 316L using artificial neural network. Applied Soft Computing, 38, 64-74. doi: https://doi.org/10.1016/j.asoc.2015.09.034
  • Kasemsiri, P., Dulsang, N., Pongsa, U., Hiziroglu, S., & Chindaprasirt, P. (2017). Optimization of Biodegradable Foam Composites from Cassava Starch, Oil Palm Fiber, Chitosan and Palm Oil Using Taguchi Method and Grey Relational Analysis. Journal of Polymers and the Environment, 25(2), 378-390. doi: https://link.springer.com/article/10.1007/s10924-016-0818-z
  • Kene, A. P., Orra, K., & Choudhury, S. K. (2016). Experimental Investigation of Tool Wear Behavior of Multi-Layered Coated Carbide Inserts Using Various Sensors in Hard Turning Process. Ifac Papersonline, 49(12), 180-184. doi: https://doi.org/10.1016/j.ifacol.2016.07.592
  • Kumar, C. S., & Patel, S. K. (2018a). Effect of chip sliding velocity and temperature on the wear behaviour of PVD AlCrN and AlTiN coated mixed alumina cutting tools during turning of hardened steel. Surface & Coatings Technology, 334, 509-525. doi: https://doi.org/10.1016/j.surfcoat.2017.12.013
  • Kumar, C. S., & Patel, S. K. (2018b). Investigations on the effect of thickness and structure of AlCr and AlTi based nitride coatings during hard machining process. Journal of Manufacturing Processes, 31, 336-347. doi: https://doi.org/10.1016/j.jmapro.2017.11.031
  • Kumar, C. S., Zeman, P., & Polcar, T. (2020). A 2D finite element approach for predicting the machining performance of nanolayered TiAlCrN coating on WC-Co cutting tool during dry turning of AISI 1045 steel. Ceramics International, 46(16, Part A), 25073-25088. doi: https://doi.org/10.1016/j.ceramint.2020.06.294
  • Kumar, R., Modi, A., Panda, A., Sahoo, A. K., Deep, A., Behra, P. K., & Tiwari, R. (2019). Hard Turning on JIS S45C Structural Steel: An Experimental, Modelling and Optimisation Approach. International Journal of Automotive and Mechanical Engineering, 16(4), 7315-7340. doi: https://doi.org/10.15282/ijame.16.4.2019.10.0544
  • Kumar, U., & Senthil, P. (2020). Performance of cryogenic treated multi-layer coated WC insert in terms of machinability on titanium alloys Ti-6Al-4V in dry turning. Materials Today-Proceedings, 27, 2329-2333. doi: https://doi.org/10.1016/j.matpr.2019.09.122
  • Kyratsis, P., Tzotzis, A., Markopoulos, A., & Tapoglou, N. (2021). CAD-Based 3D-FE Modelling of AISI-D3 Turning with Ceramic Tooling. Machines, 9(1). doi: https://doi.org/10.3390/machines9010004
  • Lian, Y. S., Mu, C. L., Liu, M., Chen, H. F., & Yao, B. (2019). Three-dimensional numerical simulation of soft/hard composite-coated textured tools in dry turning of AISI 1045 steel. Advances in Manufacturing, 7(2), 133-141. doi: https://link.springer.com/article/10.1007/s40436-019-00249-2
  • Marigoudar, R. N., & Sadashivappa, K. (2014). Comparison of tool life and surface characteristics of uncoated, coated carbide and ceramic tools during machining of SiC reinforced ZA43 alloy MMC. Materials Science and Technology, 30(8), 876-887. doi: https://doi.org/10.1179/1743284713Y.0000000484
  • Mozammil, S., Karloopia, J., Verma, R., & Jha, P. K. (2019). Effect of varying TiB2 reinforcement and its ageing behaviour on tensile and hardness properties of in-situ Al-4.5%Cu-xTiB2 composite. Journal of Alloys and Compounds, 793, 454-466. doi: https://doi.org/10.1016/j.jallcom.2019.04.137
  • Mozammil, S., Koshta, E., & Jha, P. K. (2021). Abrasive Wear Investigation and Parametric Process Optimization of in situ Al–4.5%Cu–xTiB2 Composites. Transactions of the Indian Institute of Metals, 74(3), 629-648. doi: https://doi.org/10.1007/s12666-020-02180-8
  • Mozammil, S., Koshta, E., Jha, P. K., & Swain, P. K. (2022). Investigation on Experimental Machinability & 3D Finite Element Turning Simulations of Al-4.5%Cu/TiB2/3p Composite. Transactions of the Indian Institute of Metals. doi: https://doi.org/10.1007/s12666-022-02735-x
  • Nicholls, C. J., Boswell, B., Davies, I. J., & Islam, M. N. (2017). Review of machining metal matrix composites. International Journal of Advanced Manufacturing Technology, 90(9-12), 2429-2441. doi: https://link.springer.com/article/10.1007/s00170-016-9558-4
  • Ozturk, E. (2022). FEM and statistical-based assessment of AISI-4140 dry hard turning using micro-textured insert. Journal of Manufacturing Processes, 81, 290-300. doi: https://doi.org/10.1016/j.jmapro.2022.06.060
  • Prakash, M., & Iqbal, U. M. (2018). Parametric optimization in turning of AA2014/Al2O3 nano composite for machinability assessment using sensors. 2nd International Conference on Advances in Mechanical Engineering (Icame 2018), 402. doi: https://iopscience.iop.org/article/10.1088/1757-899X/402/1/012013
  • Pramanik, A., Zhang, L. C., & Arsecularatne, J. A. (2007). An FEM investigation into the behavior of metal matrix composites: Tool-particle interaction during orthogonal cutting. International Journal of Machine Tools & Manufacture, 47(10), 1497-1506. doi: https://doi.org/10.1016/j.ijmachtools.2006.12.004
  • Radhika, N., Subramaniam, R., & Senapathi, S. B. (2013). Machining parameter optimisation of an aluminium hybrid metal matrix composite by statistical modelling. Industrial Lubrication and Tribology, 65(6), 425-435. doi: https://www.emerald.com/insight/content/doi/10.1108/ILT-01-2011-0008/full/html
  • Ranjan, P., & Hiremath, S. S. (2022). Finite element simulation and experimental validation of machining martensitic stainless steel using multi-layered coated carbide tools for industry-relevant outcomes. Simulation Modelling Practice and Theory, 114. doi: https://doi.org/10.1016/j.simpat.2021.102411
  • Rathodi, B. S., & Pandey, B. (2017). Effect of Turning Parameters on Aluminium Metal Matrix Composites -A Review. International Conference on Materials, Alloys and Experimental Mechanics (Icmaem-2017), 225. doi: https://iopscience.iop.org/article/10.1088/1757-899X/225/1/012276
  • Roy, P., Sarangi, S. K., Ghosh, A., & Chattopadhyay, A. K. (2009). Machinability study of pure aluminium and Al-12% Si alloys against uncoated and coated carbide inserts. International Journal of Refractory Metals & Hard Materials, 27(3), 535-544. doi: https://doi.org/10.1016/j.ijrmhm.2008.04.008
  • Roy, S., & Ghosh, A. (2014). High-speed turning of AISI 4140 steel by multi-layered TiN top-coated insert with minimum quantity lubrication technology and assessment of near tool-tip temperature using infrared thermography. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 228(9), 1058-1067. doi: https://doi.org/10.1177/0954405413514570
  • Saravanan, K. K., & Mahendran, S. (2020). Aluminium 6082-boron carbide composite materials preparation and investigate mechanical-electrical properties with CNC turning. Materials Today-Proceedings, 21, 93-97. doi: https://doi.org/10.1016/j.matpr.2019.05.368
  • Schulze, V., Zanger, F., Michna, J., Ambrosy, F., & Pabst, R. (2011). Investigation of the machining behavior of metal matrix composites (MMC) using chip formation simulation. Modelling of Machining Operations, 223, 20-29. doi: https://doi.org/10.4028/www.scientific.net/AMR.223.20
  • Senel, M. C., & Gürbüz, M. (2021). Investigation on Mechanical Properties and Microstructure of B4C/Graphene Binary Particles Reinforced Aluminum Hybrid Composites. Metals and Materials International, 27(7), 2438-2449. doi: https://link.springer.com/article/10.1007/s12540-019-00592-w
  • Swain, P. K., Das Mohapatra, K., Das, R., Sahoo, A. K., & Panda, A. (2020). Experimental investigation into characterization and machining of Al plus SiCp nano-composites using coated carbide tool. Mechanics & Industry, 21(3). doi: https://doi.org/10.1051/meca/2020015
  • Sylajakumari, P. A., Ramakrishnasamy, R., & Palaniappan, G. (2018). Taguchi Grey Relational Analysis for Multi-Response Optimization of Wear in Co-Continuous Composite. Materials, 11(9). doi: https://doi.org/10.3390/ma11091743
  • Tan, X. C. (2002). Comparisons of friction models in bulk metal forming. Tribology International, 35(6), 385-393. doi: https://doi.org/10.1016/S0301-679X(02)00020-8
  • Tooptong, S., Nguyen, D., Park, K. H., & Kwon, P. (2021). Crater wear on multi-layered coated carbide inserts when turning three distinct cast irons. Wear, 484. doi: https://doi.org/10.1016/j.wear.2021.203982
  • Tzotzis, A., Garcia-Hernandez, C., Huertas-Talon, J. L., & Kyratsis, P. (2020). Influence of the Nose Radius on the Machining Forces Induced during AISI-4140 Hard Turning: A CAD-Based and 3D FEM Approach. Micromachines, 11(9). doi: https://doi.org/10.3390/mi11090798
  • Ugur, L. (2022). A Numerical and Statistical Approach of Drilling Performance on Machining of Ti-6Al-4V Alloy. Surface Review and Letters, 29(12). doi: https://doi.org/10.1142/S0218625X22501682
  • Umer, U., Abidi, M. H., Abu Qudeiri, J., Alkhalefah, H., & Kishawy, H. (2020). Tool Performance Optimization While Machining Aluminium-Based Metal Matrix Composite. Metals, 10(6). doi: https://doi.org/10.3390/met10060835
  • Umer, U., Ashfaq, M., Qudeiri, J. A., Hussein, H. M. A., Danish, S. N., & Al-Ahmari, A. R. (2015). Modeling machining of particle-reinforced aluminum-based metal matrix composites using cohesive zone elements. International Journal of Advanced Manufacturing Technology, 78(5-8), 1171-1179. doi: https://link.springer.com/article/10.1007/s00170-014-6715-5
  • Umer, U., Kishawy, H., Ghandehariun, A., Xie, L. J., & Al-Ahmari, A. (2017). On modeling tool performance while machining aluminum-based metal matrix composites. International Journal of Advanced Manufacturing Technology, 92(9-12), 3519-3530. doi: https://link.springer.com/article/10.1007/s00170-017-0368-0
  • Vasiliev, O. O. (2021). Thermodynamic Properties of Tungsten Disulfide from First Principles in Quasi-Harmonic Approximation. Powder Metallurgy and Metal Ceramics, 59(9-10), 576-584. doi: https://link.springer.com/article/10.1007/s11106-021-00185-6
  • Volovik, L. S., Fesenko, V. V., Bolgar, A. S., Drozdova, S. V., Klochkov, L. A., & Primachenko, V. F. (1978). Enthalpy and heat capacity of molybdenum disulfide. Soviet Powder Metallurgy and Metal Ceramics, 17(9), 697-702. doi: https://doi.org/10.1007/BF00796559
  • Xiong, Y. F., Wang, W. H., Jiang, R. S., Lin, K. Y., & Shao, M. W. (2018). Mechanisms and FEM Simulation of Chip Formation in Orthogonal Cutting In-Situ TiB2/7050Al MMC. Materials, 11(4). doi: https://doi.org/10.3390/ma11040606

Comparison of Machinability of Al-4.5%Cu/TiB2/3p MMC for Multi-Layer Coated Insert: Validated FEM and Statistical Approaches

Yıl 2024, Cilt: 65 Sayı: 714, 49 - 77, 29.04.2024
https://doi.org/10.46399/muhendismakina.1329342

Öz

Aluminum-based Metal Matrix Composites (MMC) are commonly used in metal-cutting applications due to their better mechanical and physical properties, such as high strength, hardness, and low weight. Also, modern coating applications, especially multi-layer coated tools, have the cutting-edge potential for relieving the difficulties of machining MMCs to improve insert performances. Therefore, this study aimed to reveal the turning Al-4.5%Cu/TiB2/3p performance of the multi-layer coated cemented carbide insert with verified FEM and statistical approaches. Different coating materials, two and three of which were soft and hard, were appointed at different thicknesses and sequences in the design of experimentally calibrated simulations. The Grey Relation Analysis (GRA) was set to investigate the multi-layer coated insert performance for turning the MMC concerning the resultant cutting forces (FR) and maximum insert temperature (Tmax). The optimal multi-layered coating was found at levels 4-2-4-3-2 for the factors of coating materials: tungsten disulfide (WS2), molybdenum disulfide (MoS2), titanium nitride (TiN), aluminum oxide (Al2O3), and titanium carbo-nitride (TiCN), respectively. The contribution rates of each factor were significant concerning General Linear Model (GLM) at 47.13% and 24.43% for WS2 and Al2O3 coatings materials, respectively. In the future, multi-layered coatings can be a valuable solution for the difficulties of machining the MMCs.

Proje Numarası

Yok

Kaynakça

  • Akgün, M., Özlü, B., & Kara, F. (2023). Effect of PVD-TiN and CVD-Al2O3 Coatings on Cutting Force, Surface Roughness, Cutting Power, and Temperature in Hard Turning of AISI H13 Steel. Journal of Materials Engineering and Performance, 32(3), 1390-1401. doi: https://link.springer.com/article/10.1007/s11665-022-07190-9
  • Baris, O., & Levent, U. (2021). Optimization of cutting forces on turning of Ti-6Al-4V Alloy by 3D FEM simulation analysis. Journal of Engineering Research and Applied Science, 10(2). Retrieved from https://www.journaleras.com/index.php/jeras/article/view/256
  • Bathula, D. B., Buddi, T., Shagwira, H., Mwema, F. M., & Rajesh, K. V. D. (2022). Analysis on behavior of Ti-6al-4v & Ti-5553 by performing turning operation using deform-3d. Advances in Materials and Processing Technologies, 1-18. doi: https://doi.org/10.1080/2374068X.2022.2037064
  • Bhushan, R. K. (2021). Multi-Response Optimization of Parameters during Turning of AA7075/SiC Composite for Minimum Surface Roughness and Maximum Tool Life. Silicon, 13(9), 2845-2856. doi: https://link.springer.com/article/10.1007/s12633-020-00640-w
  • Bobrovskij, I., Khaimovich, A., Bobrovskij, N., Travieso-Rodriguez, J. A., & Grechnikov, F. (2022). Derivation of the Coefficients in the Coulomb Constant Shear Friction Law from Experimental Data on the Extrusion of a Material into V-Shaped Channels with Different Convergence Angles: New Method and Algorithm. Metals, 12(2). doi: https://doi.org/10.3390/met12020239
  • Channabasavaraja, H. K., Nagaraj, P. M., & Srinivasan, D. (2016). Determination of Optimum Cutting Parameters for Surface Roughness in Turning AL-B4C Composites. International Conference on Advances in Materials and Manufacturing Applications (Iconamma-2016), 149. doi: https://iopscience.iop.org/article/10.1088/1757-899X/149/1/012029
  • Chen, J. P., Gu, L., & He, G. J. (2020). A review on conventional and nonconventional machining of SiC particle-reinforced aluminium matrix composites. Advances in Manufacturing, 8(3), 279-315. doi: https://link.springer.com/article/10.1007/s40436-020-00313-2
  • Chen, X., Xie, L., Xue, X., & Wang, X. (2017). Research on 3D milling simulation of SiCp/Al composite based on a phenomenological model. The International Journal of Advanced Manufacturing Technology, 92(5), 2715-2723. doi: https://doi.org/10.1007/s00170-017-0315-0
  • Choi, S. W. (2020). Influences of Precipitation of Secondary Phase by Heat Treatment on Thermal Properties of Al-4.5%Cu Alloy. KOREAN JOURNAL OF MATERIALS RESEARCH,30(8), 435-440. doi: https://doi.org/10.3740/MRSK.2020.30.8.435
  • Corporation, S. F. T. (2014). Deform, Version 11.0 (PC);.
  • Das, D., & Chakraborty, V. (2018). Dry condition machining performance of T6 treated aluminium matrix composites. Materials Today-Proceedings, 5(9), 20145-20151. doi: https://doi.org/10.1016/j.matpr.2018.06.383
  • Denkena, B., Tonshoff, H. K., & Boehnke, D. (2005). An assessment of the machinability of iron-rich iron-aluminium alloys. Steel Research International, 76(2-3), 261-264. doi: https://doi.org/10.1002/srin.200506007
  • Du, Q., Eskin, D., & Katgerman, L. (2006). Modelling macrosegregation during DC casting of a binary aluminium alloy. Modeling of Casting, Welding and Advanced Solidification Processes - XI, 1, 235-242. doi: https://link.springer.com/article/10.1007/s11661-006-9042-0
  • Ghandehariun, A., Kishawy, H. A., Umer, U., & Hussein, H. M. (2016). Analysis of tool-particle interactions during cutting process of metal matrix composites. International Journal of Advanced Manufacturing Technology, 82(1-4), 143-152. doi: https://link.springer.com/article/10.1007/s00170-015-7346-1
  • Gürbüz, M., Şenel, M. C., & Koç, E. (2015). Grafen takviyeli alüminyum matrisli yeni nesil kompozitler. [New generation composites with graphene reinforced aluminum matrix]. Mühendis ve Makina, 56(669), 36-47. Retrieved from https://dergipark.org.tr/en/pub/muhendismakina/issue/54339/736188
  • Harris, S. G., Vlasveld, A. C., Doyle, E. D., & Dolder, P. J. (2000). Dry machining - commercial viability through filtered arc vapour deposited coatings. Surface & Coatings Technology, 133, 383-388. doi: https://doi.org/10.1016/S0257-8972(00)00895-1
  • Hiremath, V., Auradi, V., & Dundur, S. T. (2016). Experimental Investigations on Effect of Ceramic B4C Particulate Addition on Cutting Forces and Surface Roughness during Turning of 6061Al Alloy. Transactions of the Indian Ceramic Society, 75(2), 126-132. doi: https://doi.org/10.1080/0371750X.2016.1164626
  • İynen, O., Ekşi, A. K., Akyıldız, H. K., & Özdemir, M. (2021). Real 3D turning simulation of materials with cylindrical shapes using ABAQUS/Explicit. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(8), 374. doi: https://doi.org/10.1007/s40430-021-03075-5
  • Jadhav, M. R., & Dabade, U. A. (2016). Modelling and Simulation of Al/SiCp MMCs During Hot Machining. Paper presented at the ASME 2016 International Mechanical Engineering Congress and Exposition. doi: https://doi.org/10.1115/IMECE2016-66071
  • Joel, J., & Xavior, M. A. (2018). Aluminium Alloy Composites and its Machinability studies; A Review. Materials Today-Proceedings, 5(5), 13556-13562. doi: https://doi.org/10.1016/j.matpr.2018.02.351
  • Josyula, S. K., & Narala, S. K. R. (2018). Study of TiC particle distribution in Al-MMCs using finite element modeling. International Journal of Mechanical Sciences, 141, 341-358. doi: https://doi.org/10.1016/j.ijmecsci.2018.04.004
  • Kara, F., Aslantas, K., & Çiçek, A. (2016). Prediction of cutting temperature in orthogonal machining of AISI 316L using artificial neural network. Applied Soft Computing, 38, 64-74. doi: https://doi.org/10.1016/j.asoc.2015.09.034
  • Kasemsiri, P., Dulsang, N., Pongsa, U., Hiziroglu, S., & Chindaprasirt, P. (2017). Optimization of Biodegradable Foam Composites from Cassava Starch, Oil Palm Fiber, Chitosan and Palm Oil Using Taguchi Method and Grey Relational Analysis. Journal of Polymers and the Environment, 25(2), 378-390. doi: https://link.springer.com/article/10.1007/s10924-016-0818-z
  • Kene, A. P., Orra, K., & Choudhury, S. K. (2016). Experimental Investigation of Tool Wear Behavior of Multi-Layered Coated Carbide Inserts Using Various Sensors in Hard Turning Process. Ifac Papersonline, 49(12), 180-184. doi: https://doi.org/10.1016/j.ifacol.2016.07.592
  • Kumar, C. S., & Patel, S. K. (2018a). Effect of chip sliding velocity and temperature on the wear behaviour of PVD AlCrN and AlTiN coated mixed alumina cutting tools during turning of hardened steel. Surface & Coatings Technology, 334, 509-525. doi: https://doi.org/10.1016/j.surfcoat.2017.12.013
  • Kumar, C. S., & Patel, S. K. (2018b). Investigations on the effect of thickness and structure of AlCr and AlTi based nitride coatings during hard machining process. Journal of Manufacturing Processes, 31, 336-347. doi: https://doi.org/10.1016/j.jmapro.2017.11.031
  • Kumar, C. S., Zeman, P., & Polcar, T. (2020). A 2D finite element approach for predicting the machining performance of nanolayered TiAlCrN coating on WC-Co cutting tool during dry turning of AISI 1045 steel. Ceramics International, 46(16, Part A), 25073-25088. doi: https://doi.org/10.1016/j.ceramint.2020.06.294
  • Kumar, R., Modi, A., Panda, A., Sahoo, A. K., Deep, A., Behra, P. K., & Tiwari, R. (2019). Hard Turning on JIS S45C Structural Steel: An Experimental, Modelling and Optimisation Approach. International Journal of Automotive and Mechanical Engineering, 16(4), 7315-7340. doi: https://doi.org/10.15282/ijame.16.4.2019.10.0544
  • Kumar, U., & Senthil, P. (2020). Performance of cryogenic treated multi-layer coated WC insert in terms of machinability on titanium alloys Ti-6Al-4V in dry turning. Materials Today-Proceedings, 27, 2329-2333. doi: https://doi.org/10.1016/j.matpr.2019.09.122
  • Kyratsis, P., Tzotzis, A., Markopoulos, A., & Tapoglou, N. (2021). CAD-Based 3D-FE Modelling of AISI-D3 Turning with Ceramic Tooling. Machines, 9(1). doi: https://doi.org/10.3390/machines9010004
  • Lian, Y. S., Mu, C. L., Liu, M., Chen, H. F., & Yao, B. (2019). Three-dimensional numerical simulation of soft/hard composite-coated textured tools in dry turning of AISI 1045 steel. Advances in Manufacturing, 7(2), 133-141. doi: https://link.springer.com/article/10.1007/s40436-019-00249-2
  • Marigoudar, R. N., & Sadashivappa, K. (2014). Comparison of tool life and surface characteristics of uncoated, coated carbide and ceramic tools during machining of SiC reinforced ZA43 alloy MMC. Materials Science and Technology, 30(8), 876-887. doi: https://doi.org/10.1179/1743284713Y.0000000484
  • Mozammil, S., Karloopia, J., Verma, R., & Jha, P. K. (2019). Effect of varying TiB2 reinforcement and its ageing behaviour on tensile and hardness properties of in-situ Al-4.5%Cu-xTiB2 composite. Journal of Alloys and Compounds, 793, 454-466. doi: https://doi.org/10.1016/j.jallcom.2019.04.137
  • Mozammil, S., Koshta, E., & Jha, P. K. (2021). Abrasive Wear Investigation and Parametric Process Optimization of in situ Al–4.5%Cu–xTiB2 Composites. Transactions of the Indian Institute of Metals, 74(3), 629-648. doi: https://doi.org/10.1007/s12666-020-02180-8
  • Mozammil, S., Koshta, E., Jha, P. K., & Swain, P. K. (2022). Investigation on Experimental Machinability & 3D Finite Element Turning Simulations of Al-4.5%Cu/TiB2/3p Composite. Transactions of the Indian Institute of Metals. doi: https://doi.org/10.1007/s12666-022-02735-x
  • Nicholls, C. J., Boswell, B., Davies, I. J., & Islam, M. N. (2017). Review of machining metal matrix composites. International Journal of Advanced Manufacturing Technology, 90(9-12), 2429-2441. doi: https://link.springer.com/article/10.1007/s00170-016-9558-4
  • Ozturk, E. (2022). FEM and statistical-based assessment of AISI-4140 dry hard turning using micro-textured insert. Journal of Manufacturing Processes, 81, 290-300. doi: https://doi.org/10.1016/j.jmapro.2022.06.060
  • Prakash, M., & Iqbal, U. M. (2018). Parametric optimization in turning of AA2014/Al2O3 nano composite for machinability assessment using sensors. 2nd International Conference on Advances in Mechanical Engineering (Icame 2018), 402. doi: https://iopscience.iop.org/article/10.1088/1757-899X/402/1/012013
  • Pramanik, A., Zhang, L. C., & Arsecularatne, J. A. (2007). An FEM investigation into the behavior of metal matrix composites: Tool-particle interaction during orthogonal cutting. International Journal of Machine Tools & Manufacture, 47(10), 1497-1506. doi: https://doi.org/10.1016/j.ijmachtools.2006.12.004
  • Radhika, N., Subramaniam, R., & Senapathi, S. B. (2013). Machining parameter optimisation of an aluminium hybrid metal matrix composite by statistical modelling. Industrial Lubrication and Tribology, 65(6), 425-435. doi: https://www.emerald.com/insight/content/doi/10.1108/ILT-01-2011-0008/full/html
  • Ranjan, P., & Hiremath, S. S. (2022). Finite element simulation and experimental validation of machining martensitic stainless steel using multi-layered coated carbide tools for industry-relevant outcomes. Simulation Modelling Practice and Theory, 114. doi: https://doi.org/10.1016/j.simpat.2021.102411
  • Rathodi, B. S., & Pandey, B. (2017). Effect of Turning Parameters on Aluminium Metal Matrix Composites -A Review. International Conference on Materials, Alloys and Experimental Mechanics (Icmaem-2017), 225. doi: https://iopscience.iop.org/article/10.1088/1757-899X/225/1/012276
  • Roy, P., Sarangi, S. K., Ghosh, A., & Chattopadhyay, A. K. (2009). Machinability study of pure aluminium and Al-12% Si alloys against uncoated and coated carbide inserts. International Journal of Refractory Metals & Hard Materials, 27(3), 535-544. doi: https://doi.org/10.1016/j.ijrmhm.2008.04.008
  • Roy, S., & Ghosh, A. (2014). High-speed turning of AISI 4140 steel by multi-layered TiN top-coated insert with minimum quantity lubrication technology and assessment of near tool-tip temperature using infrared thermography. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 228(9), 1058-1067. doi: https://doi.org/10.1177/0954405413514570
  • Saravanan, K. K., & Mahendran, S. (2020). Aluminium 6082-boron carbide composite materials preparation and investigate mechanical-electrical properties with CNC turning. Materials Today-Proceedings, 21, 93-97. doi: https://doi.org/10.1016/j.matpr.2019.05.368
  • Schulze, V., Zanger, F., Michna, J., Ambrosy, F., & Pabst, R. (2011). Investigation of the machining behavior of metal matrix composites (MMC) using chip formation simulation. Modelling of Machining Operations, 223, 20-29. doi: https://doi.org/10.4028/www.scientific.net/AMR.223.20
  • Senel, M. C., & Gürbüz, M. (2021). Investigation on Mechanical Properties and Microstructure of B4C/Graphene Binary Particles Reinforced Aluminum Hybrid Composites. Metals and Materials International, 27(7), 2438-2449. doi: https://link.springer.com/article/10.1007/s12540-019-00592-w
  • Swain, P. K., Das Mohapatra, K., Das, R., Sahoo, A. K., & Panda, A. (2020). Experimental investigation into characterization and machining of Al plus SiCp nano-composites using coated carbide tool. Mechanics & Industry, 21(3). doi: https://doi.org/10.1051/meca/2020015
  • Sylajakumari, P. A., Ramakrishnasamy, R., & Palaniappan, G. (2018). Taguchi Grey Relational Analysis for Multi-Response Optimization of Wear in Co-Continuous Composite. Materials, 11(9). doi: https://doi.org/10.3390/ma11091743
  • Tan, X. C. (2002). Comparisons of friction models in bulk metal forming. Tribology International, 35(6), 385-393. doi: https://doi.org/10.1016/S0301-679X(02)00020-8
  • Tooptong, S., Nguyen, D., Park, K. H., & Kwon, P. (2021). Crater wear on multi-layered coated carbide inserts when turning three distinct cast irons. Wear, 484. doi: https://doi.org/10.1016/j.wear.2021.203982
  • Tzotzis, A., Garcia-Hernandez, C., Huertas-Talon, J. L., & Kyratsis, P. (2020). Influence of the Nose Radius on the Machining Forces Induced during AISI-4140 Hard Turning: A CAD-Based and 3D FEM Approach. Micromachines, 11(9). doi: https://doi.org/10.3390/mi11090798
  • Ugur, L. (2022). A Numerical and Statistical Approach of Drilling Performance on Machining of Ti-6Al-4V Alloy. Surface Review and Letters, 29(12). doi: https://doi.org/10.1142/S0218625X22501682
  • Umer, U., Abidi, M. H., Abu Qudeiri, J., Alkhalefah, H., & Kishawy, H. (2020). Tool Performance Optimization While Machining Aluminium-Based Metal Matrix Composite. Metals, 10(6). doi: https://doi.org/10.3390/met10060835
  • Umer, U., Ashfaq, M., Qudeiri, J. A., Hussein, H. M. A., Danish, S. N., & Al-Ahmari, A. R. (2015). Modeling machining of particle-reinforced aluminum-based metal matrix composites using cohesive zone elements. International Journal of Advanced Manufacturing Technology, 78(5-8), 1171-1179. doi: https://link.springer.com/article/10.1007/s00170-014-6715-5
  • Umer, U., Kishawy, H., Ghandehariun, A., Xie, L. J., & Al-Ahmari, A. (2017). On modeling tool performance while machining aluminum-based metal matrix composites. International Journal of Advanced Manufacturing Technology, 92(9-12), 3519-3530. doi: https://link.springer.com/article/10.1007/s00170-017-0368-0
  • Vasiliev, O. O. (2021). Thermodynamic Properties of Tungsten Disulfide from First Principles in Quasi-Harmonic Approximation. Powder Metallurgy and Metal Ceramics, 59(9-10), 576-584. doi: https://link.springer.com/article/10.1007/s11106-021-00185-6
  • Volovik, L. S., Fesenko, V. V., Bolgar, A. S., Drozdova, S. V., Klochkov, L. A., & Primachenko, V. F. (1978). Enthalpy and heat capacity of molybdenum disulfide. Soviet Powder Metallurgy and Metal Ceramics, 17(9), 697-702. doi: https://doi.org/10.1007/BF00796559
  • Xiong, Y. F., Wang, W. H., Jiang, R. S., Lin, K. Y., & Shao, M. W. (2018). Mechanisms and FEM Simulation of Chip Formation in Orthogonal Cutting In-Situ TiB2/7050Al MMC. Materials, 11(4). doi: https://doi.org/10.3390/ma11040606
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Erkan Öztürk 0000-0002-7056-718X

Proje Numarası Yok
Erken Görünüm Tarihi 29 Mart 2024
Yayımlanma Tarihi 29 Nisan 2024
Gönderilme Tarihi 18 Temmuz 2023
Kabul Tarihi 24 Kasım 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 65 Sayı: 714

Kaynak Göster

APA Öztürk, E. (2024). Comparison of Machinability of Al-4.5%Cu/TiB2/3p MMC for Multi-Layer Coated Insert: Validated FEM and Statistical Approaches. Mühendis Ve Makina, 65(714), 49-77. https://doi.org/10.46399/muhendismakina.1329342

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520