Araştırma Makalesi
BibTex RIS Kaynak Göster

CRACK GROWTH SIMULATIONS IN ADHESIVELY BONDED JOINTS

Yıl 2024, Sayı: 715, 198 - 216, 16.07.2024

Öz

Due to the important advantages of adhesive joints, such as their suitability for multi-material designs, their use has been increasing in the last decade. Determining the fracture behavior of structural adhesive bondings is essential for structural durability. In crack propagation analyses, adaptive meshing has drawn considerable attention because of its improvements in terms of complex preprocessing and time management. This paper presents a recently introduced separating morphing and adaptive remeshing technology (SMART) innovative crack growth simulation for adhesively bonded joints, considering static and cyclic cases. For the static case, an R-curve was obtained for the bonding joints of carbon steel and Araldite 2015. For the cyclic case, the Carbon Fiber Reinforced Polymer (CFRP) bonding joints were analyzed under constant-amplitude loading conditions. The crack-propagation rate and the number of cycles were estimated. Crack propagation simulations were validated using experimental data. Acceptable agreement was achieved between the experimental and estimated results.

Kaynakça

  • Alshoaibi, A. M. (2021). Computational Simulation of 3D Fatigue Crack Growth under Mixed-Mode Loading. Applied Sciences, 11(13), 5953. https://doi.org/10.3390/app11135953
  • Anderson, T. L. (2017). Fracture Mechanics (4. ed.). CRC Press.
  • ANSYS. Academic Research Mechanical, Release 19.2, Help System. In Coupled Field Analysis Guide, 2020; ANSYS, Inc., USA.
  • Banea, M. D., Da Silva, L. F. M., & Campilho, R. D. S. G. (2015). The Effect of Adhesive Thickness on the Mechanical Behavior of a Structural Polyurethane Adhesive. The Journal of Adhesion, 91(5), 331–346. https://doi.org/10.1080/00218464.2014.903802
  • Campilho, R. D. S. G., Banea, M. D., Pinto, A. M. G., Da Silva, L. F. M., & De Jesus, A. M. P. (2011). Strength prediction of single- and double-lap joints by standard and extended finite element modelling. International Journal of Adhesion and Adhesives, 31(5), 363–372. https://doi.org/10.1016/j.ijadhadh.2010.09.008
  • Campilho, R. D. S. G., Moura, D. C., Banea, M. D., & Da Silva, L. F. M. (2015). Adhesive thickness effects of a ductile adhesive by optical measurement techniques. International Journal of Adhesion and Adhesives, 57, 125–132. https://doi.org/10.1016/j.ijadhadh.2014.12.004
  • Chen, Q., Guo, H., Avery, K., Su, X., & Kang, H. (2017). Fatigue performance and life estimation of automotive adhesive joints using a fracture mechanics approach. Engineering Fracture Mechanics, 172, 73–89. https://doi.org/10.1016/j.engfracmech.2017.01.005
  • Costa, M., Carbas, R., Marques, E., Viana, G., & Da Silva, L. F. M. (2017). An apparatus for mixed-mode fracture characterization of adhesive joints. Theoretical and Applied Fracture Mechanics, 91, 94–102. https://doi.org/10.1016/j.tafmec.2017.04.014
  • Figueiredo, J. C. P., Campilho, R. D. S. G., Marques, E. A. S., Machado, J. J. M., & Da Silva, L. F. M. (2018). Adhesive thickness influence on the shear fracture toughness measurements of adhesive joints. International Journal of Adhesion and Adhesives, 83, 15–23. https://doi.org/10.1016/j.ijadhadh.2018.02.015
  • Floros, I., & Tserpes, K. (2019). Fatigue crack growth characterization in adhesive CFRP joints. Composite Structures, 207, 531–536. https://doi.org/10.1016/j.compstruct.2018.09.020
  • Funari, M. F., Lonetti, P., & Spadea, S. (2019). A crack growth strategy based on moving mesh method and fracture mechanics. Theoretical and Applied Fracture Mechanics, 102, 103–115. https://doi.org/10.1016/j.tafmec.2019.03.007
  • Gupta, A., Sun, W., & Bennett, C. J. (2020). Simulation of fatigue small crack growth in additive manufactured Ti–6Al–4V material. Continuum Mechanics and Thermocyclics, 32(6), 1745–1761. https://doi.org/10.1007/s00161-020-00878-0
  • Hexcel HexPly 8552, Product Data Sheet, EU Version, 2016.
  • Huang, Y., Bu, Y., Zhou, L., Zhu, J., Shi, H., Xie, H., & Feng, X. (2013). Fatigue crack growth and propagation along the adhesive interface between fiber-reinforced composites. Engineering Fracture Mechanics, 110, 290–299. https://doi.org/10.1016/j.engfracmech.2013.08.011
  • Jones, R. (2014). Fatigue crack growth and damage tolerance. Fatigue & Fracture of Engineering Materials & Structures, 37(5), 463–483. https://doi.org/10.1111/ffe.12155
  • Jones, R., Hu, W., & Kinloch, A. J. (2015). A convenient way to represent fatigue crack growth in structural adhesives. Fatigue & Fracture of Engineering Materials & Structures, 38(4), 379–391. https://doi.org/10.1111/ffe.12241
  • Korta, J., Młyniec, A., Zdziebko, P., & Uhl, T. (2014). Finite Element Analysis Of Adhesive Bonds Using The Cohesive Zone Modeling Method. Mechanics and Control, 33(2), 51. https://doi.org/10.7494/mech.2014.33.2.51
  • Kowalski, M., & Rozumek, D. (2019). Numerical simulation of fatigue crack growth in steel-aluminium transition joint. 170020. https://doi.org/10.1063/1.5138099
  • Lee, Y. F., & Lu, Y. (2022). Advanced numerical simulations considering crack orientation for fatigue damage quantification using nonlinear guided waves. Ultrasonics, 124, 106738. https://doi.org/10.1016/j.ultras.2022.106738
  • LOCTITE EA 9395 AERO Epoxy Paste Adhesive Technical Process Bulletin
  • LOCTITE EA 9396 AERO Epoxy Paste Adhesive Technical Process Bulletin.
  • Lopes, R. M., Campilho, R. D. S. G., Da Silva, F. J. G., & Faneco, T. M. S. (2016). Comparative evaluation of the Double-Cantilever Beam and Tapered Double-Cantilever Beam tests for estimation of the tensile fracture toughness of adhesive joints. International Journal of Adhesion and Adhesives, 67, 103–111. https://doi.org/10.1016/j.ijadhadh.2015.12.032
  • Matvienko, Y. G., Razumovskii, I. A., & Fedorov, A. A. (2021). Numerical Modeling the Effect of Static Indentation on the Rate and the Fatigue Crack Growth Trajectory. Journal of Physics: Conference Series, 1945(1), 012039. https://doi.org/10.1088/1742-6596/1945/1/012039
  • Monteiro, J., Akhavan‐Safar, A., Carbas, R., Marques, E., Goyal, R., El‐zein, M., & Silva, L. F. M. (2020). Influence of mode mixity and loading conditions on the fatigue crack growth behaviour of an epoxy adhesive. Fatigue & Fracture of Engineering Materials & Structures, 43(2), 308–316. https://doi.org/10.1111/ffe.13125
  • Paris, P., & Erdogan, F. (1963). A Critical Analysis of Crack Propagation Laws. Journal of Basic Engineering, 85(4), 528–533. https://doi.org/10.1115/1.3656900
  • Pascoe, J. A., Alderliesten, R. C., & Benedictus, R. (2017). On the physical interpretation of the R-ratio effect and the LEFM parameters used for fatigue crack growth in adhesive bonds. International Journal of Fatigue, 97, 162–176. https://doi.org/10.1016/j.ijfatigue.2016.12.033
  • Quan, H., & Alderliesten, R. C. (2022). The energy dissipation during fatigue crack growth in adhesive joints under Mode-I loading. Theoretical and Applied Fracture Mechanics, 120, 103418. https://doi.org/10.1016/j.tafmec.2022.103418
  • Rocha, A. V. M., Akhavan‐Safar, A., Carbas, R., Marques, E. A. S., Goyal, R., El‐zein, M., & Silva, L. F. M. (2020). Fatigue crack growth analysis of different adhesive systems: Effects of mode mixity and load level. Fatigue & Fracture of Engineering Materials & Structures, 43(2), 330–341. https://doi.org/10.1111/ffe.13145
  • Rosas, M. F. M. O., Campilho, R. D. S. G., & Moreira, R. D. F. (2021). Numerical analysis of geometrical modification combinations of the tensile strength of tubular adhesive joints. Procedia Structural Integrity, 33, 115–125. https://doi.org/10.1016/j.prostr.2021.10.016
  • Saleh, M. N., Budzik, M. K., Saeedifar, M., Zarouchas, D., & Teixeira De Freitas, S. (2022). On the influence of the adhesive and the adherend ductility on mode I fracture characterization of thick adhesively-bonded joints. International Journal of Adhesion and Adhesives, 115, 103123. https://doi.org/10.1016/j.ijadhadh.2022.103123
  • Sarrado, C., Turon, A., Costa, J., & Renart, J. (2016). On the validity of linear elastic fracture mechanics methods to measure the fracture toughness of adhesive joints. International Journal of Solids and Structures, 81, 110–116. https://doi.org/10.1016/j.ijsolstr.2015.11.016
  • Sekiguchi, Y., & Sato, C. (2021). Effect of Bond-Line Thickness on Fatigue Crack Growth of Structural Acrylic Adhesive Joints. Materials, 14(7), 1723. https://doi.org/10.3390/ma14071723
  • Silva, A. F. M. V., Peres, L. M. C., Campilho, R. D. S. G., Rocha, R. J. B., & Silva, F. J. G. (2023). Cohesive zone parametric analysis in the tensile impact strength of tubular adhesive joints. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 237(1), 26–37. https://doi.org/10.1177/09544089221088261
  • Thäsler, T., Holtmannspötter, J., & Gudladt, H. J. (2019). Monitoring the fatigue crack growth behavior of composite joints using in situ 2D-digital image correlation. Journal of Adhesion, 95(5–7), 595–613. https://doi.org/10.1080/00218464.2018.1562923
  • Zuo, P., & Vassilopoulos, A. P. (2021). Review of fatigue of bulk structural adhesives and thick adhesive joints. International Materials Reviews, 66(5), 313–338. https://doi.org/10.1080/09506608.2020.1845110

YAPIŞTIRMA BAĞLANTILARINDA SMART YÖNTEMİ İLE ÇATLAK İLERLEME SİMÜLASYONLARI

Yıl 2024, Sayı: 715, 198 - 216, 16.07.2024

Öz

Yapıştırma bağlantılarının çoklu malzeme tasarımı uygulamalarında kullanılabilmeleri gibi önemli avantajları nedeniyle son on yılda kullanımları artmıştır. Yapıştırma bağlantılarının yapısal bütünlüğü için kırılma davranışının belirlenmesi elzemdir. Çatlak ilerleme analizlerinde, karmaşık ön işleme ve zaman yönetimi açısından önemli iyileştirmeler sunması nedeniyle adaptif ağ yöntemi ilgi çekmektedir. Bu çalışma, yapıştırma bağlantılarında statik ve yorulma durumlarını dikkate alarak yeni bir çatlak ilerleme simülasyonu yöntemi olan ayırmalı şekillendirme ve adaptif yeniden ağ oluşturma teknolojisini (SMART) tanıtmaktadır. Statik durum için, karbon çeliği ve Araldite 2015’ten oluşan yapıştırma bağlantılarında R-eğrisi elde edilmiştir. Yorulma durumu için, karbon fiber takviyeli polimer (CFRP) yapıştırma bağlantıları sabit genlikli yükleme koşulları altında analiz edilmiştir. Çatlak ilerleme hızı ve çevrim sayısı tahmin edilmiştir. Çatlak ilerleme simülasyonları deneysel veriler kullanılarak doğrulanmıştır. Deneysel ve simülasyon sonuçları arasında kabul edilebilir bir uyum elde edilmiştir.

Kaynakça

  • Alshoaibi, A. M. (2021). Computational Simulation of 3D Fatigue Crack Growth under Mixed-Mode Loading. Applied Sciences, 11(13), 5953. https://doi.org/10.3390/app11135953
  • Anderson, T. L. (2017). Fracture Mechanics (4. ed.). CRC Press.
  • ANSYS. Academic Research Mechanical, Release 19.2, Help System. In Coupled Field Analysis Guide, 2020; ANSYS, Inc., USA.
  • Banea, M. D., Da Silva, L. F. M., & Campilho, R. D. S. G. (2015). The Effect of Adhesive Thickness on the Mechanical Behavior of a Structural Polyurethane Adhesive. The Journal of Adhesion, 91(5), 331–346. https://doi.org/10.1080/00218464.2014.903802
  • Campilho, R. D. S. G., Banea, M. D., Pinto, A. M. G., Da Silva, L. F. M., & De Jesus, A. M. P. (2011). Strength prediction of single- and double-lap joints by standard and extended finite element modelling. International Journal of Adhesion and Adhesives, 31(5), 363–372. https://doi.org/10.1016/j.ijadhadh.2010.09.008
  • Campilho, R. D. S. G., Moura, D. C., Banea, M. D., & Da Silva, L. F. M. (2015). Adhesive thickness effects of a ductile adhesive by optical measurement techniques. International Journal of Adhesion and Adhesives, 57, 125–132. https://doi.org/10.1016/j.ijadhadh.2014.12.004
  • Chen, Q., Guo, H., Avery, K., Su, X., & Kang, H. (2017). Fatigue performance and life estimation of automotive adhesive joints using a fracture mechanics approach. Engineering Fracture Mechanics, 172, 73–89. https://doi.org/10.1016/j.engfracmech.2017.01.005
  • Costa, M., Carbas, R., Marques, E., Viana, G., & Da Silva, L. F. M. (2017). An apparatus for mixed-mode fracture characterization of adhesive joints. Theoretical and Applied Fracture Mechanics, 91, 94–102. https://doi.org/10.1016/j.tafmec.2017.04.014
  • Figueiredo, J. C. P., Campilho, R. D. S. G., Marques, E. A. S., Machado, J. J. M., & Da Silva, L. F. M. (2018). Adhesive thickness influence on the shear fracture toughness measurements of adhesive joints. International Journal of Adhesion and Adhesives, 83, 15–23. https://doi.org/10.1016/j.ijadhadh.2018.02.015
  • Floros, I., & Tserpes, K. (2019). Fatigue crack growth characterization in adhesive CFRP joints. Composite Structures, 207, 531–536. https://doi.org/10.1016/j.compstruct.2018.09.020
  • Funari, M. F., Lonetti, P., & Spadea, S. (2019). A crack growth strategy based on moving mesh method and fracture mechanics. Theoretical and Applied Fracture Mechanics, 102, 103–115. https://doi.org/10.1016/j.tafmec.2019.03.007
  • Gupta, A., Sun, W., & Bennett, C. J. (2020). Simulation of fatigue small crack growth in additive manufactured Ti–6Al–4V material. Continuum Mechanics and Thermocyclics, 32(6), 1745–1761. https://doi.org/10.1007/s00161-020-00878-0
  • Hexcel HexPly 8552, Product Data Sheet, EU Version, 2016.
  • Huang, Y., Bu, Y., Zhou, L., Zhu, J., Shi, H., Xie, H., & Feng, X. (2013). Fatigue crack growth and propagation along the adhesive interface between fiber-reinforced composites. Engineering Fracture Mechanics, 110, 290–299. https://doi.org/10.1016/j.engfracmech.2013.08.011
  • Jones, R. (2014). Fatigue crack growth and damage tolerance. Fatigue & Fracture of Engineering Materials & Structures, 37(5), 463–483. https://doi.org/10.1111/ffe.12155
  • Jones, R., Hu, W., & Kinloch, A. J. (2015). A convenient way to represent fatigue crack growth in structural adhesives. Fatigue & Fracture of Engineering Materials & Structures, 38(4), 379–391. https://doi.org/10.1111/ffe.12241
  • Korta, J., Młyniec, A., Zdziebko, P., & Uhl, T. (2014). Finite Element Analysis Of Adhesive Bonds Using The Cohesive Zone Modeling Method. Mechanics and Control, 33(2), 51. https://doi.org/10.7494/mech.2014.33.2.51
  • Kowalski, M., & Rozumek, D. (2019). Numerical simulation of fatigue crack growth in steel-aluminium transition joint. 170020. https://doi.org/10.1063/1.5138099
  • Lee, Y. F., & Lu, Y. (2022). Advanced numerical simulations considering crack orientation for fatigue damage quantification using nonlinear guided waves. Ultrasonics, 124, 106738. https://doi.org/10.1016/j.ultras.2022.106738
  • LOCTITE EA 9395 AERO Epoxy Paste Adhesive Technical Process Bulletin
  • LOCTITE EA 9396 AERO Epoxy Paste Adhesive Technical Process Bulletin.
  • Lopes, R. M., Campilho, R. D. S. G., Da Silva, F. J. G., & Faneco, T. M. S. (2016). Comparative evaluation of the Double-Cantilever Beam and Tapered Double-Cantilever Beam tests for estimation of the tensile fracture toughness of adhesive joints. International Journal of Adhesion and Adhesives, 67, 103–111. https://doi.org/10.1016/j.ijadhadh.2015.12.032
  • Matvienko, Y. G., Razumovskii, I. A., & Fedorov, A. A. (2021). Numerical Modeling the Effect of Static Indentation on the Rate and the Fatigue Crack Growth Trajectory. Journal of Physics: Conference Series, 1945(1), 012039. https://doi.org/10.1088/1742-6596/1945/1/012039
  • Monteiro, J., Akhavan‐Safar, A., Carbas, R., Marques, E., Goyal, R., El‐zein, M., & Silva, L. F. M. (2020). Influence of mode mixity and loading conditions on the fatigue crack growth behaviour of an epoxy adhesive. Fatigue & Fracture of Engineering Materials & Structures, 43(2), 308–316. https://doi.org/10.1111/ffe.13125
  • Paris, P., & Erdogan, F. (1963). A Critical Analysis of Crack Propagation Laws. Journal of Basic Engineering, 85(4), 528–533. https://doi.org/10.1115/1.3656900
  • Pascoe, J. A., Alderliesten, R. C., & Benedictus, R. (2017). On the physical interpretation of the R-ratio effect and the LEFM parameters used for fatigue crack growth in adhesive bonds. International Journal of Fatigue, 97, 162–176. https://doi.org/10.1016/j.ijfatigue.2016.12.033
  • Quan, H., & Alderliesten, R. C. (2022). The energy dissipation during fatigue crack growth in adhesive joints under Mode-I loading. Theoretical and Applied Fracture Mechanics, 120, 103418. https://doi.org/10.1016/j.tafmec.2022.103418
  • Rocha, A. V. M., Akhavan‐Safar, A., Carbas, R., Marques, E. A. S., Goyal, R., El‐zein, M., & Silva, L. F. M. (2020). Fatigue crack growth analysis of different adhesive systems: Effects of mode mixity and load level. Fatigue & Fracture of Engineering Materials & Structures, 43(2), 330–341. https://doi.org/10.1111/ffe.13145
  • Rosas, M. F. M. O., Campilho, R. D. S. G., & Moreira, R. D. F. (2021). Numerical analysis of geometrical modification combinations of the tensile strength of tubular adhesive joints. Procedia Structural Integrity, 33, 115–125. https://doi.org/10.1016/j.prostr.2021.10.016
  • Saleh, M. N., Budzik, M. K., Saeedifar, M., Zarouchas, D., & Teixeira De Freitas, S. (2022). On the influence of the adhesive and the adherend ductility on mode I fracture characterization of thick adhesively-bonded joints. International Journal of Adhesion and Adhesives, 115, 103123. https://doi.org/10.1016/j.ijadhadh.2022.103123
  • Sarrado, C., Turon, A., Costa, J., & Renart, J. (2016). On the validity of linear elastic fracture mechanics methods to measure the fracture toughness of adhesive joints. International Journal of Solids and Structures, 81, 110–116. https://doi.org/10.1016/j.ijsolstr.2015.11.016
  • Sekiguchi, Y., & Sato, C. (2021). Effect of Bond-Line Thickness on Fatigue Crack Growth of Structural Acrylic Adhesive Joints. Materials, 14(7), 1723. https://doi.org/10.3390/ma14071723
  • Silva, A. F. M. V., Peres, L. M. C., Campilho, R. D. S. G., Rocha, R. J. B., & Silva, F. J. G. (2023). Cohesive zone parametric analysis in the tensile impact strength of tubular adhesive joints. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 237(1), 26–37. https://doi.org/10.1177/09544089221088261
  • Thäsler, T., Holtmannspötter, J., & Gudladt, H. J. (2019). Monitoring the fatigue crack growth behavior of composite joints using in situ 2D-digital image correlation. Journal of Adhesion, 95(5–7), 595–613. https://doi.org/10.1080/00218464.2018.1562923
  • Zuo, P., & Vassilopoulos, A. P. (2021). Review of fatigue of bulk structural adhesives and thick adhesive joints. International Materials Reviews, 66(5), 313–338. https://doi.org/10.1080/09506608.2020.1845110
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Ahmet Can Yıldız 0000-0001-6631-414X

Tezcan Şekercioğlu

Erken Görünüm Tarihi 25 Haziran 2024
Yayımlanma Tarihi 16 Temmuz 2024
Gönderilme Tarihi 26 Temmuz 2023
Kabul Tarihi 8 Eylül 2023
Yayımlandığı Sayı Yıl 2024 Sayı: 715

Kaynak Göster

APA Yıldız, A. C., & Şekercioğlu, T. (2024). CRACK GROWTH SIMULATIONS IN ADHESIVELY BONDED JOINTS. Mühendis Ve Makina(715), 198-216.

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520