Araştırma Makalesi
BibTex RIS Kaynak Göster

Medcem MTA, Medcem Saf Portland Siman ve NeoMTA'nın Pediatrik Restoratif Materyallere Makaslama Bağ Dayanımlarının Karşılaştırılması

Yıl 2021, Cilt: 3 Sayı: 3, 115 - 121, 29.12.2021

Öz

Amaç: Bu çalışmanın amacı, vital pulpa tedavilerinde kullanılan Medcem Saf Portland siman, Medcem MTA ve NeoMTA'nın farklı pediatrik restoratif materyallere makaslama bağ dayanımını karşılaştırmaktır.
Gereç ve Yöntemler: Makaslama bağ dayanım testi için standart akrilik bloklar (4*2 mm) hazırlandı. Üretici firmaların talimatları doğrultusunda hazırlanan kalsiyum silikat içerikli biyomateryaller (Medcem MTA, Medcem Saf Portland siman, NeoMTA) akrilik bloklardaki boşluklara yerleştirildi ve sertleşmeleri için önerilen sürelerde bekletildi. Restoratif materyaller 4 grupta (kompomer, rezin modifiye cam iyonomer siman, yüksek viskoziteli cam iyonomer siman, Cention N) değerlendirildi. Biyomateryallerin üzerine (2*2mm çapında) silindirik kalıplar yardımıyla restoratif materyaller uygulandı. Veriler, tek yönlü ANOVA ve Tukey testleri kullanılarak analiz edildi.
Bulgular: Medcem Saf Portland siman ile en yüksek makaslama bağ dayanımı gösteren restoratif materyal grubu yüksek viskoziteli cam iyonomer siman grubu olurken, bunu sırasıyla kompomer, Cention N ve rezin modifiye cam iyonomer siman grupları izledi. Medcem MTA ile kompomer grubu arasındaki makaslama bağ dayanımı en yüksek olup, bunu sırasıyla Cention N, rezin modifiye cam iyonomer siman ve yüksek viskoziteli cam iyonomer siman grupları izlemiştir. NeoMTA’da ise makaslama bağ dayanımı en yüksek Cention N grubu ile, en düşük yüksek viskoziteli cam iyonomer siman grubu ile belirlendi.
Sonuç: Bu çalışmada kullanılan biyomateryaller ile pediatrik restoratif materyaller arasındaki makaslama bağ dayanımı umut vericidir ve vital pulpa tedavilerinde alternatif olarak düşünülebilir.

Kaynakça

  • Referans1. Hargreaves KM, Cohen S, Berman LH. Cohen's pathways of the pulp: Mosby Elsevier; 2011.
  • Referans2. Modena KCdS, Casas-Apayco LC, Atta MT, Costa CAdS, Hebling J, Sipert CR, et al. Cytotoxicity and biocompatibility of direct and indirect pulp capping materials. J Appl Oral. Sci. 2009;17:544-4.
  • Referans3. Lee H, Shin Y, Kim S-O, Lee H-S, Choi H-J, Song JS. Comparative study of pulpal responses to pulpotomy with ProRoot MTA, RetroMTA, and TheraCal in dogs' teeth. J Endod. 2015;41:1317-24.
  • Referans4. Bicer H, Bayrak S. Vital pulpa tedavisinde kullanılan kalsiyum silikat içerikli biyomateryallerin restoratif materyallere bağlanma dayanımının değerlendirilmesi. Selcuk Dent J. 2019;6:271-9.
  • Referans5. Zhu L, Yang J, Zhang J, Peng B. A comparative study of BioAggregate and ProRoot MTA on adhesion, migration, and attachment of human dental pulp cells. J Endod. 2014;40:1118-23.
  • Referans6. Asgary S, Eghbal MJ, Parirokh M, Ghanavati F, Rahimi H. A comparative study of histologic response to different pulp capping materials and a novel endodontic cement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106:609-14.
  • Referans7. Raghavendra SS, Jadhav GV, Gathani KM, Kotadia P. Bioceramics in endodontics–a review. J Istanb Univ Fac Dent. 2017;51:128-37.
  • Referans8. Torabinejad M, Watson T, Ford TP. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J Endod. 1993;19:591-5.
  • Referans9. Okiji T, Yoshiba K. Reparative dentinogenesis induced by mineral trioxide aggregate: A review from the biological and physicochemical points of view. Int J Dent. 2009;464280:12.
  • Referans10. Guerreiro-Tanomaru JM, Chula DG, de Pontes Lima RK, Berbert FL, Tanomaru-Filho M. Release and diffusion of hydroxyl ion from calcium hydroxide-based medicaments. Dent Traumatol. 2012;28:320–23.
  • Referans11. Makkar S, Vashisht R, Kalsi A, Gupta P. The effect of altered ph on push-out bond strength of biodentin, glass ionomer cement, mineral trioxide aggregate and theracal. Stomatol Glas Srb. 2015;62:7-13.
  • Referans12. Kayahan MB, Nekoofar MH, McCann A, Sunay H, Kaptan RF, Meraji N, et al. Effect of acid etching procedures on the compressive strength of 4 calcium silicate–based endodontic cements. J Endod. 2013;39:1646-8.
  • Referans13. Rajasekharan S, Vercruysse C, Martens L, Verbeeck R. Effect of exposed surface area, volume and environmental pH on the calcium ion release of three commercially available tricalcium silicate based dental cements. Materials. 2018;11:123.
  • Referans14. Niu LN, Jiao K, Wang TD, Zhang W, Camilleri J, Bergeron BE, et al. A review of the bioactivity of hydraulic calcium silicatecements. J Dent. 2014;42:517–33.
  • Referans15. Prati C, Gandolfi MG. Calcium silicate bioactive cements:biological perspectives and clinical applications. Dent Mater. 2015;31:351–70.
  • Referans16. Kouzmanova YI, Dimitrova IV, Gentscheva GD, Aleksandrov LI, Markova-Velichkova MG, Kovacheva DG. Comparative study of the phase formation and interaction with water of calcium-silicate cements with dental applications. Bulg Chem Commun. 2015;47:239–44.
  • Referans17. Dammaschke T, Gerth HU, Zuchner H, Schafer E. Chemical and physical surface and bulk material characterization of white pro root MTA and two portland cements. Dent Mater. 2005;21:731–38.
  • Referans18. Li Q, Coleman NJ. The hydration chemistry of Proroot MTA. Dent Mater J. 2015;34:458–65.
  • Referans19. Duarte MAH, Minotti PG, Rodrigues CT, Zapata RO, Bramante CM, Tanomaru Filho M, et al. Effect of different radiopacifying agents on the physicochemical properties of white portland cement and white mineral trioxide aggregate. J Endod. 2012;38:394–7.
  • Referans20. Tziafas D, Smith AJ, Lesot H. Designing new treatment strategies in vital pulp therapy. J Dent. 2000;28:77-92.
  • Referans21. Tunc ES, Sonmez IS, Bayrak S, Egilmez T. The evaluation of bond strength of a composite and a compomer to white mineral trioxide aggregate with two different bonding systems. J Endod. 2008;34:603-5.
  • Referans22. Orhan DAI, Öz FT. Sık kullanılan bağlanma dayanım test metotları: Derleme çalışması. Turkiye Klinikleri J Dental Sci-Special Topics. 2011;2:31-40.
  • Referans23. Davidson CL, de Gee AJ, Feilzer A. The competition between the composite‑dentin bond strength and the polymerization contraction stress. J Dent Res. 1984;63:1396‑9.
  • Referans24. Al‑Sarheed MA. Evaluation of shear bond strength and SEM observation of all‑in‑one self‑etching primer used for bonding of fissure sealants. J Contemp Dent Pract. 2006;7:9‑16.
  • Referans25. Oskoee SS, Bahari M, Kimyai S, Motahhari P, Eghbal MJ, Asgary S. Shear bond strength of calcium enriched mixture cement and mineral trioxide aggregate to composite resin with two different adhesive systems. J Dent (Tehran). 2014;11:665-71.
  • Referans26. Ajami AA, Jafari Navimipour E, Oskoee S, Kahnamoui M, Lotfi M, Daneshpooy M. Comparison of shear bond strength of resin-modified glass ionomer and composite resin to three pulp capping agents. J Dent Res Dent Clin Dent Prospect. 2013;7:164-8.
  • Referans27. Oskoee SS, Kimyai S, Bahari M, Motahari P, Eghbal MJ, Asgary S. Comparison of shear bond strength of calcium-enriched mixture cement and mineral trioxide aggregate to composite resin. J Contemp Dent Pract. 2011;12:457-62.
  • Referans28. Blumer S, Peretz B, Ratson T. The Use of restorative materials in primary molars among pediatric dentists in Israel. J Clin Pediatr Dent. 2017;41:199-203.
  • Referans29. Manuja N, Pandit IK, Srivastava N, Gugnani N, Nagpal R. Comparative evaluation of shear bond strength of various esthetic restorative materials to dentin: An in vitro study. J Indian Soc Pedod Prev Dent. 2011;29:7–13.
  • Referans30. Schmidt A, Schäfer E, Dammaschke T. Shear bond strength of lining materials to calcium-silicate cements at different time intervals. J Adhes Dent. 2017;19:129-35.
  • Referans31. Shin JH, Jang JH, Park SH, Kim E. Effect of mineral trioxide aggregate surface treatments on morphology and bond strength to composite resin. J Endod. 2014;40:1210-6.
  • Referans32. Alzraikat H, Taha NA, Qasrawi D, Burrow MF. Shear bond strength of a novel light cured calcium silicate based-cement to resin composite using different adhesive systems. Dent Mater J. 2016;35:881-7.
  • Referans33. Cantekin K, Avci S. Evaluation of shear bond strength of two resin-based composites and glass ionomer cement to pure tricalcium silicate-based cement (Biodentine®). J Appl Oral Sci. 2014;22:302-6.
  • Referans34. Ajami AA, Bahari M, Hassanpour-Kashani A, Abed-Kahnamoui M, Savadi-Oskoee A, Azadi-Oskoee F. Shear bond strengths of composite resin and giomer to mineral trioxide aggregate at different time intervals. J Clin Exp Dent. 2017;9:e906-11.
  • Referans35. Tulumbaci F, Almaz ME, Arikan V, Mutluay MS. Shear bond strength of different restorative materials to Mineral Trioxide Aggregate and Biodentine. J Conserv Dent. 2017;20:292-6.
  • Referans36. Buldur B, Öznurhan F, Kayabaşi M, Şahin F. Shear bond strength of two calcium silicate-based cements to compomer. Cumhuriyet Dent J. 2018;21:18-23.
  • Referans37. Verma V, Mathur S, Sachdev V, Singh D. Evaluation of compressive strength, shear bond strength, and microhardness values of glass-ionomer cement Type IX and Cention N. J Conserv Dent.2020;23:550.
  • Referans38. Scientific Documentation: Cention N Ivoclar Vivadent AG Research & Development Scientific Service. 2016.
  • Referans39. Özmen B. Yeni bir restoratif materyal" Cention N". NEU Dent J. 2021;3:84-90.

Comparison of Medcem MTA, Medcem Pure Portland Cement and NeoMTA to Pediatric Restorative Materials to Shear Bond Strength

Yıl 2021, Cilt: 3 Sayı: 3, 115 - 121, 29.12.2021

Öz

Aim: The purpose of this study was compare the shear bond strength of Medcem Pure Portland Cement, Medcem MTA and NeoMTA used in vital pulp treatments to different pediatric restorative materials.
Material and Methods: For the shear bond strength test, standard acrylic blocks (4*2 mm) were prepared. Calcium silicate based biomaterials (Medcem MTA, Medcem Pure Portland Cement, NeoMTA) were prepared according to the manufacturer's instructions, inserted into the hole and the recommended setting time was waited. The restorative materials were evaluated in 4 groups (compomer, resin modified glass ionomer cement, high viscosity glass ionomer cement, Cention N). Restorative materials were applied on the biomaterials with the help of cylindrical molds (diameter of 2*2mm). Data were analyzed using one-way ANOVA and Tukey tests.
Results: The group, showing the highest shear bond strength with Medcem Pure Portland cement is the high viscosity glass ionomer cement, followed by the compomer, Cention N and resin modified glass ionomer cement groups, respectively. The shear bond strength between Medcem MTA and compomer group was the highest, followed by Cention N, resin modified glass ionomer cement and high viscosity glass ionomer cement groups, respectively. On the other hand, NeoMTA was determined by the highest shear bond strength with the Cention N group and the lowest with the high viscosity glass ionomer cement group.
Conclusion: The shear bond strength between the biomaterials and pediatric restorative materials used in this study is promising and can be considered as an alternative in vital pulp treatments.

Kaynakça

  • Referans1. Hargreaves KM, Cohen S, Berman LH. Cohen's pathways of the pulp: Mosby Elsevier; 2011.
  • Referans2. Modena KCdS, Casas-Apayco LC, Atta MT, Costa CAdS, Hebling J, Sipert CR, et al. Cytotoxicity and biocompatibility of direct and indirect pulp capping materials. J Appl Oral. Sci. 2009;17:544-4.
  • Referans3. Lee H, Shin Y, Kim S-O, Lee H-S, Choi H-J, Song JS. Comparative study of pulpal responses to pulpotomy with ProRoot MTA, RetroMTA, and TheraCal in dogs' teeth. J Endod. 2015;41:1317-24.
  • Referans4. Bicer H, Bayrak S. Vital pulpa tedavisinde kullanılan kalsiyum silikat içerikli biyomateryallerin restoratif materyallere bağlanma dayanımının değerlendirilmesi. Selcuk Dent J. 2019;6:271-9.
  • Referans5. Zhu L, Yang J, Zhang J, Peng B. A comparative study of BioAggregate and ProRoot MTA on adhesion, migration, and attachment of human dental pulp cells. J Endod. 2014;40:1118-23.
  • Referans6. Asgary S, Eghbal MJ, Parirokh M, Ghanavati F, Rahimi H. A comparative study of histologic response to different pulp capping materials and a novel endodontic cement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106:609-14.
  • Referans7. Raghavendra SS, Jadhav GV, Gathani KM, Kotadia P. Bioceramics in endodontics–a review. J Istanb Univ Fac Dent. 2017;51:128-37.
  • Referans8. Torabinejad M, Watson T, Ford TP. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J Endod. 1993;19:591-5.
  • Referans9. Okiji T, Yoshiba K. Reparative dentinogenesis induced by mineral trioxide aggregate: A review from the biological and physicochemical points of view. Int J Dent. 2009;464280:12.
  • Referans10. Guerreiro-Tanomaru JM, Chula DG, de Pontes Lima RK, Berbert FL, Tanomaru-Filho M. Release and diffusion of hydroxyl ion from calcium hydroxide-based medicaments. Dent Traumatol. 2012;28:320–23.
  • Referans11. Makkar S, Vashisht R, Kalsi A, Gupta P. The effect of altered ph on push-out bond strength of biodentin, glass ionomer cement, mineral trioxide aggregate and theracal. Stomatol Glas Srb. 2015;62:7-13.
  • Referans12. Kayahan MB, Nekoofar MH, McCann A, Sunay H, Kaptan RF, Meraji N, et al. Effect of acid etching procedures on the compressive strength of 4 calcium silicate–based endodontic cements. J Endod. 2013;39:1646-8.
  • Referans13. Rajasekharan S, Vercruysse C, Martens L, Verbeeck R. Effect of exposed surface area, volume and environmental pH on the calcium ion release of three commercially available tricalcium silicate based dental cements. Materials. 2018;11:123.
  • Referans14. Niu LN, Jiao K, Wang TD, Zhang W, Camilleri J, Bergeron BE, et al. A review of the bioactivity of hydraulic calcium silicatecements. J Dent. 2014;42:517–33.
  • Referans15. Prati C, Gandolfi MG. Calcium silicate bioactive cements:biological perspectives and clinical applications. Dent Mater. 2015;31:351–70.
  • Referans16. Kouzmanova YI, Dimitrova IV, Gentscheva GD, Aleksandrov LI, Markova-Velichkova MG, Kovacheva DG. Comparative study of the phase formation and interaction with water of calcium-silicate cements with dental applications. Bulg Chem Commun. 2015;47:239–44.
  • Referans17. Dammaschke T, Gerth HU, Zuchner H, Schafer E. Chemical and physical surface and bulk material characterization of white pro root MTA and two portland cements. Dent Mater. 2005;21:731–38.
  • Referans18. Li Q, Coleman NJ. The hydration chemistry of Proroot MTA. Dent Mater J. 2015;34:458–65.
  • Referans19. Duarte MAH, Minotti PG, Rodrigues CT, Zapata RO, Bramante CM, Tanomaru Filho M, et al. Effect of different radiopacifying agents on the physicochemical properties of white portland cement and white mineral trioxide aggregate. J Endod. 2012;38:394–7.
  • Referans20. Tziafas D, Smith AJ, Lesot H. Designing new treatment strategies in vital pulp therapy. J Dent. 2000;28:77-92.
  • Referans21. Tunc ES, Sonmez IS, Bayrak S, Egilmez T. The evaluation of bond strength of a composite and a compomer to white mineral trioxide aggregate with two different bonding systems. J Endod. 2008;34:603-5.
  • Referans22. Orhan DAI, Öz FT. Sık kullanılan bağlanma dayanım test metotları: Derleme çalışması. Turkiye Klinikleri J Dental Sci-Special Topics. 2011;2:31-40.
  • Referans23. Davidson CL, de Gee AJ, Feilzer A. The competition between the composite‑dentin bond strength and the polymerization contraction stress. J Dent Res. 1984;63:1396‑9.
  • Referans24. Al‑Sarheed MA. Evaluation of shear bond strength and SEM observation of all‑in‑one self‑etching primer used for bonding of fissure sealants. J Contemp Dent Pract. 2006;7:9‑16.
  • Referans25. Oskoee SS, Bahari M, Kimyai S, Motahhari P, Eghbal MJ, Asgary S. Shear bond strength of calcium enriched mixture cement and mineral trioxide aggregate to composite resin with two different adhesive systems. J Dent (Tehran). 2014;11:665-71.
  • Referans26. Ajami AA, Jafari Navimipour E, Oskoee S, Kahnamoui M, Lotfi M, Daneshpooy M. Comparison of shear bond strength of resin-modified glass ionomer and composite resin to three pulp capping agents. J Dent Res Dent Clin Dent Prospect. 2013;7:164-8.
  • Referans27. Oskoee SS, Kimyai S, Bahari M, Motahari P, Eghbal MJ, Asgary S. Comparison of shear bond strength of calcium-enriched mixture cement and mineral trioxide aggregate to composite resin. J Contemp Dent Pract. 2011;12:457-62.
  • Referans28. Blumer S, Peretz B, Ratson T. The Use of restorative materials in primary molars among pediatric dentists in Israel. J Clin Pediatr Dent. 2017;41:199-203.
  • Referans29. Manuja N, Pandit IK, Srivastava N, Gugnani N, Nagpal R. Comparative evaluation of shear bond strength of various esthetic restorative materials to dentin: An in vitro study. J Indian Soc Pedod Prev Dent. 2011;29:7–13.
  • Referans30. Schmidt A, Schäfer E, Dammaschke T. Shear bond strength of lining materials to calcium-silicate cements at different time intervals. J Adhes Dent. 2017;19:129-35.
  • Referans31. Shin JH, Jang JH, Park SH, Kim E. Effect of mineral trioxide aggregate surface treatments on morphology and bond strength to composite resin. J Endod. 2014;40:1210-6.
  • Referans32. Alzraikat H, Taha NA, Qasrawi D, Burrow MF. Shear bond strength of a novel light cured calcium silicate based-cement to resin composite using different adhesive systems. Dent Mater J. 2016;35:881-7.
  • Referans33. Cantekin K, Avci S. Evaluation of shear bond strength of two resin-based composites and glass ionomer cement to pure tricalcium silicate-based cement (Biodentine®). J Appl Oral Sci. 2014;22:302-6.
  • Referans34. Ajami AA, Bahari M, Hassanpour-Kashani A, Abed-Kahnamoui M, Savadi-Oskoee A, Azadi-Oskoee F. Shear bond strengths of composite resin and giomer to mineral trioxide aggregate at different time intervals. J Clin Exp Dent. 2017;9:e906-11.
  • Referans35. Tulumbaci F, Almaz ME, Arikan V, Mutluay MS. Shear bond strength of different restorative materials to Mineral Trioxide Aggregate and Biodentine. J Conserv Dent. 2017;20:292-6.
  • Referans36. Buldur B, Öznurhan F, Kayabaşi M, Şahin F. Shear bond strength of two calcium silicate-based cements to compomer. Cumhuriyet Dent J. 2018;21:18-23.
  • Referans37. Verma V, Mathur S, Sachdev V, Singh D. Evaluation of compressive strength, shear bond strength, and microhardness values of glass-ionomer cement Type IX and Cention N. J Conserv Dent.2020;23:550.
  • Referans38. Scientific Documentation: Cention N Ivoclar Vivadent AG Research & Development Scientific Service. 2016.
  • Referans39. Özmen B. Yeni bir restoratif materyal" Cention N". NEU Dent J. 2021;3:84-90.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Diş Hekimliği
Bölüm ARAŞTIRMA MAKALESİ
Yazarlar

Sacide Duman 0000-0001-6884-9674

Ahmet Çalışkan 0000-0002-8424-5886

Seçil Çalışkan 0000-0002-8099-584X

Yayımlanma Tarihi 29 Aralık 2021
Gönderilme Tarihi 18 Kasım 2021
Kabul Tarihi 22 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 3 Sayı: 3

Kaynak Göster

Vancouver Duman S, Çalışkan A, Çalışkan S. Comparison of Medcem MTA, Medcem Pure Portland Cement and NeoMTA to Pediatric Restorative Materials to Shear Bond Strength. NEU Dent J. 2021;3(3):115-21.