Araştırma Makalesi
BibTex RIS Kaynak Göster

Doğu Mazısı Kozalağının NaOH Aktivasyonu ile Aktif Karbon Hazırlanması ve Su Ortamından Reaktif Turuncu 12’nin Giderimi

Yıl 2024, Cilt: 6 Sayı: 2, 199 - 210, 31.08.2024
https://doi.org/10.47112/neufmbd.2024.43

Öz

Bu çalışmada, bitkisel bir atık olan doğu mazısı aktif karbon (AK) ürününe dönüştürülmeden önce kurutma ve öğütme işlemleri ile kimyasal aktivasyon işlemi için hazır hale getirilmiştir. 600 ve 800°C sıcaklıklarda sabit NaOH oranı ile sıcaklığın etkisi belirlenmiştir. Ardından 600 °C'de farklı oranlarda NaOH kimyasalı eklenerek hazırlanan AK’ın ürünlerinin yapısal ve morfolojik özellikleri termal gravimetrik analiz (TGA), fourier transform infrared spektroskopisi (FT-IR), alan emisyonlu yüzey elektron mikroskobu (FE-SEM) teknikleri ile Brunauer - Emmett - Teller (BET) spesifik yüzey alanı, gözenek boyut dağılımı yöntemleri ile araştırılmıştır. Piroliz sıcaklığı ve NaOH kütle oranının AK üzerindeki etkisi araştırılmıştır. Karakterizasyon sonuçlarına göre hazırlanan AK’ların fiziksel ve kimyasal özelliklerinin önemli ölçüde aktivasyon sıcaklığına bağlı olduğu ve NaOH miktarının etkili olduğu belirlenmiştir. En yüksek BET yüzey alanına (1415 m2/g), mikro gözenekli yapıya (0,738 cm3/g) sahip AK elde etmek için optimum koşullar 600 °C'de 1:2 oranında (başlangıç maddesi: aktivasyon kimyasalı) elde edilmiştir. En yüksek yüzey özelliklerine sahip AK’ın Langmuir, Freundlich ve D–R izoterm modellerinin R2 değerleri sırasıyla 0,998, 0,997 ve 0,867’dir. Bu ürün için D-R izoterm modelinden hesaplanan adsorpsiyon enerjisi (E) 6.352 kj/mol’dür. RT 12 'nin AK tarafından adsorpsiyonunun Langmuir izoterm modeliyle daha iyi modellendiğini, adsorbent yüzeyinde tek tabaka halinde absorplandığı ve D-R izoterm modelinden elde edilen sonuçlara göre fiziksel adsorpsiyonun rol aldığını tespit edilmiştir. En yüksek yüzey özelliklerine sahip AK’ın reaktif turuncu 12 (RT 12) için Langmuir adsorpsiyon kapasitesi 256 mg/g'dır. Bu adsorpsiyon kapasitesi diğer adsorbentlerle karşılaştırıldığında daha yüksek adsorpsiyon kapasitesine sahip olduğu belirlenmiştir.

Kaynakça

  • M.J. Iqbal, M.N. Ashiq, Adsorption of dyes from aqueous solutions on activated charcoal, Journal of Hazardous Materials. 139 (2007), 57–66. doi:10.1016/j.jhazmat.2006.06.007.
  • İ. Akin, E. Zor, H. Bingöl, Preparation and Characterization of GO/Fe3O4 Doped Polymeric Composite Membranes, Necmettin Erbakan University Journal of Science and Engineering. 5 (2023), 38–52. doi: 10.47112/neufmbd.2023.8.
  • S. Akçay, H. Şengül, A Study on Environmental Literacy of Middle School Students, Journal of Ahmet Kelesoglu Educational Faculty. 5 (2023), 139–169. doi:10.38151/akef.2023.48.
  • H. Sayğılı, G.A. Sayğılı, Optimized preparation for bimodal porous carbon from lentil processing waste by microwave-assisted K2CO3 activation: Spectroscopic characterization and dye decolorization activity, Journal of Cleaner Production. 226 (2019), 968–976. doi:10.1016/j.jclepro.2019.04.121.
  • A.F. Abbas, M.J. Ahmed, Mesoporous activated carbon from date stones (Phoenix dactylifera L.) by one-step microwave assisted K2CO3 pyrolysis, Journal of Water Process Engineering. 9 (2016), 201–207. doi:10.1016/j.jwpe.2016.01.004.
  • H. Li, L. Liu, J. Cui, J. Cui, F. Wang, F. Zhang, High-efficiency adsorption and regeneration of methylene blue and aniline onto activated carbon from waste edible fungus residue and its possible mechanism, RSC Advances. 10 (2020), 14262–14273. doi:10.1039/d0ra01245a.
  • S. Wang, B. Gao, A.R. Zimmerman, Y. Li, L. Ma, W.G. Harris, K.W. Migliaccio, Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite, Bioresource Technology. 175 (2015), 391–395. doi:10.1016/J.BIORTECH.2014.10.104.
  • A. Supong, P.C. Bhomick, M. Baruah, C. Pongener, U.B. Sinha, D. Sinha, Adsorptive removal of Bisphenol A by biomass activated carbon and insights into the adsorption mechanism through density functional theory calculations, Sustainable Chemistry and Pharmacy. 13 (2019), 100159. doi:10.1016/j.scp.2019.100159.
  • N.T. Abdel-Ghani, G.A. El-Chaghaby, M.H. El-Ghammal, E.-S.A. Rawash, Optimizing the preparation conditions of activated carbons from olive cake using KOH activation, New Carbon Materials. 31 (2016), 492–500. doi:10.1016/S1872-5805(16)60027-6.
  • A. Solmaz, Z.A. Sari, M. Karta, T. Turna, A. Yücel, T. Depci, Production and Characterization of Activated Carbon from Pomegranate Peel for Pharmaceutical Waste (Paracetamol) Removal: Response Surface Methodology Application, Water, Air, and Soil Pollution. 234 (2023), 1–20. doi:10.1007/S11270-023-06641-W/TABLES/6.
  • E. Malkoc, Ni(II) removal from aqueous solutions using cone biomass of Thuja orientalis, Journal of Hazardous Materials. 137 (2006), 899–908. doi:10.1016/J.JHAZMAT.2006.03.004.
  • O. Kazak, Single-step pyrolysis for producing activated carbon from sucrose and its properties for methylene blue removal in aqueous solution, Environmental Research and Technology. 4 (2021), 165–175. doi:10.35208/ERT.910576.
  • W. Suliman, J.B. Harsh, N.I. Abu-Lail, A.M. Fortuna, I. Dallmeyer, M. Garcia-Perez, Modification of biochar surface by air oxidation: Role of pyrolysis temperature, Biomass and Bioenergy. 85 (2016) 1–11. doi:10.1016/j.biombioe.2015.11.030.
  • I. Sargin, G. Arslan, M. Kaya, Efficiency of chitosan-algal biomass composite microbeads at heavy metal removal, Reactive and Functional Polymers. 98 (2016), 38–47. doi:10.1016/j.reactfunctpolym.2015.11.007.
  • L. Li, M. Wu, C. Song, L. Liu, W. Gong, Y. Ding, J. Yao, Efficient removal of cationic dyes via activated carbon with ultrahigh specific surface derived from vinasse wastes, Bioresource Technology. 322 (2021), 124540. doi:10.1016/J.BIORTECH.2020.124540.
  • B. Xu, Y. Chen, G. Wei, G. Cao, H. Zhang, Y. Yang, Activated carbon with high capacitance prepared by NaOH activation for supercapacitors, Materials Chemistry and Physics. 124 (2010), 504–509. doi:10.1016/j.matchemphys.2010.07.002.
  • L. Muniandy, F. Adam, A.R. Mohamed, E.P. Ng, The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH, Microporous and Mesoporous Materials. 197 (2014), 316–323. doi:10.1016/j.micromeso.2014.06.020.
  • A.L. Cazetta, A.M.M. Vargas, E.M. Nogami, M.H. Kunita, M.R. Guilherme, A.C. Martins, T.L. Silva, J.C.G. Moraes, V.C. Almeida, NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption, Chemical Engineering Journal. 174 (2011), 117–125. doi:10.1016/j.cej.2011.08.058.
  • E. Unur, Functional nanoporous carbons from hydrothermally treated biomass for environmental purification, Microporous and Mesoporous Materials. 168 (2013), 92–101. doi:10.1016/j.micromeso.2012.09.027.
  • W.T. Tsai, C.Y. Chang, S.Y. Wang, C.F. Chang, S.F. Chien, H.F. Sun, Preparation of activated carbons from corn cob catalyzed by potassium salts and subsequent gasification with CO2, Bioresource Technology. 78 (2001), 203–208. doi:10.1016/S0960-8524(00)00111-5.
  • Ö. Kazak, F. Sungur, Preparation of activeted carbon from Thuja Orientalis cone and using for removal reactive blue 49 from water, Eskişehir Technical University Journal of Science and Technology B - Theoretical Sciences. 8 (2020) 281–292. doi:10.20290/estubtdb.651485.
  • K. Çetin, K. Şarkaya, B. Kavakcıoğlu Yardımcı, Antifungal activities of copper (II) ion and histidine incorporated polymers on yeast Saccharomyces cerevisiae, Necmettin Erbakan University Journal of Science and Engineering, 5(2) (2023), 267-277. https://doi.org/10.47112/neufmbd.2023.24.
  • Ö. Kazak, Preparation of activated carbon from natural starch, its characterization and use as an adsorbent, Çukurova University Journal of the Faculty of Engineering and Architecture. 35 (2020) 115–126. doi:10.21605/cukurovaummfd.764639.
  • O. Kazak, A. Tor, In situ preparation of magnetic hydrochar by co-hydrothermal treatment of waste vinasse with red mud and its adsorption property for Pb(II) in aqueous solution, Journal of Hazardous Materials. 393 (2020), 122391. doi:10.1016/J.JHAZMAT.2020.122391.
  • I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, Journal of the American Chemical Society. 38 (1916), 2221–2295. doi:10.1021/ja02268a002.
  • H. Freundlich, Über die Adsorption in Lösungen, Zeitschrift Für Physikalische Chemie. 57U (1907) 385–470. doi:10.1515/ZPCH-1907-5723.
  • M.M. Dubinin, L.V. Radushkevich, Equation of the characteristic curve of activated charcoal, Proceedings of the Academy of Sciences of the USSR: Physical Chemistry Section. (1947). doi:10.1017/CBO9781107415324.004.
  • M. Ghaedi, F. Karimi, B. Barazesh, R. Sahraei, A. Daneshfar, Removal of Reactive Orange 12 from aqueous solutions by adsorption on tin sulfide nanoparticle loaded on activated carbon, Journal of Industrial and Engineering Chemistry. 19 (2013), 756–763. doi:10.1016/j.jiec.2012.10.010.
  • M. Ghaedi, J. Tashkhourian, A.A. Pebdani, B. Sadeghian, F.N. Ana, Equilibrium, kinetic and thermodynamic study of removal of reactive orange 12 on platinum nanoparticle loaded on activated carbon as novel adsorbent, Korean Journal of Chemical Engineering. 28 (2011), 2255–2261. doi:10.1007/s11814-011-0142-1.
  • N.S. Alsaiari, A. Amari, K.M. Katubi, F.M. Alzahrani, F. Ben Rebah, M.A. Tahoon, The Synthesis of Magnetic Nitrogen-Doped Graphene Oxide Nanocomposite for the Removal of Reactive Orange 12 Dye, Adsorption Science and Technology. 2022 (2022). doi:10.1155/2022/9417542.

Thuja orientalis Cones Prepared Actived Carbon by NaOH Activation for Removal Of Reactive Orange 12 From Aquneous

Yıl 2024, Cilt: 6 Sayı: 2, 199 - 210, 31.08.2024
https://doi.org/10.47112/neufmbd.2024.43

Öz

In this study, Thuja orientalis cone, an agricultural waste, was prepared for chemical activation process by drying and grinding processes before being converted into activated carbon (AC) product. At 600 and 800°C, the effect of temperature was determined with constant NaOH ratio. Then, the structural and morphological properties of AC products prepared by adding NaOH chemical at different ratios at 600 °C were investigated by thermal gravimetric analysis (TGA), fourier transform infrared spectroscopy (FT-IR), field emission surface electron microscopy (FE-SEM) techniques and specific surface area and pore size distribution techniques. According to the characterization results, it was determined that the physical and chemical properties of the prepared ACs significantly depend on the activation temperature and the amount of NaOH is effective To obtain AC with the highest specific surface area (1415 m2/g) and microporous structure (0.738 cm3/g), optimum conditions were obtained at 600 °C in a ratio of 1:2 (starting material: activation chemical). The R2 values of the Langmuir, Freundlich and D–R isotherm models of AK, which have the highest surface properties, are 0.998, 0.997 and 0.867, respectively. The adsorption energy (E) calculated from the D-R isotherm model for this product is 6.352 kj/mol. It was determined that the adsorption of reactive orange 12 (RO 12) by AK was better modeled with the Langmuir isotherm model, that it was absorbed as a monolayer on the adsorbent surface, and that physical adsorption played a role according to the results obtained from the D-R isotherm model The Langmuir adsorption capacity for RO 12 of AK, which has the highest surface properties, is 256 mg/g. This adsorption capacity has a higher adsorption capacity compared to other adsorbents

Kaynakça

  • M.J. Iqbal, M.N. Ashiq, Adsorption of dyes from aqueous solutions on activated charcoal, Journal of Hazardous Materials. 139 (2007), 57–66. doi:10.1016/j.jhazmat.2006.06.007.
  • İ. Akin, E. Zor, H. Bingöl, Preparation and Characterization of GO/Fe3O4 Doped Polymeric Composite Membranes, Necmettin Erbakan University Journal of Science and Engineering. 5 (2023), 38–52. doi: 10.47112/neufmbd.2023.8.
  • S. Akçay, H. Şengül, A Study on Environmental Literacy of Middle School Students, Journal of Ahmet Kelesoglu Educational Faculty. 5 (2023), 139–169. doi:10.38151/akef.2023.48.
  • H. Sayğılı, G.A. Sayğılı, Optimized preparation for bimodal porous carbon from lentil processing waste by microwave-assisted K2CO3 activation: Spectroscopic characterization and dye decolorization activity, Journal of Cleaner Production. 226 (2019), 968–976. doi:10.1016/j.jclepro.2019.04.121.
  • A.F. Abbas, M.J. Ahmed, Mesoporous activated carbon from date stones (Phoenix dactylifera L.) by one-step microwave assisted K2CO3 pyrolysis, Journal of Water Process Engineering. 9 (2016), 201–207. doi:10.1016/j.jwpe.2016.01.004.
  • H. Li, L. Liu, J. Cui, J. Cui, F. Wang, F. Zhang, High-efficiency adsorption and regeneration of methylene blue and aniline onto activated carbon from waste edible fungus residue and its possible mechanism, RSC Advances. 10 (2020), 14262–14273. doi:10.1039/d0ra01245a.
  • S. Wang, B. Gao, A.R. Zimmerman, Y. Li, L. Ma, W.G. Harris, K.W. Migliaccio, Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite, Bioresource Technology. 175 (2015), 391–395. doi:10.1016/J.BIORTECH.2014.10.104.
  • A. Supong, P.C. Bhomick, M. Baruah, C. Pongener, U.B. Sinha, D. Sinha, Adsorptive removal of Bisphenol A by biomass activated carbon and insights into the adsorption mechanism through density functional theory calculations, Sustainable Chemistry and Pharmacy. 13 (2019), 100159. doi:10.1016/j.scp.2019.100159.
  • N.T. Abdel-Ghani, G.A. El-Chaghaby, M.H. El-Ghammal, E.-S.A. Rawash, Optimizing the preparation conditions of activated carbons from olive cake using KOH activation, New Carbon Materials. 31 (2016), 492–500. doi:10.1016/S1872-5805(16)60027-6.
  • A. Solmaz, Z.A. Sari, M. Karta, T. Turna, A. Yücel, T. Depci, Production and Characterization of Activated Carbon from Pomegranate Peel for Pharmaceutical Waste (Paracetamol) Removal: Response Surface Methodology Application, Water, Air, and Soil Pollution. 234 (2023), 1–20. doi:10.1007/S11270-023-06641-W/TABLES/6.
  • E. Malkoc, Ni(II) removal from aqueous solutions using cone biomass of Thuja orientalis, Journal of Hazardous Materials. 137 (2006), 899–908. doi:10.1016/J.JHAZMAT.2006.03.004.
  • O. Kazak, Single-step pyrolysis for producing activated carbon from sucrose and its properties for methylene blue removal in aqueous solution, Environmental Research and Technology. 4 (2021), 165–175. doi:10.35208/ERT.910576.
  • W. Suliman, J.B. Harsh, N.I. Abu-Lail, A.M. Fortuna, I. Dallmeyer, M. Garcia-Perez, Modification of biochar surface by air oxidation: Role of pyrolysis temperature, Biomass and Bioenergy. 85 (2016) 1–11. doi:10.1016/j.biombioe.2015.11.030.
  • I. Sargin, G. Arslan, M. Kaya, Efficiency of chitosan-algal biomass composite microbeads at heavy metal removal, Reactive and Functional Polymers. 98 (2016), 38–47. doi:10.1016/j.reactfunctpolym.2015.11.007.
  • L. Li, M. Wu, C. Song, L. Liu, W. Gong, Y. Ding, J. Yao, Efficient removal of cationic dyes via activated carbon with ultrahigh specific surface derived from vinasse wastes, Bioresource Technology. 322 (2021), 124540. doi:10.1016/J.BIORTECH.2020.124540.
  • B. Xu, Y. Chen, G. Wei, G. Cao, H. Zhang, Y. Yang, Activated carbon with high capacitance prepared by NaOH activation for supercapacitors, Materials Chemistry and Physics. 124 (2010), 504–509. doi:10.1016/j.matchemphys.2010.07.002.
  • L. Muniandy, F. Adam, A.R. Mohamed, E.P. Ng, The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH, Microporous and Mesoporous Materials. 197 (2014), 316–323. doi:10.1016/j.micromeso.2014.06.020.
  • A.L. Cazetta, A.M.M. Vargas, E.M. Nogami, M.H. Kunita, M.R. Guilherme, A.C. Martins, T.L. Silva, J.C.G. Moraes, V.C. Almeida, NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption, Chemical Engineering Journal. 174 (2011), 117–125. doi:10.1016/j.cej.2011.08.058.
  • E. Unur, Functional nanoporous carbons from hydrothermally treated biomass for environmental purification, Microporous and Mesoporous Materials. 168 (2013), 92–101. doi:10.1016/j.micromeso.2012.09.027.
  • W.T. Tsai, C.Y. Chang, S.Y. Wang, C.F. Chang, S.F. Chien, H.F. Sun, Preparation of activated carbons from corn cob catalyzed by potassium salts and subsequent gasification with CO2, Bioresource Technology. 78 (2001), 203–208. doi:10.1016/S0960-8524(00)00111-5.
  • Ö. Kazak, F. Sungur, Preparation of activeted carbon from Thuja Orientalis cone and using for removal reactive blue 49 from water, Eskişehir Technical University Journal of Science and Technology B - Theoretical Sciences. 8 (2020) 281–292. doi:10.20290/estubtdb.651485.
  • K. Çetin, K. Şarkaya, B. Kavakcıoğlu Yardımcı, Antifungal activities of copper (II) ion and histidine incorporated polymers on yeast Saccharomyces cerevisiae, Necmettin Erbakan University Journal of Science and Engineering, 5(2) (2023), 267-277. https://doi.org/10.47112/neufmbd.2023.24.
  • Ö. Kazak, Preparation of activated carbon from natural starch, its characterization and use as an adsorbent, Çukurova University Journal of the Faculty of Engineering and Architecture. 35 (2020) 115–126. doi:10.21605/cukurovaummfd.764639.
  • O. Kazak, A. Tor, In situ preparation of magnetic hydrochar by co-hydrothermal treatment of waste vinasse with red mud and its adsorption property for Pb(II) in aqueous solution, Journal of Hazardous Materials. 393 (2020), 122391. doi:10.1016/J.JHAZMAT.2020.122391.
  • I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, Journal of the American Chemical Society. 38 (1916), 2221–2295. doi:10.1021/ja02268a002.
  • H. Freundlich, Über die Adsorption in Lösungen, Zeitschrift Für Physikalische Chemie. 57U (1907) 385–470. doi:10.1515/ZPCH-1907-5723.
  • M.M. Dubinin, L.V. Radushkevich, Equation of the characteristic curve of activated charcoal, Proceedings of the Academy of Sciences of the USSR: Physical Chemistry Section. (1947). doi:10.1017/CBO9781107415324.004.
  • M. Ghaedi, F. Karimi, B. Barazesh, R. Sahraei, A. Daneshfar, Removal of Reactive Orange 12 from aqueous solutions by adsorption on tin sulfide nanoparticle loaded on activated carbon, Journal of Industrial and Engineering Chemistry. 19 (2013), 756–763. doi:10.1016/j.jiec.2012.10.010.
  • M. Ghaedi, J. Tashkhourian, A.A. Pebdani, B. Sadeghian, F.N. Ana, Equilibrium, kinetic and thermodynamic study of removal of reactive orange 12 on platinum nanoparticle loaded on activated carbon as novel adsorbent, Korean Journal of Chemical Engineering. 28 (2011), 2255–2261. doi:10.1007/s11814-011-0142-1.
  • N.S. Alsaiari, A. Amari, K.M. Katubi, F.M. Alzahrani, F. Ben Rebah, M.A. Tahoon, The Synthesis of Magnetic Nitrogen-Doped Graphene Oxide Nanocomposite for the Removal of Reactive Orange 12 Dye, Adsorption Science and Technology. 2022 (2022). doi:10.1155/2022/9417542.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Kirliliği ve Önlenmesi
Bölüm Makaleler
Yazarlar

Ömer Kazak 0000-0003-1735-6241

Erken Görünüm Tarihi 24 Temmuz 2024
Yayımlanma Tarihi 31 Ağustos 2024
Gönderilme Tarihi 27 Şubat 2024
Kabul Tarihi 28 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 6 Sayı: 2

Kaynak Göster

APA Kazak, Ö. (2024). Doğu Mazısı Kozalağının NaOH Aktivasyonu ile Aktif Karbon Hazırlanması ve Su Ortamından Reaktif Turuncu 12’nin Giderimi. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 6(2), 199-210. https://doi.org/10.47112/neufmbd.2024.43
AMA Kazak Ö. Doğu Mazısı Kozalağının NaOH Aktivasyonu ile Aktif Karbon Hazırlanması ve Su Ortamından Reaktif Turuncu 12’nin Giderimi. NEU Fen Muh Bil Der. Ağustos 2024;6(2):199-210. doi:10.47112/neufmbd.2024.43
Chicago Kazak, Ömer. “Doğu Mazısı Kozalağının NaOH Aktivasyonu Ile Aktif Karbon Hazırlanması Ve Su Ortamından Reaktif Turuncu 12’nin Giderimi”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 6, sy. 2 (Ağustos 2024): 199-210. https://doi.org/10.47112/neufmbd.2024.43.
EndNote Kazak Ö (01 Ağustos 2024) Doğu Mazısı Kozalağının NaOH Aktivasyonu ile Aktif Karbon Hazırlanması ve Su Ortamından Reaktif Turuncu 12’nin Giderimi. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 6 2 199–210.
IEEE Ö. Kazak, “Doğu Mazısı Kozalağının NaOH Aktivasyonu ile Aktif Karbon Hazırlanması ve Su Ortamından Reaktif Turuncu 12’nin Giderimi”, NEU Fen Muh Bil Der, c. 6, sy. 2, ss. 199–210, 2024, doi: 10.47112/neufmbd.2024.43.
ISNAD Kazak, Ömer. “Doğu Mazısı Kozalağının NaOH Aktivasyonu Ile Aktif Karbon Hazırlanması Ve Su Ortamından Reaktif Turuncu 12’nin Giderimi”. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 6/2 (Ağustos 2024), 199-210. https://doi.org/10.47112/neufmbd.2024.43.
JAMA Kazak Ö. Doğu Mazısı Kozalağının NaOH Aktivasyonu ile Aktif Karbon Hazırlanması ve Su Ortamından Reaktif Turuncu 12’nin Giderimi. NEU Fen Muh Bil Der. 2024;6:199–210.
MLA Kazak, Ömer. “Doğu Mazısı Kozalağının NaOH Aktivasyonu Ile Aktif Karbon Hazırlanması Ve Su Ortamından Reaktif Turuncu 12’nin Giderimi”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 6, sy. 2, 2024, ss. 199-10, doi:10.47112/neufmbd.2024.43.
Vancouver Kazak Ö. Doğu Mazısı Kozalağının NaOH Aktivasyonu ile Aktif Karbon Hazırlanması ve Su Ortamından Reaktif Turuncu 12’nin Giderimi. NEU Fen Muh Bil Der. 2024;6(2):199-210.


32206                   17157           17158