Araştırma Makalesi
BibTex RIS Kaynak Göster

Sulardan Humik Asit Gideriminde Demir Kaplı Zeolitle (DKZ) Katalitik Ozonlama

Yıl 2017, , 424 - 430, 27.12.2017
https://doi.org/10.17100/nevbiltek.333083

Öz

Bu
çalışmada hidrojen peroksit ve demir kaplı zeolitle katalitik ozonlama ile
humik asit giderimi incelenmiştir. Sonuçlar çözünmüş organik karbon (ÇOK),
UV254, SUVA254 (254 nm'de (spesifik Ultraviyole absorbansı) ve renk absorbansı
(A436) parametreleri ölçülerek değerlendirilmiştir. 60 dakikada pH 6.5'da 10
mg/L ozon konsantrasyonunda yalnız başına ozonlama ile %21,4 ÇOK giderimi elde
edilirken demir kaplı zeolitle (0,75 mg/L) katalitik ozonlama deneylerinde %62
ÇOK giderimi elde edilmiş, katalitik ozonlama sistemine 1 mg/L hidrojen
peroksit ilavesiyle de (%64,6 ile ) çok hafif bir artış gözlenmiştir. katalitik
ozonlama yalnız başına ozonlamaya kıyasla UV absorplayan aromatik yapının parçalanmasına
katkıda bulunmuş ve ÇOK giderimini de iyileştirmiştir ancak katalitik ozonlama
sistemlerinde ozon konsantrasyonunun artışı giderim veriminde kayda değer bir
artış sağlamamıştır.

Kaynakça

  • Afzal, Atefeh, et al. "Effects of ozone and ozone/hydrogen peroxide on the degradation of model and real oil-sands-process-affected-water naphthenic acids." Ozone: Science & Engineering 37.1 (2015): 45-54.
  • Asgari G., Mohammadi A.S., Ebrahimi A. “Performance of the catalytic ozonation process with pumice in removal of humic acids from aqueous solutions” Int. J. Environ. Health Eng., 1.1 p. 30, 2012.
  • Bhatnagar, Amit, and Mika Sillanpää. "Removal of natural organic matter (NOM) and its constituents from water by adsorption–A review." Chemosphere 166 (2017): 497-510.
  • Buxton, G.V., C.L. Greenstock, W.P. Helman, and W.P. Ross. 1988. “Critical Review of rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals in Aqueous Solution.” Journal of Physical and Chemical Reference Data 17: 513–886.
  • Caihua Li,, et al. "Catalytic Ozonation for Advanced Treatment of Incineration Leachate Using (MnO 2-Co 3 O 4)/AC as a Catalyst." Chemical Engineering Journal (2017).
  • Jelena J. Molnar, R. Jasmina Agbaba, D. Božo Dalmacija, T. Mile Klašnja, B. Milena Dalmacija, M. Marijana Kragulj “A comparative study of the effects of ozonation and TiO2-catalyzed ozonation on the selected chlorine disinfection by-product precursor content and structure” Sci. Total Environ., 425 (2012), pp. 169–175.
  • Fan, Zihong, et al. "Characterization, DBPs formation, and mutagenicity of different organic matter fractions in two source waters." International journal of hygiene and environmental health 217.2 (2014): 300-306.
  • Gerrity, D., Gamage, S., Holady, J.C., Mawhinney, D.B., Quinones, O., Trenholm, R.A., Snyder, S.A., 2011. “Pilot-scale evaluation of ozone and biological activated carbon for trace organic contaminant mitigation and disinfection”. Water Res. 45 (5), 2155e2165.
  • Glaze, W.H., J.W. Kang, and D.H. Chapin. 1987. “The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide And Ultraviolet Radiation.” Ozone Science and Engineering 9: 335–352.
  • Gümüş, Dilek, and Feryal Akbal. "A comparative study of ozonation, iron coated zeolite catalyzed ozonation and granular activated carbon catalyzed ozonation of humic acid." Chemosphere 174 (2017): 218-231.
  • Karanfil, Tanju, et al. "Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 2. Natural organic matter." Environmental science & technology 33.18 (1999): 3225-3233.
  • Kitis M., Kaplan S. S., , Karakaya E., , Yigit N. O., & Civelekoglu G., “Adsorption of natural organic matter from waters by iron coated pumice”. Chemosphere, 66 (1) (2007) 130-138.
  • Lai C.H., Chen C.Y., “Removal of metal ions and humic acid from water by iron coated filter media”. Chemosphere 44 (2001) 1177–1184.
  • Lai C.H., , Lo S.L., Chiang H.L, “Adsorption/desorption properties of copper ions on the surface of iron coated sand using BET and EDAX analyses”. Chemosphere 41 (2000) 1249–1255.
  • Lee Ji-Eun, et al “Catalytic ozonation of humic acids with Fe/MgO” Korean J. Chem. Eng., 22.4 (2005), pp. 536–540.
  • Liu, Yongze, et al. "Role of the propagation reactions on the hydroxyl radical formation in ozonation and peroxone (ozone/hydrogen peroxide) processes." water research 68 (2015): 750-758.
  • Matilainen A., Sillanpää M., “Removal of natural organic matter from drinking water by advanced oxidation processes”, Chemosphere 80 (2010) 351–365.
  • Park J.-S., Choi H., Cho J. “Kinetic decomposition of ozone and para-chlorobenzoic acid (pCBA) during catalytic ozonation” Water Res., 38 (2004), pp. 2285–2292
  • Park J.-S., Choi H., Ahn K.-H., J.-W. Kang “Removal mechanism of natural organic matter and organic acid by ozone in the presence of goethite” Sci. Eng., 26 (2004), pp. 141–151.
  • Pisarenko, A.N., Stanford, B.D., Yan, D., Gerrity, D., Snyder, S.A., 2012 “Effects of ozone and ozone/peroxide on trace organic contaminants and NDMA in drinking water and water reuse applications” Water Res. 46 (2), 316e326.
  • Pocostales, J.P., Sein, M.M., Knolle, W., von Sonntag, C., Schmidt, T.C., 2010 “Degradation of ozone-refractory organic phosphates in wastewater by ozone and ozone/hydrogen peroxide (peroxone): the role of ozone consumption by dissolved organic matter” Environ. Sci. Technol. 44 (21), 8248e8253.
  • Staehelin, J., Hoigne, J., 1982 “Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide” Environ. Sci. Technol. 16 (10), 676e681. Summer M.E., Clay Mineials Bull. 5 (1963) 218-226.
  • Wert, E.C., Rosario-Ortiz, F.L., Snyder, S.A., 2009 “Effect of ozone exposure on the oxidation of trace organic contaminants in wastewater” Water Res. 43 (4), 1005e1014.
  • Xie, Yuefeng. “Disinfection byproducts in drinking water: Formation, analysis, and control” CRC press, 2016.
  • www.gordeszeolit.com, 17 February 2016, 16 p.m.

Catalytic Ozonation for The Removal of Humic Acid in Water with Iron Coated Zeolite (ICZ)

Yıl 2017, , 424 - 430, 27.12.2017
https://doi.org/10.17100/nevbiltek.333083

Öz

This
study examined the catalytic ozonation of humic acid (HA) with iron coated
zeolite (ICZ) and hydrogen peroxide (H2O2). The results
were evaluated by DOC that specify organic matter, UV254, SUVA254
(Specific Ultraviole Absorbance at 254 nm), and A
436.
When ozonation was used alone, DOC removal was
obtained as 21.4% at ozone concentration of 10 mg/L, pH 6.50 and oxidation time
of 60 min.
DOC removal was found to increase by the the addition of H2O2
in ozonation process. The use of ICZ as catalyst
increased the decomposition of humic acid compared to ozonation alone. DOC
removal efficiency was obtained as 62.0% at pH 6.5, at  catalyst loading of 0.75 g/L, and oxidation
time of 60 min.
In catalytic ozonation process DOC removal slightly
incresed, when H2O2 was added. 64.6% DOC removal was obtained
at ozone concentration of 10 mg/L, catalyst dosage of 0.75mg/L and H2O2 concentration of 1
mg/L. The catalytic ozonation enhanced the
destruction of the aromatic and UV-absorbing structures compared with ozonation
alone. However, increasing ozone concentrations did not increase removal
efficiencies significantly in the catalytic ozonation processes.

Kaynakça

  • Afzal, Atefeh, et al. "Effects of ozone and ozone/hydrogen peroxide on the degradation of model and real oil-sands-process-affected-water naphthenic acids." Ozone: Science & Engineering 37.1 (2015): 45-54.
  • Asgari G., Mohammadi A.S., Ebrahimi A. “Performance of the catalytic ozonation process with pumice in removal of humic acids from aqueous solutions” Int. J. Environ. Health Eng., 1.1 p. 30, 2012.
  • Bhatnagar, Amit, and Mika Sillanpää. "Removal of natural organic matter (NOM) and its constituents from water by adsorption–A review." Chemosphere 166 (2017): 497-510.
  • Buxton, G.V., C.L. Greenstock, W.P. Helman, and W.P. Ross. 1988. “Critical Review of rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals in Aqueous Solution.” Journal of Physical and Chemical Reference Data 17: 513–886.
  • Caihua Li,, et al. "Catalytic Ozonation for Advanced Treatment of Incineration Leachate Using (MnO 2-Co 3 O 4)/AC as a Catalyst." Chemical Engineering Journal (2017).
  • Jelena J. Molnar, R. Jasmina Agbaba, D. Božo Dalmacija, T. Mile Klašnja, B. Milena Dalmacija, M. Marijana Kragulj “A comparative study of the effects of ozonation and TiO2-catalyzed ozonation on the selected chlorine disinfection by-product precursor content and structure” Sci. Total Environ., 425 (2012), pp. 169–175.
  • Fan, Zihong, et al. "Characterization, DBPs formation, and mutagenicity of different organic matter fractions in two source waters." International journal of hygiene and environmental health 217.2 (2014): 300-306.
  • Gerrity, D., Gamage, S., Holady, J.C., Mawhinney, D.B., Quinones, O., Trenholm, R.A., Snyder, S.A., 2011. “Pilot-scale evaluation of ozone and biological activated carbon for trace organic contaminant mitigation and disinfection”. Water Res. 45 (5), 2155e2165.
  • Glaze, W.H., J.W. Kang, and D.H. Chapin. 1987. “The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide And Ultraviolet Radiation.” Ozone Science and Engineering 9: 335–352.
  • Gümüş, Dilek, and Feryal Akbal. "A comparative study of ozonation, iron coated zeolite catalyzed ozonation and granular activated carbon catalyzed ozonation of humic acid." Chemosphere 174 (2017): 218-231.
  • Karanfil, Tanju, et al. "Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 2. Natural organic matter." Environmental science & technology 33.18 (1999): 3225-3233.
  • Kitis M., Kaplan S. S., , Karakaya E., , Yigit N. O., & Civelekoglu G., “Adsorption of natural organic matter from waters by iron coated pumice”. Chemosphere, 66 (1) (2007) 130-138.
  • Lai C.H., Chen C.Y., “Removal of metal ions and humic acid from water by iron coated filter media”. Chemosphere 44 (2001) 1177–1184.
  • Lai C.H., , Lo S.L., Chiang H.L, “Adsorption/desorption properties of copper ions on the surface of iron coated sand using BET and EDAX analyses”. Chemosphere 41 (2000) 1249–1255.
  • Lee Ji-Eun, et al “Catalytic ozonation of humic acids with Fe/MgO” Korean J. Chem. Eng., 22.4 (2005), pp. 536–540.
  • Liu, Yongze, et al. "Role of the propagation reactions on the hydroxyl radical formation in ozonation and peroxone (ozone/hydrogen peroxide) processes." water research 68 (2015): 750-758.
  • Matilainen A., Sillanpää M., “Removal of natural organic matter from drinking water by advanced oxidation processes”, Chemosphere 80 (2010) 351–365.
  • Park J.-S., Choi H., Cho J. “Kinetic decomposition of ozone and para-chlorobenzoic acid (pCBA) during catalytic ozonation” Water Res., 38 (2004), pp. 2285–2292
  • Park J.-S., Choi H., Ahn K.-H., J.-W. Kang “Removal mechanism of natural organic matter and organic acid by ozone in the presence of goethite” Sci. Eng., 26 (2004), pp. 141–151.
  • Pisarenko, A.N., Stanford, B.D., Yan, D., Gerrity, D., Snyder, S.A., 2012 “Effects of ozone and ozone/peroxide on trace organic contaminants and NDMA in drinking water and water reuse applications” Water Res. 46 (2), 316e326.
  • Pocostales, J.P., Sein, M.M., Knolle, W., von Sonntag, C., Schmidt, T.C., 2010 “Degradation of ozone-refractory organic phosphates in wastewater by ozone and ozone/hydrogen peroxide (peroxone): the role of ozone consumption by dissolved organic matter” Environ. Sci. Technol. 44 (21), 8248e8253.
  • Staehelin, J., Hoigne, J., 1982 “Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide” Environ. Sci. Technol. 16 (10), 676e681. Summer M.E., Clay Mineials Bull. 5 (1963) 218-226.
  • Wert, E.C., Rosario-Ortiz, F.L., Snyder, S.A., 2009 “Effect of ozone exposure on the oxidation of trace organic contaminants in wastewater” Water Res. 43 (4), 1005e1014.
  • Xie, Yuefeng. “Disinfection byproducts in drinking water: Formation, analysis, and control” CRC press, 2016.
  • www.gordeszeolit.com, 17 February 2016, 16 p.m.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm ICOCEE 2017 (International Conference on Civil and Environmental Engineering) Özel Sayısı
Yazarlar

Dilek Gümüş

Feryal Akbal

Yayımlanma Tarihi 27 Aralık 2017
Kabul Tarihi 29 Kasım 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Gümüş, D., & Akbal, F. (2017). Sulardan Humik Asit Gideriminde Demir Kaplı Zeolitle (DKZ) Katalitik Ozonlama. Nevşehir Bilim Ve Teknoloji Dergisi, 6, 424-430. https://doi.org/10.17100/nevbiltek.333083
AMA Gümüş D, Akbal F. Sulardan Humik Asit Gideriminde Demir Kaplı Zeolitle (DKZ) Katalitik Ozonlama. Nevşehir Bilim ve Teknoloji Dergisi. Aralık 2017;6:424-430. doi:10.17100/nevbiltek.333083
Chicago Gümüş, Dilek, ve Feryal Akbal. “Sulardan Humik Asit Gideriminde Demir Kaplı Zeolitle (DKZ) Katalitik Ozonlama”. Nevşehir Bilim Ve Teknoloji Dergisi 6, Aralık (Aralık 2017): 424-30. https://doi.org/10.17100/nevbiltek.333083.
EndNote Gümüş D, Akbal F (01 Aralık 2017) Sulardan Humik Asit Gideriminde Demir Kaplı Zeolitle (DKZ) Katalitik Ozonlama. Nevşehir Bilim ve Teknoloji Dergisi 6 424–430.
IEEE D. Gümüş ve F. Akbal, “Sulardan Humik Asit Gideriminde Demir Kaplı Zeolitle (DKZ) Katalitik Ozonlama”, Nevşehir Bilim ve Teknoloji Dergisi, c. 6, ss. 424–430, 2017, doi: 10.17100/nevbiltek.333083.
ISNAD Gümüş, Dilek - Akbal, Feryal. “Sulardan Humik Asit Gideriminde Demir Kaplı Zeolitle (DKZ) Katalitik Ozonlama”. Nevşehir Bilim ve Teknoloji Dergisi 6 (Aralık 2017), 424-430. https://doi.org/10.17100/nevbiltek.333083.
JAMA Gümüş D, Akbal F. Sulardan Humik Asit Gideriminde Demir Kaplı Zeolitle (DKZ) Katalitik Ozonlama. Nevşehir Bilim ve Teknoloji Dergisi. 2017;6:424–430.
MLA Gümüş, Dilek ve Feryal Akbal. “Sulardan Humik Asit Gideriminde Demir Kaplı Zeolitle (DKZ) Katalitik Ozonlama”. Nevşehir Bilim Ve Teknoloji Dergisi, c. 6, 2017, ss. 424-30, doi:10.17100/nevbiltek.333083.
Vancouver Gümüş D, Akbal F. Sulardan Humik Asit Gideriminde Demir Kaplı Zeolitle (DKZ) Katalitik Ozonlama. Nevşehir Bilim ve Teknoloji Dergisi. 2017;6:424-30.

Dergimizin tarandığı indeksler


12300          20980     2097822081