Araştırma Makalesi
BibTex RIS Kaynak Göster

Poliamidoamin Dendrimeri ile Modifiye Edilen Demir Oksit Nanopartiküllerle Hazırlanmış MNPs-G1-Mu Adsorbanı Tarafından Cr(III) İyonlarının Adsorpsiyonunun İncelenmesi

Yıl 2021, , 111 - 123, 16.12.2021
https://doi.org/10.17100/nevbiltek.934874

Öz

Bu çalışmada daha önceden sentezlenmiş bir nano adsorban olan MNPs-G1-Mu tarafından Cr (III) metal iyonlarının adsorpsiyon işlemi ile sudan uzaklaştırılması amaçlanmıştır. MNPs-G1-Mu adsorbanı; Pamam dendrimeri ile modifiye edilmiş demir oksit nanopartiküllerden sentezlenmiştir. Cr (III) iyonlarının MNPs-G1-Mu üzerindeki adsorpsiyonunu etkileyen faktörler (denge temas süresi, pH, adsorban miktarı, Cr (III) iyonları çözeltisinin başlangıç konsantrasyonu) incelenmiştir. Daha sonra adsorpsiyon kinetiğinin anlaşılması için kinetik çalışma yapılmıştır. Kinetik deney sonuçlarından elde edilen veriler pseudo birinci ve ikinci derece kinetik denklemlerinde değerlendirilmiş ve adsorpsiyonun her iki kinetik denkleme de uyduğu belirlenmiştir. Pseudo ikinci derece kinetik denkleminden üç sıcaklık için (298, 308 ve 318 K) elde edilen hız sabitleri Arrhenius denklemine uyarlanmış olup adsorpsiyonun aktivasyon enerjisi 2,58 kJ mol-1 olarak hesaplanmıştır. Son olarak adsorpsiyona ait izoterm çalışması yapılmıştır. Adsorpsiyonun, Freundlich adsorpsiyon izotermine uyduğu görülmüştür. Freundlich izoterm sabitleri olan “k” ve “n” sabitleri sırasıyla 26,964 ve 0,8899 olarak hesaplanmıştır. Sonuç olarak, MNPs-G1-Mu adsorbanının Cr (III) iyonlarını etkili bir şekilde sudan uzaklaştırdığı belirlenmiştir.

Destekleyen Kurum

Fırat Üniversitesi Bilimsel Araştırma ve Proje Koordinatörlüğü

Proje Numarası

FF.1638

Kaynakça

  • [1] Karezani E., Hallajisani A., Asgarpour Khansary M., “A quantum mechanics/molecular mechanics (QM/MM) investigation on the mechanism of adsorptive removal of heavy metal ions by lignin: single and competitive ion adsorption“ Cellulose, 24 (8), 3131-3143, 2017
  • [2] Shang J., Yanni G., He D., Qu W., Tang Y., Zhou L., Zhu R., “A novel graphene oxide-dicationic ionic liquid composite for Cr(VI) adsorption from aqueous solutions” Journal of Hazardous Materials, 416, 125706, 2021
  • [3] Ayati A., Ranjbari S., Tanhaei B., Sillanpää M., “Ionic liquid-modified composites for the adsorptive removal of emerging water contaminants: a review” Journal of Molecular Liquids, 275, 71-83, 2019
  • [4] Wang J., Mao M., Atif S., Chen Y., “ Adsorption behavior and mechanism of aqueous Cr(III) and Cr(III)-EDTA chelates on DTPA-chitosan modified Fe3O4@SiO2” Reactive and Functional Polymers, 156, 104720, 2020
  • [5] Habibi Z., Karimi Dehkordi S., Kargar S., Sadeghi M., “ Grain source and chromium supplementation: effects on health, metabolic status, and glucose-insulin kinetics in Holstein heifer calves” Journal of Dairy Science, 102, 8941-8951, 2019
  • [6] Li W., Xue X., “Emission reduction research and formation of hexavalent chromium in stainless steel smelting: cooling rate and boron oxide addition effects” Process Safety and Environmental Protection, 122, 131-143, 2019
  • [7] Ishfaq A., Ilyas S., Yaseen A., Farhan M., “Hydrometallurgical valorization of chromium, iron, and zinc from an electroplating effluent” Seperation and Purification Technologies, 209, 964-971, 2019
  • [8] Almotairi A., Farhat Z., Warkentin A., “Thermal damage of conventional hard chromium coatings on 416 stainless steel” Engineering Failure Analysis, 105, 1118-1130, 2019
  • [9] Wang X., Gao D., Chen B., Meng Y., Fu Z., Wang M., “A clean metallurgical process for separation and recovery of vanadium and chromium from V-Cr-bearing reducing slag” Hydrometallurgy, 181, 1-6, 2018
  • [10] Zhang C., Xia F., Long J., Peng B., “An integrated technology to minimize the pollution of chromium in wet-end process of leather manufacture” Journal of Cleaner Production, 154, 276-283, 2017
  • [11] Peng H., Gou J., Li B., Liu Z., Tao C., “High-efficient recovery of chromium (VI) with lead sulfate” Journal of the Taiwan Institute of Chemical Engineers, 85, 149-154, 2018
  • [12] Wang J., Tong X., Chen Y., Sun T., Liang L., Wang C., “Enhanced removal of Cr(III) in high salt organic wastewater by EDTA modified magnetic mesoporous silica” Microporous Mesoporous Materials, 303, 110262, 2020
  • [13] Zhao X., Guo L., Qu J., “Photoelectrocatalytic oxidation of Cu-EDTA complex and electrodeposition recovery of Cu in a continuous tubular photoelectrochemical reactor” Chemical Engineering Journal, 239, 53-59, 2014 (fotokatalitik oksidasyon)
  • [14] Barbosa R.F.S., Souza A.G., Maltez H.F., Rosa D.S. “Chromium removal from contaminated wastewaters using biodegradable membranes containing cellulose nanostructures” Chemical Engineering Journal, 395,125055, 2020
  • [15] Li X., Ai L., Jiang J.,“Nanoscale zerovalent iron decorated on graphene nanosheets for Cr(VI) removal from aqueous solution: Surface corrosion retard induced the enhanced performance” Chemical Engineering Journal, 288, 789-797, 2016
  • [16] Wang H., Song X., Zhang H., Tan P., Kong F., “Removal of hexavalent chromium in dual-chamber microbial fuel cells separated by different ion exchange membranes” Journal of Hazardous Materials, 384, 121459, 2020
  • [17] Dos Santos C.S.L., Miranda Reis M.H., Cardoso V.L., de Resende M.M., “Electrodialysis for removal of chromium (VI) from effluent: Analysis of concentrated solution saturation” Journal of Environmental Chemical Engineering, 7 (5), 103380, 2019
  • [18] Liu L., Liu J., Zhao L., Yang Z., Lv C., Xue J., Tang A., “Synthesis and characterization of magnetic Fe3O4@CaSiO3 composites and evaluation of their adsorption characteristics for heavy metal ions” Environmental Science and Pollution Research, 26, 8721-8736, 2019
  • [19] Li X., Ai L., Jiang J., “Nanoscale zerovalent iron decorated on graphene nanosheets for Cr(VI) removal from aqueous solution: Surface corrosion retard induced the enhanced performance” Chemical Engineering Journal, 288, 789-797, 2016
  • [20] Wang K., Wu Y., Li N., Cai N., Huang S., Li H., Xiao Q., “No Accessγ-Al2O3 yolk–shell porous microspheres with superior Congo red removal performance” Surface Innovations, 8 (1-2), 65-75, 2020
  • [21] Braniša J., Jomova K., Lapčík L., Porubská M., “Testing of electron beam irradiated sheep wool for adsorption of Cr(III) and Co(II) of higher concentrations” Polymer Testing, 107191, 2021
  • [22] Zhou S.Y., Yao Z.Y., Qie L.M., Xie S.B., Yang Q., Qi J.H., “Pb (II) adsorption by nanogoethite loaded with chestnut shell pigment” Emerging Materials Research, 9 (2), 410-418, 2020
  • [23] Gomez-Pastora J., Bringas E., Ortiz I., “Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications” Chemical Engineerig Journal, 256, 187-204, 2014
  • [24] Lin S., Xu M., Zhang W., Hua X., Lin K., “Quantitative effects of amination degree on the magnetic iron oxide nanoparticles (MIONPs) using as adsorbents to remove aqueous heavy metal ions” Journal of Hazardous Materials, 335, 47-55, 2017
  • [25] Mandavian A.R., Mirrahimi M.A.S., “Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification” Chemical Engineering Journal, 159, 264-271, 2010
  • [26] Xu H., Yuan H., Yu J., Lin S., “Study on the competitive adsorption and correlational mechanism for heavy metal ions using the carboxylated magnetic iron oxide nanoparticles (MNPs-COOH) as efficient adsorbents” Applied Surface Science, 473, 960-966, 2019
  • [27] Gaihre B., Khil M.S., Lee D.R., Kim H.Y., “Gelatin-coated magnetic iron oxide nanoparticles as carrier system: drug loading and in vitro drug release study” International Journal of Pharmaceutics, 365, 180-189, 2009
  • [28] Lu A.H., Salabas E.L., Schuth F., “Magnetic nanoparticles: synthesis, protection, functionalization, and application” Angew Chemie International Edition, 46, 1222-1244, 2007
  • [29] Yong Y., Bai Y.X., Li Y.F., Lin L., Cui Y.J., Xia C.G., “Characterization of Candida rugosa lipase immobilized onto magnetic microspheres with hydrophilicity” Process Biochemistry, 43, 1179-1185, 2008
  • [30] Lai B.H., Yeh C.C., Chen D.H., “Surface modification of iron oxide nanoparticles with polyarginine as a highly positively charged magnetic nano-adsorbent for fast and effective recovery of acid proteins” Process Biochemistry, 47 (5), 799-805, 2012
  • [31] Ekinci S., İlter Z., Ercan S., Çınar E., Çakmak R., “Magnetite nanoparticles grafted with murexide-terminated polyamidoamine dendrimers for removal of lead (II) from aqueous solution: synthesis, characterization, adsorption and antimicrobial activity studies” Heliyon, 7, e06600, 2021
  • [32] Ekinci, S. “Poliamidoamin dendrimerleri ile modifiye edilmiş süperparamagnetik demir oksit nanopartiküllerin hazırlanması ve bazı ağır metallerin ve boyar maddelerin adsorpsiyonunda kullanılması” Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, Elazığ, 2019
  • [33] Özmen, M., Can, K., Arslan, G., Tor, A., Cengeloğlu, Y., Ersöz, M., “Adsorption of Cu(II) from aqueous solution by using modified Fe3O4 magnetic nanoparticles” Desalination, 254, 162-169, 2010
  • [34] Rahimi, R., Maleki, A., Maleki, S., Morsali, A., Rahimi, M.J., “Synthesis and characterization of magnetic dichromate hybrid nanomaterials with triphenylphosphine surface modified iron oxide nanoparticles (Fe3O4@SiO2@PPh3@Cr2O7-2)” Solid State Sciences, 28, 9-13, 2014
  • [35] Mirzabe, G.H., Keshtkar, A.R., ”Application of response surface methodology for throium adsorption on PVA/Fe3O4/SiO2/APTES nanohybrid adsorbent” Journal of Industrial and Engineering Chemistry, 26, 277-285, 2015
  • [36] Wang, T., Yang, W.L., Hong, Y., Hou, Y.L., “Magnetic nanoparticles grafted with amino-riched dendrimer as magnetic flocculant for efficient harvesting of oleaginous microalgae” Chemical Engineering Journal, 297, 304-314, 2016
  • [37] Baysal, Z., Çinar, E., Bulut Y., Alkan H., Dogru M., “Equilibrium and thermodynamic studies on biosorption of Pb(II) onto Candida albicans biomass” Journal of Hazardous Materials, 161 (1), 62-67, 2009
  • [38] Pan J.J., Jiang J., Xu R.,” Adsorption of Cr(III) from acidic solutions by crop straw derived biochars” Journal of Environmental Science, 25, 1957-1965, 2013
  • [39] Bernardo G.R., Rene R.M., Ma Catalina A.D.T., “Chromium(III) uptake by agro-waste biosorbents: chemical characterization, sorption-desorption studies, and mechanism” Journal of Hazardous Materials, 170, 845-854, 2009
  • [40] Yi Y., Wang X., Ma J., Ning P., “Fe (III) modified Egeria najas driven-biochar for highly improved reduction and adsorption performance of Cr (IV)” Powder Technology, 388, 485-495, 2021
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Selma Ekinci 0000-0002-7835-4832

Zülfiye İlter 0000-0002-2135-0347

Proje Numarası FF.1638
Yayımlanma Tarihi 16 Aralık 2021
Kabul Tarihi 25 Ağustos 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Ekinci, S., & İlter, Z. (2021). Poliamidoamin Dendrimeri ile Modifiye Edilen Demir Oksit Nanopartiküllerle Hazırlanmış MNPs-G1-Mu Adsorbanı Tarafından Cr(III) İyonlarının Adsorpsiyonunun İncelenmesi. Nevşehir Bilim Ve Teknoloji Dergisi, 10(2), 111-123. https://doi.org/10.17100/nevbiltek.934874
AMA Ekinci S, İlter Z. Poliamidoamin Dendrimeri ile Modifiye Edilen Demir Oksit Nanopartiküllerle Hazırlanmış MNPs-G1-Mu Adsorbanı Tarafından Cr(III) İyonlarının Adsorpsiyonunun İncelenmesi. Nevşehir Bilim ve Teknoloji Dergisi. Aralık 2021;10(2):111-123. doi:10.17100/nevbiltek.934874
Chicago Ekinci, Selma, ve Zülfiye İlter. “Poliamidoamin Dendrimeri Ile Modifiye Edilen Demir Oksit Nanopartiküllerle Hazırlanmış MNPs-G1-Mu Adsorbanı Tarafından Cr(III) İyonlarının Adsorpsiyonunun İncelenmesi”. Nevşehir Bilim Ve Teknoloji Dergisi 10, sy. 2 (Aralık 2021): 111-23. https://doi.org/10.17100/nevbiltek.934874.
EndNote Ekinci S, İlter Z (01 Aralık 2021) Poliamidoamin Dendrimeri ile Modifiye Edilen Demir Oksit Nanopartiküllerle Hazırlanmış MNPs-G1-Mu Adsorbanı Tarafından Cr(III) İyonlarının Adsorpsiyonunun İncelenmesi. Nevşehir Bilim ve Teknoloji Dergisi 10 2 111–123.
IEEE S. Ekinci ve Z. İlter, “Poliamidoamin Dendrimeri ile Modifiye Edilen Demir Oksit Nanopartiküllerle Hazırlanmış MNPs-G1-Mu Adsorbanı Tarafından Cr(III) İyonlarının Adsorpsiyonunun İncelenmesi”, Nevşehir Bilim ve Teknoloji Dergisi, c. 10, sy. 2, ss. 111–123, 2021, doi: 10.17100/nevbiltek.934874.
ISNAD Ekinci, Selma - İlter, Zülfiye. “Poliamidoamin Dendrimeri Ile Modifiye Edilen Demir Oksit Nanopartiküllerle Hazırlanmış MNPs-G1-Mu Adsorbanı Tarafından Cr(III) İyonlarının Adsorpsiyonunun İncelenmesi”. Nevşehir Bilim ve Teknoloji Dergisi 10/2 (Aralık 2021), 111-123. https://doi.org/10.17100/nevbiltek.934874.
JAMA Ekinci S, İlter Z. Poliamidoamin Dendrimeri ile Modifiye Edilen Demir Oksit Nanopartiküllerle Hazırlanmış MNPs-G1-Mu Adsorbanı Tarafından Cr(III) İyonlarının Adsorpsiyonunun İncelenmesi. Nevşehir Bilim ve Teknoloji Dergisi. 2021;10:111–123.
MLA Ekinci, Selma ve Zülfiye İlter. “Poliamidoamin Dendrimeri Ile Modifiye Edilen Demir Oksit Nanopartiküllerle Hazırlanmış MNPs-G1-Mu Adsorbanı Tarafından Cr(III) İyonlarının Adsorpsiyonunun İncelenmesi”. Nevşehir Bilim Ve Teknoloji Dergisi, c. 10, sy. 2, 2021, ss. 111-23, doi:10.17100/nevbiltek.934874.
Vancouver Ekinci S, İlter Z. Poliamidoamin Dendrimeri ile Modifiye Edilen Demir Oksit Nanopartiküllerle Hazırlanmış MNPs-G1-Mu Adsorbanı Tarafından Cr(III) İyonlarının Adsorpsiyonunun İncelenmesi. Nevşehir Bilim ve Teknoloji Dergisi. 2021;10(2):111-23.

Dergimizin tarandığı indeksler


12300          20980     2097822081