Araştırma Makalesi
BibTex RIS Kaynak Göster

Cost Effective Production of Nitride Based Materials by High Energy Ball Milling

Yıl 2020, 4. International Conference on Material Science and Technology (IMSTEC 2019) özel sayı, 79 - 85, 01.07.2020
https://doi.org/10.17100/nevbiltek.748178

Öz

In the production of ceramic materials, both performance increase and economy are the two most important parameters. The common parameter in the management of these two processes is the control of the initial powder size of the raw materials. Nitride-based advanced technology materials provide significant advantages due to their purity, and micron size in the production process. However, the sintering of these materials is both difficult and expensive. The additives used in the sintering process may cause deterioration in the using properties of the material in the final product. Due to its properties, hardness and abrasiveness, it cannot be easily possible reduce their particle size to the desired size using the grinding process. However, it is possible to make this process be active, short and efficient by suspending the powders in suspension. Therefore, it is possible to increasing the powder-powder, powder-ball interaction in the system. In this study, the process was controlled by using different stabilizers and medium. Thus, the size of nitride powders having a grain size of 500 m was reduced to 100nm, resulting in improved sintering and mechanical behavior.

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • [1] Gleiter, H., “Nanostructured Materials, Basic concept and microstructure.” Acta Mater., 48, 1-29, 2000
  • [2] Murty, B.S., Ranganathan, S., “Novel materials synthesis by mechanical alloying/milling.” Int. Mater. Rev., 43, 101-141, 1998
  • [3] Balaz, P., Godocikova, E., Krilova, L., Lobotk, P., Gock, E., “Preparation of nanocrystalline materials by high-energy milling,” Materials Science and Engineering A, 386, 442-446, 2004
  • [4] Jack, K.H., “Sialons and related nitrogen ceramics.” Mater. Sci., 11, 1135-1158, 1976
  • [5] Deeley, G.C., Herbert, J.M., Moore, N.C., “Dense silicon nitride.” Pow. Met., 8, 145, 1961
  • [6] Lukianova, O.A., Krasilnikov, V.V., Parkhomenko, A.A., Sirota, V.V., “Microstructure and phase composition of cold isostatically pressed and pressureless sintered silicon nitride. “Research Letters, 11, 148, 2016
  • [7] Hoffmann, M.J., “Relationship between microstructure and mechanical properties of silicon nitride ceramics.” Pure Appl. Chem., 67, 939-946,1995
  • [8] Ekström, T., Nygren, M., “SiAION Ceramics.” J. Am. Ceram. Soc., 75, 259-276, 1992
  • [9] Izhevskiy, V.A, Genova, L.A, Bressiani, J.C, Aldinger, F., “Progress in SiAlON Ceramics,.” J. Euro. Ceram. Soc., 20, 2275-2295, 2000
  • [10] Shelb, J.E, Kohli, J.T., “Rare-earth aluminosilicate glasses.” J. Am. Ceram. Soc., 73, 1, 39-42, 1990
  • [11] Bulic, F., Zalite, I., Zhilinska, N., “Comparison of plasma-chemical synthesized SiAlON nano-powder and conventional prepared SiAlON powder, “Journal of the European Ceramic Society, 24, 3303-3306, 2004
  • [12] Xu, X., Oliveira, M, Ferreira, J. M. F., “Effect of solvent composition on dispersing ability of reaction SiAlON suspensions.” Journal of Colloid and Interface Science, 259, 391-397, 2003
  • [13] Li, Q., Zhang, C., Komeya, K., Tatami, J., Meguro, T., Gao, L., “Nano-powders of SiAlON carbothermally produced via a sol-gel process.” Journal of Materials Science Letters, 22, 885-887, 2003
  • [14] Xu, X., Nishimura, T., Hirosaki, N., Xie, R,, Yamamoto, Y., Tanaka, H., “Fabrication of -SiAlON nano ceramics by high-energy mechanical milling and spark plasma sintering.” Nanotechnology, 16, 1569-1573, 2005
  • [15] Lü, Z.J., Ai, X., Zhao, J., “Preparation of agglomerate-free starting powders for TiC-reinforced -SiAlON nanocomposites.” Materials Science Forum, 471-472, 282-286, 2004
  • [16] Tessier, P., Alamdari, H.D., Dubuc, R., Boily, S., “Nanocrystalline -SiAlON by reactive of a SiO2-AlN mixture subjected to high-energy ball milling.” Journal of Alloys and Compounds, 391, 225-227, 2005
  • [17] Xu, X., Nishimura, T., Hirosaki, N., Xie, R., “Fabrication of β-SiAlON Nanoceramics by High-energy mechanical milling and spark plasma sintering.” Institute of Physics Publishing Nanotechnology, 16, 1569-1573, 2005
  • [18] Xu, X., Nishimura, T., Hirosaki, N., Xie, R., Tanaka, H., “New strategies for preparing nano-sized silicon nitride ceramics.” J. Am. Ceram. Soc., 88, 4, 934-937, 2005
  • [19] Suryanarayana, C., “Mechanical Alloying and Milling.”, Progress in Materials Science, 46, 1-184, 2001
  • [20] Prziwara, P., Breitung-Faes, S., Kwade, A., “Impact of grinding aids on dry grinding performance, bulk properties and surface energy.” Advanced Powder Technology, 29, 416-425, 2018

Nitrür Esaslı Malzemelerin Yüksek Enerjili Öğütme ile Düşük Maliyetli Üretimi

Yıl 2020, 4. International Conference on Material Science and Technology (IMSTEC 2019) özel sayı, 79 - 85, 01.07.2020
https://doi.org/10.17100/nevbiltek.748178

Öz

Seramik malzemelerin üretiminde, hem performans artışı hem de ekonomi en önemli iki parametredir. Bu iki işlemin yönetimindeki ortak parametre, hammaddelerin başlangıçtaki toz boyutunun kontrol edilmesidir. Nitrür bazlı ileri teknoloji malzemeleri, saflıkları ve üretim sürecindeki mikron boyutları nedeniyle önemli avantajlar sağlar. Bununla birlikte, bu malzemelerin sinterlenmesi hem zor hem de pahalıdır. Sinterleme işleminde kullanılan katkı maddeleri, nihai üründe malzemenin kullanım özelliklerinde bozulmaya neden olabilir. Özellikleri, sertliği ve aşındırıcılığı nedeniyle, öğütme işlemini kullanarak partikül boyutlarını istenen boyuta düşürmek kolay bir şekilde mümkün değildir. Bununla birlikte, tozların süspansiyonda askıda tutulması ile bu işlemi aktif, kısa ve verimli hale getirmek mümkündür. Bu nedenle, sistemdeki toz-toz, toz-bilya etkileşimini arttırmak mümkündür. Bu çalışmada, süreç farklı stabilizatörler ve ortam kullanılarak kontrol edilmiştir. Böylece, tane büyüklüğü 500 m olan nitrür tozlarının boyutu 100nm'ye düşürülmüş, bu da sinterleme ve mekanik davranışların iyileştirilmesi ile sonuçlanmıştır.

Proje Numarası

-

Kaynakça

  • [1] Gleiter, H., “Nanostructured Materials, Basic concept and microstructure.” Acta Mater., 48, 1-29, 2000
  • [2] Murty, B.S., Ranganathan, S., “Novel materials synthesis by mechanical alloying/milling.” Int. Mater. Rev., 43, 101-141, 1998
  • [3] Balaz, P., Godocikova, E., Krilova, L., Lobotk, P., Gock, E., “Preparation of nanocrystalline materials by high-energy milling,” Materials Science and Engineering A, 386, 442-446, 2004
  • [4] Jack, K.H., “Sialons and related nitrogen ceramics.” Mater. Sci., 11, 1135-1158, 1976
  • [5] Deeley, G.C., Herbert, J.M., Moore, N.C., “Dense silicon nitride.” Pow. Met., 8, 145, 1961
  • [6] Lukianova, O.A., Krasilnikov, V.V., Parkhomenko, A.A., Sirota, V.V., “Microstructure and phase composition of cold isostatically pressed and pressureless sintered silicon nitride. “Research Letters, 11, 148, 2016
  • [7] Hoffmann, M.J., “Relationship between microstructure and mechanical properties of silicon nitride ceramics.” Pure Appl. Chem., 67, 939-946,1995
  • [8] Ekström, T., Nygren, M., “SiAION Ceramics.” J. Am. Ceram. Soc., 75, 259-276, 1992
  • [9] Izhevskiy, V.A, Genova, L.A, Bressiani, J.C, Aldinger, F., “Progress in SiAlON Ceramics,.” J. Euro. Ceram. Soc., 20, 2275-2295, 2000
  • [10] Shelb, J.E, Kohli, J.T., “Rare-earth aluminosilicate glasses.” J. Am. Ceram. Soc., 73, 1, 39-42, 1990
  • [11] Bulic, F., Zalite, I., Zhilinska, N., “Comparison of plasma-chemical synthesized SiAlON nano-powder and conventional prepared SiAlON powder, “Journal of the European Ceramic Society, 24, 3303-3306, 2004
  • [12] Xu, X., Oliveira, M, Ferreira, J. M. F., “Effect of solvent composition on dispersing ability of reaction SiAlON suspensions.” Journal of Colloid and Interface Science, 259, 391-397, 2003
  • [13] Li, Q., Zhang, C., Komeya, K., Tatami, J., Meguro, T., Gao, L., “Nano-powders of SiAlON carbothermally produced via a sol-gel process.” Journal of Materials Science Letters, 22, 885-887, 2003
  • [14] Xu, X., Nishimura, T., Hirosaki, N., Xie, R,, Yamamoto, Y., Tanaka, H., “Fabrication of -SiAlON nano ceramics by high-energy mechanical milling and spark plasma sintering.” Nanotechnology, 16, 1569-1573, 2005
  • [15] Lü, Z.J., Ai, X., Zhao, J., “Preparation of agglomerate-free starting powders for TiC-reinforced -SiAlON nanocomposites.” Materials Science Forum, 471-472, 282-286, 2004
  • [16] Tessier, P., Alamdari, H.D., Dubuc, R., Boily, S., “Nanocrystalline -SiAlON by reactive of a SiO2-AlN mixture subjected to high-energy ball milling.” Journal of Alloys and Compounds, 391, 225-227, 2005
  • [17] Xu, X., Nishimura, T., Hirosaki, N., Xie, R., “Fabrication of β-SiAlON Nanoceramics by High-energy mechanical milling and spark plasma sintering.” Institute of Physics Publishing Nanotechnology, 16, 1569-1573, 2005
  • [18] Xu, X., Nishimura, T., Hirosaki, N., Xie, R., Tanaka, H., “New strategies for preparing nano-sized silicon nitride ceramics.” J. Am. Ceram. Soc., 88, 4, 934-937, 2005
  • [19] Suryanarayana, C., “Mechanical Alloying and Milling.”, Progress in Materials Science, 46, 1-184, 2001
  • [20] Prziwara, P., Breitung-Faes, S., Kwade, A., “Impact of grinding aids on dry grinding performance, bulk properties and surface energy.” Advanced Powder Technology, 29, 416-425, 2018
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Semra Kurama 0000-0002-7554-3419

Haldun Kurama Bu kişi benim 0000-0002-2773-8326

Proje Numarası -
Yayımlanma Tarihi 1 Temmuz 2020
Kabul Tarihi 30 Haziran 2020
Yayımlandığı Sayı Yıl 2020 4. International Conference on Material Science and Technology (IMSTEC 2019) özel sayı

Kaynak Göster

APA Kurama, S., & Kurama, H. (2020). Cost Effective Production of Nitride Based Materials by High Energy Ball Milling. Nevşehir Bilim Ve Teknoloji Dergisi79-85. https://doi.org/10.17100/nevbiltek.748178
AMA Kurama S, Kurama H. Cost Effective Production of Nitride Based Materials by High Energy Ball Milling. Nevşehir Bilim ve Teknoloji Dergisi. Published online 01 Temmuz 2020:79-85. doi:10.17100/nevbiltek.748178
Chicago Kurama, Semra, ve Haldun Kurama. “Cost Effective Production of Nitride Based Materials by High Energy Ball Milling”. Nevşehir Bilim Ve Teknoloji Dergisi, Temmuz (Temmuz 2020), 79-85. https://doi.org/10.17100/nevbiltek.748178.
EndNote Kurama S, Kurama H (01 Temmuz 2020) Cost Effective Production of Nitride Based Materials by High Energy Ball Milling. Nevşehir Bilim ve Teknoloji Dergisi 79–85.
IEEE S. Kurama ve H. Kurama, “Cost Effective Production of Nitride Based Materials by High Energy Ball Milling”, Nevşehir Bilim ve Teknoloji Dergisi, ss. 79–85, Temmuz 2020, doi: 10.17100/nevbiltek.748178.
ISNAD Kurama, Semra - Kurama, Haldun. “Cost Effective Production of Nitride Based Materials by High Energy Ball Milling”. Nevşehir Bilim ve Teknoloji Dergisi. Temmuz 2020. 79-85. https://doi.org/10.17100/nevbiltek.748178.
JAMA Kurama S, Kurama H. Cost Effective Production of Nitride Based Materials by High Energy Ball Milling. Nevşehir Bilim ve Teknoloji Dergisi. 2020;:79–85.
MLA Kurama, Semra ve Haldun Kurama. “Cost Effective Production of Nitride Based Materials by High Energy Ball Milling”. Nevşehir Bilim Ve Teknoloji Dergisi, 2020, ss. 79-85, doi:10.17100/nevbiltek.748178.
Vancouver Kurama S, Kurama H. Cost Effective Production of Nitride Based Materials by High Energy Ball Milling. Nevşehir Bilim ve Teknoloji Dergisi. 2020:79-85.

Dergimizin tarandığı indeksler


12300          20980     2097822081