Araştırma Makalesi
BibTex RIS Kaynak Göster

ÇOK DEĞİŞKENLİ HARİTALAMA İÇİN KÜMELEME YÖNTEMLERİNİN KULLANILMASI

Yıl 2017, Cilt: 6 Sayı: 2, 415 - 429, 31.07.2017
https://doi.org/10.28948/ngumuh.341267

Öz

   Çok değişkenli haritalama mekânsal objelere ait birden çok özelliğin
harita kullanılarak görsel sunumudur. Çeşitli veri hazırlama ve istatistiksel
sınıflandırma teknikleri kullanılarak mekânsal objelere ait birden çok özellik
görsel olarak incelenebilir ve kartografik işaretlerle gösterilebilir. Bu
kapsamda kümeleme analizi yöntemleri de çok değişkenli haritalama için
kullanılabilir. Bu çalışmada kümeleme analiz yöntemlerinden k-ortalama yöntemi,
k-temsilci yöntemi ve Birleştirici Hiyerarşik Kümeleme yöntemi ele alınmıştır.
Bu yöntemlerle Türkiye’deki üç ayrı yıla ait trafik kaza verileri kullanılarak
oluşturulan sınıflar ve üretilen çok değişkenli haritalar kullanılarak bu
yöntemlerin karşılaştırılması yapılmış, bu yöntemlerle üretilen haritaların
risk yönetimi ve planlamada kullanılabilirliği üzerinde durulmuştur.

Kaynakça

  • [1] BUCKLEY, A., Multivariate Mapping. In K. KEMP (Eds.) Encyclopedia of Geographic Information Science (pp. 300-303), 2008.
  • [2] SLOCUM, T.A., MCMASTER,,R.B., KESSLER, F.C., HOWARD, H.H.,Thematic Cartography and Geovisualization, Pearson Education Inc. Third Edition, USA, 2009.
  • [3] BREWER, C.A., Color Use Guidelines for Mapping and Visualization, In A.M. MACEACHREN D.R.F TAYLOR (Eds.), Visualization in Modern Cartography (pp. 123-147),1994.
  • [4] METTERNICHT, G., VESTOTT J., “Trivariate Spectral Encoding: A Prototype System for Automated Selection of Colours for Soil Maps Based on Soil Textural Composition”, Proceedings of the 21st International Cartographic Conference, Durban, CD, 2003.
  • [5] BYRON, J. R., “Spectral Encoding of Soil Texture: A New Visualization Method”, GIS/LIS Proceedings, Phoenix, Airz., 125-132, 1994.
  • [6] INTERRANTE, V., “Harnessing Natural Textures for Multivariate Visualization”, IEEE Computer Graphics and Applications, 20, 6-11, 2000.
  • [7] JENKS, G. F., “Pointillism as a Cartographic Technique”, The Professional Geographer, 5, 4-6, 1953.
  • [8] COX, D.J., “The Art of Scientific Visualization. Academic Computing”, 4, 20-22, 32-34, 36-38,1990.
  • [9] ELLSON, R., “Visualization at Work”, Academic Computing, 4, 6, 26-28,54-56, 1990.
  • [10] DORLING, D., “The Visualization Of Local Urban Change Across Britain”, Environment and Planning B: Planning and Design, 22, 269 -290, 1995.
  • [11] GRINSTEIN, G., SIEG, J.C.J., SMITH, S., WILLIAMS M.G., “Visualization for Knowledge Discovery”, International Journal of Intelligent Systems, 7, 637-648, 1992.
  • [12] HEALEY, C.G., ENNS, J.T., “Large Datasets at A Glance: Combining Textures And Colors In Scientific Visualization”, IEEE Transactions on Visualization and Computer Graphics, 5, 2, 145-167, 1999.
  • [13] MILLER, J.R., “Attribute Blocks: Visualizing Multiple Continuously Defined Attributes”, IEEE Computer Graphics and Applications, 27, 3, 57-69, 2007.
  • [14] ZHANG X., PAZNER, M., “The Icon Imagemap Technique for Multivariate Geospatial Data Visualization: Approach and Software System”, Cartography and Geographic Information Science, 31, 1, 29-41, 2004.
  • [15] NELSON, E. S., GILMARTIN, P. P., An Evaluation Of Multivariate, Quantitative Point Symbols For Maps, In C. H. WOOD, C. P. KELLER (Eds.) Cartographic Design: Theoretical and Practical Perspectives (pp. 191-203), 1996.
  • [16] DIBIASE, D., “Designing Animated Maps for A Multimedia Encyclopedia”, Cartographic Perspectives, 19, 3-7, 1994.
  • [17] NELSON, E.S., “Designing Effective Bivariate Symbols: The Influence of Perceptual Grouping Processes”, Cartography and Geographic Information Science, 27, 4, 261-278, 2000.
  • [18] GUO, D., GAHEGAN, M., ALAN M. M., BILIANG Z., “Multivariate Analysis and Geovisualization with an Integrated Geographic Knowledge Discovery Approach”, Cartography and Geographic Information Science, 32, 2, 113-132, 2005.
  • [19] MENNIS, J., GUO, D., “Spatial Data Mining And Geographic Knowledge Discovery-An Introduction”, Computers, Environment and Urban Systems, 33, 403-408, 2009.
  • [20] MURRAY, A. T., GRUBESIC, T. H., Exploring Spatial Patterns Of Crime Using Non-Hierarchical Cluster Analysis, In M. Leitner (Eds.) Crime Modeling And Mapping Using Geospatial Technologies, 105-124, Springer, Netherlands, 2013.
  • [21] GRUBESIC, T. H., WEI, R., MURRAY, A. T., “Spatial Clustering Overview and Comparison: Accuracy, Sensitivity, and Computational Expense”, Annals of the Association of American Geographers, 104, 6, 1134-1156, 2014.
  • [22] BRIMICOMBE, A.J., “A Dual Approach to Cluster Discovery in Point Event Data Sets”, Computers, Environment and Urban Systems, 31, 4-18, 2007.
  • [23] ANDERSON T.K, “Kernel Density Estimation and K-Means Clustering to Profile Road Accident Hotspots”, Accident Analysis and Prevention 41, 359-364, 2008.
  • [24] LU, Q., CHEN, F., HANCOCK, K., “On Path Anomaly Detection in a Large Transportation Network”, Computers, Environment and Urban Systems, 33, 6, 448-462, 2009.
  • [25] WENG J., WENXIN, Q., XIAOBO, Q., XUEDONG, Y., “Cluster-Based Lognormal Distribution Model For Accident Duration”, Transportmetrica A: Transport Science, 11, 4, 345-363,2015.
  • [26] GUO, F., FANG, Y., “Individual Driver Risk Analysis Using Naturalistic Driving Data”, 3rd International Conference on Road Safety and Simulation, Indianapolis, USA, 2011.
  • [27] YALCIN G., DUZGUN, H.S., “Spatial Analysis of Two-Wheeled Vehicles Traffic Crashes: Osmaniye in Turkey”, KSCE Journal of Civil Engineering, 19, 7, 2225-2232, 2015.
  • [28] FENG, S, ZHENNING, L., YUSHENG, C., GUOHUI, Z., “Risk Factors Affecting Fatal Bus Accident Severity: Their Impact On Different Types Of Bus Drivers”, Accident Analysis and Prevention 86, 29-39, 2016.
  • [29] ERDOGAN, S., “Explorative Spatial Analysis Of Traffic Accident Statistics And Road Mortality Among The Provinces Of Turkey”, Journal of Safety Research 40, 341-351, 2009.
  • [30] MARTINUSSEN, L.M., MØLLER, M., PRATO, C.G., “Assessing The Relationship Between The Driver Behavior Questionnaire And The Driver Skill Inventory: Revealing Sub-Groups Of Drivers”, Transportation Research Part F 26, 82-91, 2014.
  • [31] DINÇER, E.Ş. Veri Madenciliğinde K-means Algoritması ve Tıp Alanında Uygulanması, Yüksek Lisans Tezi, Kocaeli Universitesi Fen Bilimleri Enstitüsü, Kocaeli, 2006.
  • [32] HAN, J., LEE, J.G., KAMBER, M., An Overview of Clustering Methods in Geographic Data Analysis, In Miller H.J., Han H. (Eds.) Geographic Data Mining and Knowledge Discovery, Taylor & Francis Group, LLC, 2009.
  • [33] HAN, J., KAMBER M., Data Mining: Concepts and Techniques. San Francisco, 2006.
  • [34] SİLAHTAROĞLU, G., Veri Madenciliği (Kavram ve Algoritmaları). Papatya Yayıncılık, İstanbul, 2013.
  • [35] AKIN, Y.K., Veri Madenciliğinde Kümeleme Algoritmaları ve Kümeleme Analizi, Doktora Tezi, Marmara Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul, 2008.
  • [36] http://www.ibm.com/analytics/us/en/technology/spss/ (erişim tarihi 15.12.2016).
  • [37] https://rapidminer.com/ (erişim tarihi 15.12.2016).
  • [38] https://www.arcgis.com/features/index.html (erişim tarihi 15.12.2016).
  • [39] ROMESBURG H.C., Cluster Analysis for Researchers, Belmont, CA: Lifetime Learning Publications, 1984.

USING CLUSTER ANALYSIS METHODS FOR MULTIVARIATE MAPPING

Yıl 2017, Cilt: 6 Sayı: 2, 415 - 429, 31.07.2017
https://doi.org/10.28948/ngumuh.341267

Öz

   Multivariate
mapping is the visual exploration of spatial objects with multiple attributes
using a map. More than one attribute can be visually explored and symbolized
using numerous statistical classification systems or data reduction techniques.
In this sense, clustering analysis methods can be used for multivariate
mapping. In this study, among clustering analysis methods, k-means method,
k-medoids method and Agglomerative Hierarchical Clustering method were selected.
For this purpose, multivariate maps created from traffic accident data of two
different years in Turkey were used. The methods were compared using the maps
produced with these methods and effectiveness of these maps in risk management
and planning were discussed.

Kaynakça

  • [1] BUCKLEY, A., Multivariate Mapping. In K. KEMP (Eds.) Encyclopedia of Geographic Information Science (pp. 300-303), 2008.
  • [2] SLOCUM, T.A., MCMASTER,,R.B., KESSLER, F.C., HOWARD, H.H.,Thematic Cartography and Geovisualization, Pearson Education Inc. Third Edition, USA, 2009.
  • [3] BREWER, C.A., Color Use Guidelines for Mapping and Visualization, In A.M. MACEACHREN D.R.F TAYLOR (Eds.), Visualization in Modern Cartography (pp. 123-147),1994.
  • [4] METTERNICHT, G., VESTOTT J., “Trivariate Spectral Encoding: A Prototype System for Automated Selection of Colours for Soil Maps Based on Soil Textural Composition”, Proceedings of the 21st International Cartographic Conference, Durban, CD, 2003.
  • [5] BYRON, J. R., “Spectral Encoding of Soil Texture: A New Visualization Method”, GIS/LIS Proceedings, Phoenix, Airz., 125-132, 1994.
  • [6] INTERRANTE, V., “Harnessing Natural Textures for Multivariate Visualization”, IEEE Computer Graphics and Applications, 20, 6-11, 2000.
  • [7] JENKS, G. F., “Pointillism as a Cartographic Technique”, The Professional Geographer, 5, 4-6, 1953.
  • [8] COX, D.J., “The Art of Scientific Visualization. Academic Computing”, 4, 20-22, 32-34, 36-38,1990.
  • [9] ELLSON, R., “Visualization at Work”, Academic Computing, 4, 6, 26-28,54-56, 1990.
  • [10] DORLING, D., “The Visualization Of Local Urban Change Across Britain”, Environment and Planning B: Planning and Design, 22, 269 -290, 1995.
  • [11] GRINSTEIN, G., SIEG, J.C.J., SMITH, S., WILLIAMS M.G., “Visualization for Knowledge Discovery”, International Journal of Intelligent Systems, 7, 637-648, 1992.
  • [12] HEALEY, C.G., ENNS, J.T., “Large Datasets at A Glance: Combining Textures And Colors In Scientific Visualization”, IEEE Transactions on Visualization and Computer Graphics, 5, 2, 145-167, 1999.
  • [13] MILLER, J.R., “Attribute Blocks: Visualizing Multiple Continuously Defined Attributes”, IEEE Computer Graphics and Applications, 27, 3, 57-69, 2007.
  • [14] ZHANG X., PAZNER, M., “The Icon Imagemap Technique for Multivariate Geospatial Data Visualization: Approach and Software System”, Cartography and Geographic Information Science, 31, 1, 29-41, 2004.
  • [15] NELSON, E. S., GILMARTIN, P. P., An Evaluation Of Multivariate, Quantitative Point Symbols For Maps, In C. H. WOOD, C. P. KELLER (Eds.) Cartographic Design: Theoretical and Practical Perspectives (pp. 191-203), 1996.
  • [16] DIBIASE, D., “Designing Animated Maps for A Multimedia Encyclopedia”, Cartographic Perspectives, 19, 3-7, 1994.
  • [17] NELSON, E.S., “Designing Effective Bivariate Symbols: The Influence of Perceptual Grouping Processes”, Cartography and Geographic Information Science, 27, 4, 261-278, 2000.
  • [18] GUO, D., GAHEGAN, M., ALAN M. M., BILIANG Z., “Multivariate Analysis and Geovisualization with an Integrated Geographic Knowledge Discovery Approach”, Cartography and Geographic Information Science, 32, 2, 113-132, 2005.
  • [19] MENNIS, J., GUO, D., “Spatial Data Mining And Geographic Knowledge Discovery-An Introduction”, Computers, Environment and Urban Systems, 33, 403-408, 2009.
  • [20] MURRAY, A. T., GRUBESIC, T. H., Exploring Spatial Patterns Of Crime Using Non-Hierarchical Cluster Analysis, In M. Leitner (Eds.) Crime Modeling And Mapping Using Geospatial Technologies, 105-124, Springer, Netherlands, 2013.
  • [21] GRUBESIC, T. H., WEI, R., MURRAY, A. T., “Spatial Clustering Overview and Comparison: Accuracy, Sensitivity, and Computational Expense”, Annals of the Association of American Geographers, 104, 6, 1134-1156, 2014.
  • [22] BRIMICOMBE, A.J., “A Dual Approach to Cluster Discovery in Point Event Data Sets”, Computers, Environment and Urban Systems, 31, 4-18, 2007.
  • [23] ANDERSON T.K, “Kernel Density Estimation and K-Means Clustering to Profile Road Accident Hotspots”, Accident Analysis and Prevention 41, 359-364, 2008.
  • [24] LU, Q., CHEN, F., HANCOCK, K., “On Path Anomaly Detection in a Large Transportation Network”, Computers, Environment and Urban Systems, 33, 6, 448-462, 2009.
  • [25] WENG J., WENXIN, Q., XIAOBO, Q., XUEDONG, Y., “Cluster-Based Lognormal Distribution Model For Accident Duration”, Transportmetrica A: Transport Science, 11, 4, 345-363,2015.
  • [26] GUO, F., FANG, Y., “Individual Driver Risk Analysis Using Naturalistic Driving Data”, 3rd International Conference on Road Safety and Simulation, Indianapolis, USA, 2011.
  • [27] YALCIN G., DUZGUN, H.S., “Spatial Analysis of Two-Wheeled Vehicles Traffic Crashes: Osmaniye in Turkey”, KSCE Journal of Civil Engineering, 19, 7, 2225-2232, 2015.
  • [28] FENG, S, ZHENNING, L., YUSHENG, C., GUOHUI, Z., “Risk Factors Affecting Fatal Bus Accident Severity: Their Impact On Different Types Of Bus Drivers”, Accident Analysis and Prevention 86, 29-39, 2016.
  • [29] ERDOGAN, S., “Explorative Spatial Analysis Of Traffic Accident Statistics And Road Mortality Among The Provinces Of Turkey”, Journal of Safety Research 40, 341-351, 2009.
  • [30] MARTINUSSEN, L.M., MØLLER, M., PRATO, C.G., “Assessing The Relationship Between The Driver Behavior Questionnaire And The Driver Skill Inventory: Revealing Sub-Groups Of Drivers”, Transportation Research Part F 26, 82-91, 2014.
  • [31] DINÇER, E.Ş. Veri Madenciliğinde K-means Algoritması ve Tıp Alanında Uygulanması, Yüksek Lisans Tezi, Kocaeli Universitesi Fen Bilimleri Enstitüsü, Kocaeli, 2006.
  • [32] HAN, J., LEE, J.G., KAMBER, M., An Overview of Clustering Methods in Geographic Data Analysis, In Miller H.J., Han H. (Eds.) Geographic Data Mining and Knowledge Discovery, Taylor & Francis Group, LLC, 2009.
  • [33] HAN, J., KAMBER M., Data Mining: Concepts and Techniques. San Francisco, 2006.
  • [34] SİLAHTAROĞLU, G., Veri Madenciliği (Kavram ve Algoritmaları). Papatya Yayıncılık, İstanbul, 2013.
  • [35] AKIN, Y.K., Veri Madenciliğinde Kümeleme Algoritmaları ve Kümeleme Analizi, Doktora Tezi, Marmara Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul, 2008.
  • [36] http://www.ibm.com/analytics/us/en/technology/spss/ (erişim tarihi 15.12.2016).
  • [37] https://rapidminer.com/ (erişim tarihi 15.12.2016).
  • [38] https://www.arcgis.com/features/index.html (erişim tarihi 15.12.2016).
  • [39] ROMESBURG H.C., Cluster Analysis for Researchers, Belmont, CA: Lifetime Learning Publications, 1984.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Bölüm Harita Mühendisliği
Yazarlar

Hüseyin Zahit Selvi 0000-0001-7486-0992

Burak Çağlar 0000-0002-4490-1447

Yayımlanma Tarihi 31 Temmuz 2017
Gönderilme Tarihi 25 Kasım 2016
Kabul Tarihi 19 Ocak 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 6 Sayı: 2

Kaynak Göster

APA Selvi, H. Z., & Çağlar, B. (2017). ÇOK DEĞİŞKENLİ HARİTALAMA İÇİN KÜMELEME YÖNTEMLERİNİN KULLANILMASI. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6(2), 415-429. https://doi.org/10.28948/ngumuh.341267
AMA Selvi HZ, Çağlar B. ÇOK DEĞİŞKENLİ HARİTALAMA İÇİN KÜMELEME YÖNTEMLERİNİN KULLANILMASI. NÖHÜ Müh. Bilim. Derg. Temmuz 2017;6(2):415-429. doi:10.28948/ngumuh.341267
Chicago Selvi, Hüseyin Zahit, ve Burak Çağlar. “ÇOK DEĞİŞKENLİ HARİTALAMA İÇİN KÜMELEME YÖNTEMLERİNİN KULLANILMASI”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 6, sy. 2 (Temmuz 2017): 415-29. https://doi.org/10.28948/ngumuh.341267.
EndNote Selvi HZ, Çağlar B (01 Temmuz 2017) ÇOK DEĞİŞKENLİ HARİTALAMA İÇİN KÜMELEME YÖNTEMLERİNİN KULLANILMASI. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 6 2 415–429.
IEEE H. Z. Selvi ve B. Çağlar, “ÇOK DEĞİŞKENLİ HARİTALAMA İÇİN KÜMELEME YÖNTEMLERİNİN KULLANILMASI”, NÖHÜ Müh. Bilim. Derg., c. 6, sy. 2, ss. 415–429, 2017, doi: 10.28948/ngumuh.341267.
ISNAD Selvi, Hüseyin Zahit - Çağlar, Burak. “ÇOK DEĞİŞKENLİ HARİTALAMA İÇİN KÜMELEME YÖNTEMLERİNİN KULLANILMASI”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 6/2 (Temmuz 2017), 415-429. https://doi.org/10.28948/ngumuh.341267.
JAMA Selvi HZ, Çağlar B. ÇOK DEĞİŞKENLİ HARİTALAMA İÇİN KÜMELEME YÖNTEMLERİNİN KULLANILMASI. NÖHÜ Müh. Bilim. Derg. 2017;6:415–429.
MLA Selvi, Hüseyin Zahit ve Burak Çağlar. “ÇOK DEĞİŞKENLİ HARİTALAMA İÇİN KÜMELEME YÖNTEMLERİNİN KULLANILMASI”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 6, sy. 2, 2017, ss. 415-29, doi:10.28948/ngumuh.341267.
Vancouver Selvi HZ, Çağlar B. ÇOK DEĞİŞKENLİ HARİTALAMA İÇİN KÜMELEME YÖNTEMLERİNİN KULLANILMASI. NÖHÜ Müh. Bilim. Derg. 2017;6(2):415-29.

Cited By






Ülkelerin İnsani Özgürlük Endeksine Göre Kümelenmesi
Anadolu Üniversitesi Sosyal Bilimler Dergisi
Meltem KARAATLI
https://doi.org/10.18037/ausbd.801788


download