Araştırma Makalesi
BibTex RIS Kaynak Göster

FARKLI KAYNAKLARDAN ÜRETİLMİŞ HİDROKSİAPATİTİN KEMİK ÇİMETOSU DAYANIMINA ETKİSİ

Yıl 2020, Cilt: 9 Sayı: 2, 990 - 1000, 07.08.2020
https://doi.org/10.28948/ngumuh.579474

Öz

   Bu çalışmada, iki farklı kalsiyum kaynağı
kullanılarak üretilen hidroksiapatit katkısı eklenerek yüksek mukavemetli
akrilik kemik yapıştırıcısı üretilmiştir. Üretilen örnekler, XRD ve FT-IR
kullanılarak karakterize edilmiştir. Termal davranışlar ve yüzey morfolojileri
DTA/TG ve SEM teknikleri kullanılarak belirlenmiştir. Ca(OH)2 ve
deniz kabuğundan üretilen hidroksiapatit ilavesi, ortaya çıkan yapıştırıcıların
basınç dayanımını (74 MPa'dan 106 MPa ve 103 MPa'ya) arttırmıştır. Bu yeni
kemik yapıştırıcıları, ticari olarak temin edilebilen örneklerle
karşılaştırılabilecek mekanik dayanımlara sahiptir ve hidroksiapatitin kemik
yapısında mevcut doğal bir mineral olduğu için daha biyolojik olarak uyumlu
olduğuna inanılmaktadır.

Kaynakça

  • [1] ZHANG, J., DAI, C.S., WEI, J., WEN, J.W., “Study on the bonding strength between calcium phosphate/chitosan composite coatings and a Mg alloy substrate”, Applied Surface Science, 261, 276-286, 2012.
  • [2] KHALED, Z., Development of A New Generation of Bone Cements using Nanotechnology, Graduate Program in Engineering Science, School of Graduate and Postdoctoral Studies The University of Western Ontario, London, UK, 2009.
  • [3] SERBETCI, K., KORKUSUZ, F., HASIRCI, N., “Mechanical and Thermal Properties of Hydroxyapatite-Impregnated Bone Cement”, Turkish Journal of Medical Sciences, 30, 543-549, 2000.
  • [4] NIEN, Y.H., HUANG, C.L., “The mechanical study of acrylic bone cement reinforced with carbon nanotube”, Materials Science and Engineering, 169, 134-137, 2010.
  • [5] MARANGOZ, S., “Bone Cement”, Totbid Jurnal, 10, 103-108, 2011.
  • [6] RIVERA, E.M., ARAIZA, M., BROSTOW, W., CASTANO, V.M., ESTRADA, J.R.D., HERNANDEZ, R., RODRIGUEZ, J.R., “Synthesis of hydroxyapatite from eggshells”, Material Letters, 41, 128-134, 1999.
  • [7] LEE, S.J., OH, S.H., “Fabrication of calcium phosphate bioceramics by using eggshell and phosphoric acid”, Material Letters, 57, 4570-4574, 2003.
  • [8] BALÁZSI, C., WÉBER, F., KÖVÉR, HORVÁTH, Z. E., NÉMETH, A. “Preparation of calcium –phosphate bioceramics from natural resources”, Journal of the European Ceramic Society, 27, 1601-1606, 2007.
  • [9] KENNETH, S.V., ZHANG, X., MASSIE, J.B., WANG, M., KIM, C., “Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants”, Acta Biomaterialia, 3, 910-918, 2007.
  • [10] RIPAMONTI, U., CROOKS, J., KHOALI, L., RODEN, L. “The induction of bone formation by coral-derived calcium carbonate/hydroxyapatite constructs”, Biomaterials, 30, 1428-1439, 2009.
  • [11] JINAWATH, S., POLCHAI, D., YOSHIMURA, M., “Low-temperature, hydrothermal transformation of aragonite to hydroxyapatite”, Materials Science and Engineering: C, 22, 35-39, 2002.
  • [12] CHAI, C.S., GROSS, K.A., NISSAN, B.B., “Critical ageing of hydroxyapatite sol–gel solutions”, Biomaterials, 19, 2291-2296, (1998).
  • [13] YANG, X., WANG, Z., “Synthesis of biphasic ceramics of hydroxyapatite and b-tricalcium phosphate with controlled phase content and porosity”, Journal of Materials Chemistry, , 8, 2233-2237, 1998.
  • [14] GERGELY, G., WEBER, F., LUKACS, I., ILLÉS, L., TÓTH, A.L., HORVÁTH, Z.E., MIHÁLY, J., BALÁZSI, C., “Nano-hydroxyapatite preparation from biogenic raw materials”, Central European Journal of Chemistry, 8,375-381, 2010.
  • [15] SERBETCI, K., ORHUN, S., KORKUSUZ, F., HASIRCI, N., “In Vivo Biocompatibility Of Hydroxyapatite Containing Bone Cement”, Journal of Arthroplasty & Arthroscopic Surgery, 13, 259-263, 2002.
  • [16] ZEBARJAD, S.M., SAJJADI, S.A., SDRABADI, T.E., YAGHMAEI, A., NADERI, B., “A Study on Mechanical Properties of PMMA/Hydroxyapatite Nanocomposite”, Scientific Research, 3, 795-801, 2011.
  • [17] VERMA, D., “Design of polymer-biopolymer-hydroxyapatite biomaterials for bone tissue engineering: through molecular control of interfaces”, Ph.D. Thesis, North Dakota State University, North Dakota, USA, 2008.

THE EFFECT OF HYDROXYAPATITE ADDITIVE PRODUCED FROM DIFFERENT RAW MATERIALS TO STRENGTH OF BONE CEMENT

Yıl 2020, Cilt: 9 Sayı: 2, 990 - 1000, 07.08.2020
https://doi.org/10.28948/ngumuh.579474

Öz

   In this
study, production of acrylic bone cement which has high strength by adding
hydroxyapatite additive that was produced using two different calcium sources
was aimed. Characterizations were performed using XRD, and FT-IR. Thermal
behaviors and surface morphologies were determined using DTA/TG and SEM
techniques. The addition of hydroxyapatite produced from Ca(OH)2 and
seashell increased the compressive strength (from 74 MPa to 106 MPa and 103
MPa) of the resultant cements respectively. These new bone cements have
mechanical strengths comparable with commercially available cements and are
believed to be more biocompatible since hydroxyapatite is a natural mineral
present in the bone structure.

Kaynakça

  • [1] ZHANG, J., DAI, C.S., WEI, J., WEN, J.W., “Study on the bonding strength between calcium phosphate/chitosan composite coatings and a Mg alloy substrate”, Applied Surface Science, 261, 276-286, 2012.
  • [2] KHALED, Z., Development of A New Generation of Bone Cements using Nanotechnology, Graduate Program in Engineering Science, School of Graduate and Postdoctoral Studies The University of Western Ontario, London, UK, 2009.
  • [3] SERBETCI, K., KORKUSUZ, F., HASIRCI, N., “Mechanical and Thermal Properties of Hydroxyapatite-Impregnated Bone Cement”, Turkish Journal of Medical Sciences, 30, 543-549, 2000.
  • [4] NIEN, Y.H., HUANG, C.L., “The mechanical study of acrylic bone cement reinforced with carbon nanotube”, Materials Science and Engineering, 169, 134-137, 2010.
  • [5] MARANGOZ, S., “Bone Cement”, Totbid Jurnal, 10, 103-108, 2011.
  • [6] RIVERA, E.M., ARAIZA, M., BROSTOW, W., CASTANO, V.M., ESTRADA, J.R.D., HERNANDEZ, R., RODRIGUEZ, J.R., “Synthesis of hydroxyapatite from eggshells”, Material Letters, 41, 128-134, 1999.
  • [7] LEE, S.J., OH, S.H., “Fabrication of calcium phosphate bioceramics by using eggshell and phosphoric acid”, Material Letters, 57, 4570-4574, 2003.
  • [8] BALÁZSI, C., WÉBER, F., KÖVÉR, HORVÁTH, Z. E., NÉMETH, A. “Preparation of calcium –phosphate bioceramics from natural resources”, Journal of the European Ceramic Society, 27, 1601-1606, 2007.
  • [9] KENNETH, S.V., ZHANG, X., MASSIE, J.B., WANG, M., KIM, C., “Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants”, Acta Biomaterialia, 3, 910-918, 2007.
  • [10] RIPAMONTI, U., CROOKS, J., KHOALI, L., RODEN, L. “The induction of bone formation by coral-derived calcium carbonate/hydroxyapatite constructs”, Biomaterials, 30, 1428-1439, 2009.
  • [11] JINAWATH, S., POLCHAI, D., YOSHIMURA, M., “Low-temperature, hydrothermal transformation of aragonite to hydroxyapatite”, Materials Science and Engineering: C, 22, 35-39, 2002.
  • [12] CHAI, C.S., GROSS, K.A., NISSAN, B.B., “Critical ageing of hydroxyapatite sol–gel solutions”, Biomaterials, 19, 2291-2296, (1998).
  • [13] YANG, X., WANG, Z., “Synthesis of biphasic ceramics of hydroxyapatite and b-tricalcium phosphate with controlled phase content and porosity”, Journal of Materials Chemistry, , 8, 2233-2237, 1998.
  • [14] GERGELY, G., WEBER, F., LUKACS, I., ILLÉS, L., TÓTH, A.L., HORVÁTH, Z.E., MIHÁLY, J., BALÁZSI, C., “Nano-hydroxyapatite preparation from biogenic raw materials”, Central European Journal of Chemistry, 8,375-381, 2010.
  • [15] SERBETCI, K., ORHUN, S., KORKUSUZ, F., HASIRCI, N., “In Vivo Biocompatibility Of Hydroxyapatite Containing Bone Cement”, Journal of Arthroplasty & Arthroscopic Surgery, 13, 259-263, 2002.
  • [16] ZEBARJAD, S.M., SAJJADI, S.A., SDRABADI, T.E., YAGHMAEI, A., NADERI, B., “A Study on Mechanical Properties of PMMA/Hydroxyapatite Nanocomposite”, Scientific Research, 3, 795-801, 2011.
  • [17] VERMA, D., “Design of polymer-biopolymer-hydroxyapatite biomaterials for bone tissue engineering: through molecular control of interfaces”, Ph.D. Thesis, North Dakota State University, North Dakota, USA, 2008.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Kimya Mühendisliği
Yazarlar

Nurcan Tugrul

Mehmet Burçin Pişkin 0000-0002-4572-4905

Fatma Tuğçe Şenberber 0000-0002-3257-1524

Nevin Karamahmut Mermer Bu kişi benim 0000-0001-6645-4724

Özge Can Öztürk Bu kişi benim

Nida Gelibolu Bu kişi benim

Yayımlanma Tarihi 7 Ağustos 2020
Gönderilme Tarihi 18 Haziran 2019
Kabul Tarihi 15 Şubat 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 9 Sayı: 2

Kaynak Göster

APA Tugrul, N., Pişkin, M. B., Şenberber, F. T., Karamahmut Mermer, N., vd. (2020). THE EFFECT OF HYDROXYAPATITE ADDITIVE PRODUCED FROM DIFFERENT RAW MATERIALS TO STRENGTH OF BONE CEMENT. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(2), 990-1000. https://doi.org/10.28948/ngumuh.579474
AMA Tugrul N, Pişkin MB, Şenberber FT, Karamahmut Mermer N, Öztürk ÖC, Gelibolu N. THE EFFECT OF HYDROXYAPATITE ADDITIVE PRODUCED FROM DIFFERENT RAW MATERIALS TO STRENGTH OF BONE CEMENT. NÖHÜ Müh. Bilim. Derg. Ağustos 2020;9(2):990-1000. doi:10.28948/ngumuh.579474
Chicago Tugrul, Nurcan, Mehmet Burçin Pişkin, Fatma Tuğçe Şenberber, Nevin Karamahmut Mermer, Özge Can Öztürk, ve Nida Gelibolu. “THE EFFECT OF HYDROXYAPATITE ADDITIVE PRODUCED FROM DIFFERENT RAW MATERIALS TO STRENGTH OF BONE CEMENT”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9, sy. 2 (Ağustos 2020): 990-1000. https://doi.org/10.28948/ngumuh.579474.
EndNote Tugrul N, Pişkin MB, Şenberber FT, Karamahmut Mermer N, Öztürk ÖC, Gelibolu N (01 Ağustos 2020) THE EFFECT OF HYDROXYAPATITE ADDITIVE PRODUCED FROM DIFFERENT RAW MATERIALS TO STRENGTH OF BONE CEMENT. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9 2 990–1000.
IEEE N. Tugrul, M. B. Pişkin, F. T. Şenberber, N. Karamahmut Mermer, Ö. C. Öztürk, ve N. Gelibolu, “THE EFFECT OF HYDROXYAPATITE ADDITIVE PRODUCED FROM DIFFERENT RAW MATERIALS TO STRENGTH OF BONE CEMENT”, NÖHÜ Müh. Bilim. Derg., c. 9, sy. 2, ss. 990–1000, 2020, doi: 10.28948/ngumuh.579474.
ISNAD Tugrul, Nurcan vd. “THE EFFECT OF HYDROXYAPATITE ADDITIVE PRODUCED FROM DIFFERENT RAW MATERIALS TO STRENGTH OF BONE CEMENT”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9/2 (Ağustos 2020), 990-1000. https://doi.org/10.28948/ngumuh.579474.
JAMA Tugrul N, Pişkin MB, Şenberber FT, Karamahmut Mermer N, Öztürk ÖC, Gelibolu N. THE EFFECT OF HYDROXYAPATITE ADDITIVE PRODUCED FROM DIFFERENT RAW MATERIALS TO STRENGTH OF BONE CEMENT. NÖHÜ Müh. Bilim. Derg. 2020;9:990–1000.
MLA Tugrul, Nurcan vd. “THE EFFECT OF HYDROXYAPATITE ADDITIVE PRODUCED FROM DIFFERENT RAW MATERIALS TO STRENGTH OF BONE CEMENT”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 9, sy. 2, 2020, ss. 990-1000, doi:10.28948/ngumuh.579474.
Vancouver Tugrul N, Pişkin MB, Şenberber FT, Karamahmut Mermer N, Öztürk ÖC, Gelibolu N. THE EFFECT OF HYDROXYAPATITE ADDITIVE PRODUCED FROM DIFFERENT RAW MATERIALS TO STRENGTH OF BONE CEMENT. NÖHÜ Müh. Bilim. Derg. 2020;9(2):990-1000.

download