Araştırma Makalesi
BibTex RIS Kaynak Göster

5G İLETİŞİM SİSTEMLERİ İÇİN ADAY İLETİM TEKNİKLERİNİN BİT HATA ORANI BAŞARIMLARININ ARAŞTIRILMASI

Yıl 2020, Cilt: 9 Sayı: 2, 821 - 831, 07.08.2020
https://doi.org/10.28948/ngumuh.654386

Öz

Bu çalışma beşinci nesil (5G) iletişim sistemleri için aday olan iletim tekniklerinin bit hata oranı (BHO) başarımlarını araştırmaktadır. Performans analizleri 5G araştırmaları için önerilmiş kanal modellerinden birisi olan A tipi Dallı Gecikme Hattı kanal modeli göz önünde bulundurularak gerçekleştirilmiştir. Analizler gerçekleştirilirken detaylı incelemelerin gerçekleştirilebilmesi için hem sabit alıcı/verici birimler hem de hareketli alıcı/verici birimlerin olduğu durumlar dikkate alınmıştır. Ayrıca kanal gecikme yayılımının farklı profilleri de değerlendirilerek analiz senaryoları genişletilmiştir. Elde edilen performans sonuçları hareketli ve yüksek gecikme yayılımına sahip kanal durumunda Filtre Bankası Çoklu Taşıyıcı (Filtered Bank Multiple Carrier, FBMC) iletim tekniğini kullanan iletişim sistemlerinin daha iyi bir performansa sahip olduğunu ve bu sistemin diğer sistemlere göre daha kararlı davrandığını göstermiştir.

Kaynakça

  • Y. Kabalci, “5G Mobile Communication Systems: Fundamentals, Challenges, and Key Technologies”, içinde Smart Grids and Their Communication Systems, E. Kabalci ve Y. Kabalci, Ed. Singapore: Springer Singapore, 2019, ss. 329-359.
  • J. G. Andrews vd., “What Will 5G Be?”, IEEE Journal on Selected Areas in Communications, c. 32, sy 6, ss. 1065-1082, Haz. 2014.
  • Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, ve K. Higuchi, “Non-orthogonal multiple access (NOMA) for cellular future radio access”, içinde 2013 IEEE 77th vehicular technology conference (VTC Spring), 2013, ss. 1–5.
  • A. Li, Y. Lan, X. Chen, ve H. Jiang, “Non-orthogonal multiple access (NOMA) for future downlink radio access of 5G”, China Communications, c. 12, sy Supplement, ss. 28–37, 2015.
  • Z. Ding, P. Fan, ve H. V. Poor, “Random Beamforming in Millimeter-Wave NOMA Networks”, IEEE Access, c. 5, ss. 7667-7681, 2017.
  • B. Wang, L. Dai, X. Gao, ve L. Hanzo, “Beamspace MIMO-NOMA for millimeter-wave communications using lens antenna arrays”, içinde 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), 2017, ss. 1–5.
  • X. Liu, P. Wang, Z. Lan, ve B. Shao, “Biological characteristic online identification technique over 5G network”, IEEE Wireless Communications, c. 22, sy 6, ss. 84–90, 2015.
  • D. Jiang ve G. Liu, “An overview of 5G requirements”, içinde 5G Mobile Communications, Springer, 2017, ss. 3–26.
  • A. Osseiran vd., “Scenarios for 5G mobile and wireless communications: the vision of the METIS project”, IEEE Communications Magazine, c. 52, sy 5, ss. 26-35, May. 2014.
  • P. Cerwall, A. Lundvall, P. Jonsson, ve others, “Ericsson mobility report: On the pulse of the networked society”, içinde Mobile World Congress Edition, 2015.
  • T. O. Olwal, K. Djouani, ve A. M. Kurien, “A Survey of Resource Management Toward 5G Radio Access Networks”, IEEE Communications Surveys Tutorials, c. 18, sy 3, ss. 1656-1686, thirdquarter 2016.
  • A. de la Fuente, R. P. Leal, ve A. G. Armada, “New technologies and trends for next generation mobile broadcasting services”, IEEE Communications Magazine, c. 54, sy 11, ss. 217–223, 2016.
  • A. Al Amin, D. Basak, T. Khadem, M. D. Hossen, ve M. S. Islam, “Analysis of modulation and coding scheme for 5th generation wireless communication system”, içinde 2016 International Conference on Computing, Communication and Automation (ICCCA), 2016, ss. 1545–1549.
  • M. Kim ve D. Y. Kwak, “Generalized OFDM for 5th Generation Mobile Communications”, içinde 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), 2017, ss. 1–5.
  • V. Vakilian, T. Wild, F. Schaich, S. ten Brink, ve J.-F. Frigon, “Universal-filtered multi-carrier technique for wireless systems beyond LTE”, içinde 2013 IEEE Globecom Workshops (GC Wkshps), 2013, ss. 223–228.
  • L. Zhang, A. Ijaz, P. Xiao, M. M. Molu, ve R. Tafazolli, “Filtered OFDM systems, algorithms, and performance analysis for 5G and beyond”, IEEE Transactions on Communications, c. 66, sy 3, ss. 1205–1218, 2017.
  • J. Zeng vd., “Investigation on evolving single-carrier NOMA into multi-carrier NOMA in 5G”, IEEE Access, c. 6, ss. 48268–48288, 2018.
  • 3GPP Radio Access Network Working Group ve others, “Study on channel model for frequencies from 0.5 to 100 GHz (Release 15)”, 3GPP TR 38.901, 3GPP TR 38.901 version 15.0.0 Release 15, 2018.
  • R. W. Chang, “Synthesis of band-limited orthogonal signals for multichannel data transmission”, Bell System Technical Journal, c. 45, sy 10, ss. 1775–1796, 1966.
  • R. Chang ve R. Gibby, “A theoretical study of performance of an orthogonal multiplexing data transmission scheme”, IEEE transactions on Communication Technology, c. 16, sy 4, ss. 529–540, 1968.
  • R. W. Chang, “Orthogonal frequency multiplex data transmission system”, U.S. Patent No. 3,488,445., Oca-1970.
  • S. Weinstein ve P. Ebert, “Data transmission by frequency-division multiplexing using the discrete Fourier transform”, IEEE transactions on Communication Technology, c. 19, sy 5, ss. 628–634, 1971.
  • A. Peled ve A. Ruiz, “Frequency domain data transmission using reduced computational complexity algorithms”, içinde ICASSP’80. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1980, c. 5, ss. 964–967.
  • C. Balint ve G. Budura, “OFDM-Based Multi-Carrier Waveforms Performances in 5G”, içinde 2018 International Symposium on Electronics and Telecommunications (ISETC), 2018, ss. 1–4.
  • X. Zhang, M. Jia, L. Chen, J. Ma, ve J. Qiu, “Filtered-OFDM-enabler for flexible waveform in the 5th generation cellular networks”, içinde 2015 IEEE Global Communications Conference (GLOBECOM), 2015, ss. 1–6.
  • J. Abdoli, M. Jia, ve J. Ma, “Filtered OFDM: A new waveform for future wireless systems”, içinde 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2015, ss. 66–70.
  • A. D. Dominguez-Garcia, C. N. Hadjicostis, ve N. H. Vaidya, “Resilient networked control of distributed energy resources”, IEEE Journal on Selected Areas in Communications, c. 30, sy 6, ss. 1137–1148, 2012.
  • M. B. Mabrouk, M. Chafii, Y. Louet, ve F. Bader, “A precoding-based PAPR reduction technique for UF-OFDM and filtered-OFDM modulations in 5G systems”, içinde European Wireless 2017; 23th European Wireless Conference, 2017, ss. 1–6.
  • W. Yang vd., “Narrowband Wireless Access for Low-Power Massive Internet of Things: A Bandwidth Perspective”, IEEE Wireless Communications, c. 24, sy 3, ss. 138-145, 2017.
  • D. Wu vd., “A field trial of f-OFDM toward 5G”, içinde 2016 IEEE Globecom Workshops (GC Wkshps), 2016, ss. 1–6.

BIT ERROR RATE PERFORMANCE INVESTIGATION OF CANDIDATE TRANSMISSION TECHNIQUES FOR 5G COMMUNICATION SYSTEMS

Yıl 2020, Cilt: 9 Sayı: 2, 821 - 831, 07.08.2020
https://doi.org/10.28948/ngumuh.654386

Öz

This paper examines bit error rate (BER) performances of transmission techniques that are candidates for fifth-generation (5G) communication systems. Performance analyses are performed by considering Tapped Delay Line (TDL-A) which is a channel model proposed for the 5G studies. In order to provide comprehensive analysis, both stationary transmitter/receiver units and active receiver/transmitter units are taken into account while performing the analyses. In addition, analysis scenarios are expanded by evaluating different delay spread profiles. The obtained results show that the communications systems utilizing Filtered Bank Multiple Carrier (FBMC) transmission technique provides better performance and it operates more reliable than that of other candidates in case of active units and channel conditions with high delay spread.

Kaynakça

  • Y. Kabalci, “5G Mobile Communication Systems: Fundamentals, Challenges, and Key Technologies”, içinde Smart Grids and Their Communication Systems, E. Kabalci ve Y. Kabalci, Ed. Singapore: Springer Singapore, 2019, ss. 329-359.
  • J. G. Andrews vd., “What Will 5G Be?”, IEEE Journal on Selected Areas in Communications, c. 32, sy 6, ss. 1065-1082, Haz. 2014.
  • Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, ve K. Higuchi, “Non-orthogonal multiple access (NOMA) for cellular future radio access”, içinde 2013 IEEE 77th vehicular technology conference (VTC Spring), 2013, ss. 1–5.
  • A. Li, Y. Lan, X. Chen, ve H. Jiang, “Non-orthogonal multiple access (NOMA) for future downlink radio access of 5G”, China Communications, c. 12, sy Supplement, ss. 28–37, 2015.
  • Z. Ding, P. Fan, ve H. V. Poor, “Random Beamforming in Millimeter-Wave NOMA Networks”, IEEE Access, c. 5, ss. 7667-7681, 2017.
  • B. Wang, L. Dai, X. Gao, ve L. Hanzo, “Beamspace MIMO-NOMA for millimeter-wave communications using lens antenna arrays”, içinde 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), 2017, ss. 1–5.
  • X. Liu, P. Wang, Z. Lan, ve B. Shao, “Biological characteristic online identification technique over 5G network”, IEEE Wireless Communications, c. 22, sy 6, ss. 84–90, 2015.
  • D. Jiang ve G. Liu, “An overview of 5G requirements”, içinde 5G Mobile Communications, Springer, 2017, ss. 3–26.
  • A. Osseiran vd., “Scenarios for 5G mobile and wireless communications: the vision of the METIS project”, IEEE Communications Magazine, c. 52, sy 5, ss. 26-35, May. 2014.
  • P. Cerwall, A. Lundvall, P. Jonsson, ve others, “Ericsson mobility report: On the pulse of the networked society”, içinde Mobile World Congress Edition, 2015.
  • T. O. Olwal, K. Djouani, ve A. M. Kurien, “A Survey of Resource Management Toward 5G Radio Access Networks”, IEEE Communications Surveys Tutorials, c. 18, sy 3, ss. 1656-1686, thirdquarter 2016.
  • A. de la Fuente, R. P. Leal, ve A. G. Armada, “New technologies and trends for next generation mobile broadcasting services”, IEEE Communications Magazine, c. 54, sy 11, ss. 217–223, 2016.
  • A. Al Amin, D. Basak, T. Khadem, M. D. Hossen, ve M. S. Islam, “Analysis of modulation and coding scheme for 5th generation wireless communication system”, içinde 2016 International Conference on Computing, Communication and Automation (ICCCA), 2016, ss. 1545–1549.
  • M. Kim ve D. Y. Kwak, “Generalized OFDM for 5th Generation Mobile Communications”, içinde 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), 2017, ss. 1–5.
  • V. Vakilian, T. Wild, F. Schaich, S. ten Brink, ve J.-F. Frigon, “Universal-filtered multi-carrier technique for wireless systems beyond LTE”, içinde 2013 IEEE Globecom Workshops (GC Wkshps), 2013, ss. 223–228.
  • L. Zhang, A. Ijaz, P. Xiao, M. M. Molu, ve R. Tafazolli, “Filtered OFDM systems, algorithms, and performance analysis for 5G and beyond”, IEEE Transactions on Communications, c. 66, sy 3, ss. 1205–1218, 2017.
  • J. Zeng vd., “Investigation on evolving single-carrier NOMA into multi-carrier NOMA in 5G”, IEEE Access, c. 6, ss. 48268–48288, 2018.
  • 3GPP Radio Access Network Working Group ve others, “Study on channel model for frequencies from 0.5 to 100 GHz (Release 15)”, 3GPP TR 38.901, 3GPP TR 38.901 version 15.0.0 Release 15, 2018.
  • R. W. Chang, “Synthesis of band-limited orthogonal signals for multichannel data transmission”, Bell System Technical Journal, c. 45, sy 10, ss. 1775–1796, 1966.
  • R. Chang ve R. Gibby, “A theoretical study of performance of an orthogonal multiplexing data transmission scheme”, IEEE transactions on Communication Technology, c. 16, sy 4, ss. 529–540, 1968.
  • R. W. Chang, “Orthogonal frequency multiplex data transmission system”, U.S. Patent No. 3,488,445., Oca-1970.
  • S. Weinstein ve P. Ebert, “Data transmission by frequency-division multiplexing using the discrete Fourier transform”, IEEE transactions on Communication Technology, c. 19, sy 5, ss. 628–634, 1971.
  • A. Peled ve A. Ruiz, “Frequency domain data transmission using reduced computational complexity algorithms”, içinde ICASSP’80. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1980, c. 5, ss. 964–967.
  • C. Balint ve G. Budura, “OFDM-Based Multi-Carrier Waveforms Performances in 5G”, içinde 2018 International Symposium on Electronics and Telecommunications (ISETC), 2018, ss. 1–4.
  • X. Zhang, M. Jia, L. Chen, J. Ma, ve J. Qiu, “Filtered-OFDM-enabler for flexible waveform in the 5th generation cellular networks”, içinde 2015 IEEE Global Communications Conference (GLOBECOM), 2015, ss. 1–6.
  • J. Abdoli, M. Jia, ve J. Ma, “Filtered OFDM: A new waveform for future wireless systems”, içinde 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2015, ss. 66–70.
  • A. D. Dominguez-Garcia, C. N. Hadjicostis, ve N. H. Vaidya, “Resilient networked control of distributed energy resources”, IEEE Journal on Selected Areas in Communications, c. 30, sy 6, ss. 1137–1148, 2012.
  • M. B. Mabrouk, M. Chafii, Y. Louet, ve F. Bader, “A precoding-based PAPR reduction technique for UF-OFDM and filtered-OFDM modulations in 5G systems”, içinde European Wireless 2017; 23th European Wireless Conference, 2017, ss. 1–6.
  • W. Yang vd., “Narrowband Wireless Access for Low-Power Massive Internet of Things: A Bandwidth Perspective”, IEEE Wireless Communications, c. 24, sy 3, ss. 138-145, 2017.
  • D. Wu vd., “A field trial of f-OFDM toward 5G”, içinde 2016 IEEE Globecom Workshops (GC Wkshps), 2016, ss. 1–6.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Mühendisliği
Bölüm Elektrik Elektronik Mühendisliği
Yazarlar

Yasin Kabalcı 0000-0003-1240-817X

Yayımlanma Tarihi 7 Ağustos 2020
Gönderilme Tarihi 2 Aralık 2019
Kabul Tarihi 7 Haziran 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 9 Sayı: 2

Kaynak Göster

APA Kabalcı, Y. (2020). 5G İLETİŞİM SİSTEMLERİ İÇİN ADAY İLETİM TEKNİKLERİNİN BİT HATA ORANI BAŞARIMLARININ ARAŞTIRILMASI. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(2), 821-831. https://doi.org/10.28948/ngumuh.654386
AMA Kabalcı Y. 5G İLETİŞİM SİSTEMLERİ İÇİN ADAY İLETİM TEKNİKLERİNİN BİT HATA ORANI BAŞARIMLARININ ARAŞTIRILMASI. NÖHÜ Müh. Bilim. Derg. Ağustos 2020;9(2):821-831. doi:10.28948/ngumuh.654386
Chicago Kabalcı, Yasin. “5G İLETİŞİM SİSTEMLERİ İÇİN ADAY İLETİM TEKNİKLERİNİN BİT HATA ORANI BAŞARIMLARININ ARAŞTIRILMASI”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9, sy. 2 (Ağustos 2020): 821-31. https://doi.org/10.28948/ngumuh.654386.
EndNote Kabalcı Y (01 Ağustos 2020) 5G İLETİŞİM SİSTEMLERİ İÇİN ADAY İLETİM TEKNİKLERİNİN BİT HATA ORANI BAŞARIMLARININ ARAŞTIRILMASI. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9 2 821–831.
IEEE Y. Kabalcı, “5G İLETİŞİM SİSTEMLERİ İÇİN ADAY İLETİM TEKNİKLERİNİN BİT HATA ORANI BAŞARIMLARININ ARAŞTIRILMASI”, NÖHÜ Müh. Bilim. Derg., c. 9, sy. 2, ss. 821–831, 2020, doi: 10.28948/ngumuh.654386.
ISNAD Kabalcı, Yasin. “5G İLETİŞİM SİSTEMLERİ İÇİN ADAY İLETİM TEKNİKLERİNİN BİT HATA ORANI BAŞARIMLARININ ARAŞTIRILMASI”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9/2 (Ağustos 2020), 821-831. https://doi.org/10.28948/ngumuh.654386.
JAMA Kabalcı Y. 5G İLETİŞİM SİSTEMLERİ İÇİN ADAY İLETİM TEKNİKLERİNİN BİT HATA ORANI BAŞARIMLARININ ARAŞTIRILMASI. NÖHÜ Müh. Bilim. Derg. 2020;9:821–831.
MLA Kabalcı, Yasin. “5G İLETİŞİM SİSTEMLERİ İÇİN ADAY İLETİM TEKNİKLERİNİN BİT HATA ORANI BAŞARIMLARININ ARAŞTIRILMASI”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 9, sy. 2, 2020, ss. 821-3, doi:10.28948/ngumuh.654386.
Vancouver Kabalcı Y. 5G İLETİŞİM SİSTEMLERİ İÇİN ADAY İLETİM TEKNİKLERİNİN BİT HATA ORANI BAŞARIMLARININ ARAŞTIRILMASI. NÖHÜ Müh. Bilim. Derg. 2020;9(2):821-3.

download