Araştırma Makalesi
BibTex RIS Kaynak Göster

Estimating cetane numbers of pure biodiesels through multiple non-linear correlations depending on some fuel properties

Yıl 2023, Cilt: 12 Sayı: 4, 1593 - 1605, 15.10.2023
https://doi.org/10.28948/ngumuh.1342996

Öz

In the literature, multiple linear regression, machine learning methods, and group contribution methods have been employed to estimate the cetane numbers of pure biodiesels based on their properties (composition of fatty acid esters, number of carbon atoms, number of double bonds, chain length, saponification number, iodine value, etc.). However, there has been relatively limited research on the relationship between cetane number and other fuel properties. Therefore, this study purposes to utilize the multiple non-linear regression method to estimate the cetane numbers of pure biodiesels as functions of the density, kinematic viscosity, flash point, and heating value. To establish correlations, experimental data on the fuel properties of 100 different biodiesels (methyl and ethyl esters) were gathered from the literature. The predictive performances of the proposed multiple non-linear correlations were compared with the commonly recommended multiple linear correlation found in the literature. According to the results, reliable non-linear correlations, having relative errors of less than 5% and high coefficient of determination values (r2) were obtained.

Kaynakça

  • J. Yan, S. Gao, W. Zhao and T. H. Lee, Study of combustion and emission characteristics of a diesel engine fueled with diesel, butanol-diesel and hexanol-diesel mixtures under low intake pressure conditions. Energy Conversion and Management, 243, 114273, 2021.https://doi.org/10.1016/j.enconman.2021.114273
  • Z. G. Liu and A. Munnannur, Future diesel engines. Design and development of heavy duty diesel engines: A handbook, 887-914, 2020.
  • M. Z. Jacobson, Short‐term effects of controlling fossil‐fuel soot, biofuel soot and gases, and methane on climate, arctic ice, and air pollution health. Journal of Geophysical Research: Atmospheres, 115(D14), 2010. https://doi.org/10.1029/2009JD013795.
  • D. Adu-Mensah, D. Mei, L. Zuo, Q. Zhang and J. Wang, A review on partial hydrogenation of biodiesel and its influence on fuel properties. Fuel, 251, 660-668, 2019. https://doi.org/10.1016/j.fuel.2019.04.036.
  • M. Udayakumar, S. Sivaganesan and S. Sivamani, Process optimization of KOH catalyzed biodiesel production from crude sunflower-mahua oil. Biofuels, 13(8), 1031-1039, 2022. https://doi.org/10.1080/17597269.2022.2071068.
  • M. A. Shaah, F. Allafi, M. S. Hossain, A. Alsaedi, N. Ismail, M. O. A. Kadir and M. I. Ahmad, Candlenut oil: review on oil properties and future liquid biofuel prospects. International Journal of Energy Research, 45(12), 17057-17079, 2021. https://doi.org/10.1002/er.6446.
  • I. Raheem, M. N. B. Mohiddin, Y. H. Tan, J. Kansedo, N. M. Mubarak, M. O. Abdullah and M. L. Ibrahim, A review on influence of reactor technologies and kinetic studies for biodiesel application. Journal of Industrial and Engineering Chemistry, 91, 54-68, 2020. https://doi.org/10.1016/j.jiec.2020.08.024.
  • L. Zhang, B. Sheng, Z. Xin, Q. Liu and S. Sun, Kinetics of transesterification of palm oil and dimethyl carbonate for biodiesel production at the catalysis of heterogeneous base catalyst. Bioresource Technology, 101(21), 8144-8150, 2010. https://doi.org/10.1016/j.biortech.2010.05.069.
  • M. Mofijur, M. G. Rasul, J. Hyde, A. K. Azad, R. Mamat and M. M. K. Bhuiya, Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) blends on internal combustion engines emission reduction. Renewable and Sustainable Energy Reviews, 53, 265-278, 2016. https://doi.org/10.1016/j.rser.2015.08.046.
  • P. McCarthy, M. G. Rasul and S. Moazzem, Analysis and comparison of performance and emissions of an internal combustion engine fuelled with petroleum diesel and different bio-diesels. Fuel, 90(6), 2147-2157, 2011. https://doi.org/10.1016/j.fuel.2011.02.010.
  • I. Barabás and I. A. Todorut, Predicting the temperature dependent viscosity of biodiesel–diesel–bioethanol blends. Energy & Fuels, 25(12), 5767-5774, 2011. https://doi.org/10.1021/ef2007936.
  • S. R. Turns, An introduction to combustion. Concepts and applications. Second Edition. McGraw-Hill International Editions, Mechanical Engineering Series. ISBN: 0-07-230096-5, 2000.
  • M. Gülüm and A. Bilgin, Density, flash point and heating value variations of corn oil biodiesel–diesel fuel blends. Fuel Processing Technology, 134, 456-464, 2015. https://doi.org/10.1016/j.fuproc.2015.02.026.
  • J. B. Heywood, Internal combustion engine fundamentals. McGraw-Hill International Editions, Automotive Technology Series. ISBN: 0-07-100499-8, 1988.
  • V. Kumbhar, A. Pandey, C. R. Sonawane, A. S. El-Shafay, H. Panchal and A. J. Chamkha, Statistical analysis on prediction of biodiesel properties from its fatty acid composition. Case Studies in Thermal Engineering, 30, 101775, 2022. https://doi.org/10.1016/j.csite.2022.101775.
  • H. Yang, Z. Ring, Y. Briker, N. McLean, W. Friesen and C. Fairbridge, Neural network prediction of cetane number and density of diesel fuel from its chemical composition determined by LC and GC–MS. Fuel, 81(1), 65-74, 2002. https://doi.org/10.1016/S0016-2361(01)00121-1.
  • M. Gülüm, Multiple correlations to predict cetane number of pure biodiesels depending on other fuel properties. Eurasia Research Conferences, Scientific and Technical Research Association (STRA) Conference Proceedings, 2, 45, 2023.
  • R. Piloto-Rodríguez, Y. Sánchez-Borroto, M. Lapuerta, L. Goyos-Pérez and S. Verhelst, Prediction of the cetane number of biodiesel using artificial neural networks and multiple linear regression. Energy Conversion and Management, 65, 255-261, 2013. https://doi.org/10.1016/j.enconman.2012.07.023.
  • S. F. Ardabili, B. Najafi and S. Shamshirband, Fuzzy logic method for the prediction of cetane number using carbon number, double bounds, iodic, and saponification values of biodiesel fuels. Environmental Progress & Sustainable Energy, 38(2), 584-599, 2019. https://doi.org/10.1002/ep.12960.
  • D. Tong, C. Hu, K. Jiang and Y. Li, Cetane number prediction of biodiesel from the composition of the fatty acid methyl esters. Journal of the American Oil Chemists' Society, 88(3), 415-423, 2011. https://doi.org/10.1007/s11746-010-1672-0.
  • C. Y. Lin and X. E. Wu, Determination of cetane number from fatty acid compositions and structures of biodiesel. Processes, 10(8), 1502, 2022. https://doi.org/10.3390/pr10081502.
  • A. O. Emiroğlu, A. Keskin and M. Şen, Experimental investigation of the effects of turkey rendering fat biodiesel on combustion, performance and exhaust emissions of a diesel engine. Fuel, 216, 266-273, 2018. https://doi.org/10.1016/j.fuel.2017.12.026.
  • T. Kalyani, L. S. V. Prasad and A. Kolakoti, Effect of triacetin as an oxygenated additive in algae biodiesel fuelled CI engine combustion, performance, and exhaust emission analysis. Fuel, 338, 127366, 2023. https://doi.org/10.1016/j.fuel.2022.127366.
  • C. Kaya, C. Hamamci, A. Baysal, O. Akba, S. Erdogan and A. Saydut, Methyl ester of peanut (Arachis hypogea L.) seed oil as a potential feedstock for biodiesel production. Renewable Energy, 34(5), 1257-1260, 2009. https://doi.org/10.1016/j.renene.2008.10.002.
  • A. Saydut, M. Z. Duz, C. Kaya, A. B. Kafadar and C. Hamamci, Transesterified sesame (Sesamum indicum L.) seed oil as a biodiesel fuel. Bioresource Technology, 99(14), 6656-6660, 2008. https://doi.org/10.1016/j.biortech.2007.11.063.
  • I. A. Nehdi, H. Sbihi, C. P. Tan and S. I. Al-Resayes, Garden cress (Lepidium sativum Linn.) seed oil as a potential feedstock for biodiesel production. Bioresource Technology, 126, 193-197, 2012. https://doi.org/10.1016/j.biortech.2012.08.113.
  • G. Martínez, N. Sánchez, J. M. Encinar and J. F. González, Fuel properties of biodiesel from vegetable oils and oil mixtures. Influence of methyl esters distribution. Biomass and Bioenergy, 63, 22-32, 2014. https://doi.org/10.1016/j.biombioe.2014.01.034.
  • G. M. Kalu-Uka, S. Kumar, A. C. Kalu-Uka, S. Vikram, O. O. Okorafor, M. Kigozi, G. O. Ihekweme and A. P. Onwualu, Prospects for biodiesel production from Macrotermes nigeriensis: Process optimization and characterization of biodiesel properties. Biomass and Bioenergy, 146, 105980, 2021. https://doi.org/10.1016/j.biombioe.2021.105980.
  • B. B. Uzun, M. Kiliç, E. Apaydin-Varol and A. E. Pütün, Optimization of biodiesel production and fuel properties of blends. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 36(8), 898-906, 2014. https://doi.org/10.1080/15567036.2010.549907.
  • B. Sajjadi, A. A. A. Raman and H. Arandiyan, A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models. Renewable and Sustainable Energy Reviews, 63, 62-92, 2016. https://doi.org/10.1016/j.rser.2016.05.035.
  • A. Abdulvahitoğlu, Predicted fuel characteristics of prunus avium seed oil as a candidate for biodiesel production. International Journal of Automotive Engineering and Technologies, 8(4), 165-171, 2019. https://doi.org/10.18245/ijaet.625754.
  • G. Tüccar, E. Tosun and E. Uludamar, Investigations of effects of density and viscosity of diesel and biodiesel fuels on NOx and other emission formations. Academic Platform-Journal of Engineering and Science, 6(2), 81-85, 2018. https://doi.org/10.21541/apjes.371015.
  • A. R. Nasirudeen, D. Lasisi, L. A. Balogun, A. J. Eebo, F. O. Ogunsola, A. J. Adesope, S. O. Ogundare, F. A. Ola, Physico-chemical properties of yellow oleander (Thevetia peruviana) and their effects on the qualities of biodiesel. Arıd Zone Journal of Engineering, Technology and Environment, 15(4), 859-866, 2019.
  • M. Ozcanli and H. Serin, Evaluation of soybean/canola/palm biodiesel mixture as an alternative diesel fuel. Journal of Scientific & Industrial Research, 70, 466-470, 2011.
  • M. Illipilla, S. V. P. Lankapalli and J. Sagari, Influence of dispersant-mixed TiO2 nanoparticles on stability and physicochemical properties of Semecarpus anacardium biodiesel blend. International Nano Letters, 13(1), 53-62, 2023. https://doi.org/10.1007/s40089-022-00384-y.
  • J. Kari, V. S. P. Vanthala and J. Sagari, The effect of a surfactant and dispersant mixed Cr2O3 nanoparticles on the analysis of stability and physicochemical properties of a Mesua ferrea biodiesel blend. Petroleum Science and Technology, 1-17, 2022. https://doi.org/10.1080/10916466.2022.2117381.
  • V. Sharma and D. Ganesh, Combustion and emission characteristics of reformulated biodiesel fuel in a single-cylinder compression ignition engine. International Journal of Environmental Science and Technology, 17, 243-252, 2020. https://doi.org/10.1007/s13762-019-02285-8.
  • K. Srithar and K. A. Balasubramanian, Dual biodiesel for diesel engine-Property, performance and emission analysis. International Energy Journal, 14(3), 107-120, 2014.
  • C. C. Enweremadu and O. J. Alamu, Development and characterization of biodiesel from shea nut butter. International Agrophysics, 24(1), 29-34, 2010.
  • T. T. Kivevele and Z. Huan, Effects of antioxidants on the cetane number, viscosity, oxidation stability, and thermal properties of biodiesel produced from nonedible oils. Energy Technology, 1(9), 537-543, 2013. https://doi.org/10.1002/ente.201300072.
  • M. M. Musthafa, Development of performance and emission characteristics on coated diesel engine fuelled by biodiesel with cetane number enhancing additive. Energy, 134, 234-239, 2017. https://doi.org/10.1016/j.energy.2017.06.012.
  • J. Pullen and K. Saeed, Factors affecting biodiesel engine performance and exhaust emissions–Part I. Energy, 72, 1-16, 2014. https://doi.org/10.1016/j.energy.2014.04.015.
  • M. Mourad, K. R. Mahmoud and E. S. H. NourEldeen, Improving diesel engine performance and emissions characteristics fuelled with biodiesel. Fuel, 302, 121097, 2021. https://doi.org/10.1016/j.fuel.2021.121097.
  • U. Rajak, P. Nashine and T. N. Verma, Assessment of diesel engine performance using spirulina microalgae biodiesel. Energy, 166, 1025-1036, 2019. https://doi.org/10.1016/j.energy.2018.10.098.
  • P. M. Shameer and K. Ramesh, Experimental evaluation on performance, combustion behavior and influence of in-cylinder temperature on NOx emission in a DI diesel engine using thermal imager for various alternate fuel blends. Energy, 118, 1334-1344, 2017. https://doi.org/10.1016/j.energy.2016.11.017.
  • V. Ashokkumar, E. Agila, P. Sivakumar, Z. Salam, R. Rengasamy and F. N. Ani, Optimization and characterization of biodiesel production from microalgae Botryococcus grown at semi-continuous system. Energy Conversion and Management, 88, 936-946, 2014. https://doi.org/10.1016/j.enconman.2014.09.019.
  • S. S. Mostafa and N. S. El-Gendy, Evaluation of fuel properties for microalgae Spirulina platensis bio-diesel and its blends with Egyptian petro-diesel. Arabian Journal of Chemistry, 10, S2040-S2050, 2017. https://doi.org/10.1016/j.arabjc.2013.07.034.
  • S. Tayari, R. Abedi and A. Rahi, Comparative assessment of engine performance and emissions fueled with three different biodiesel generations. Renewable Energy, 147, 1058-1069, 2020. https://doi.org/10.1016/j.renene.2019.09.068.
  • C. M. Kshirsagar and R. Anand, Artificial neural network applied forecast on a parametric study of Calophyllum inophyllum methyl ester-diesel engine out responses. Applied Energy, 189, 555- 567, 2017. https://doi.org/10.1016/j.apenergy.2016.12.045.
  • N. Acharya, P. Nanda, S. Panda and S. Acharya, Analysis of properties and estimation of optimum blending ratio of blended mahua biodiesel. Engineering Science and Technology, An International Journal, 20(2), 511-517, 2017. https://doi.org/10.1016/j.jestch.2016.12.005.
  • Ş. Efe, M. A. Ceviz and H. Temur, Comparative engine characteristics of biodiesels from hazelnut, corn, soybean, canola and sunflower oils on DI diesel engine. Renewable Energy, 119, 142-151, 2018. https://doi.org/10.1016/j.renene.2017.12.011.
  • J. Kakati, T. K. Gogoi and K. Pakshirajan,Production of biodiesel from Amari (Amoora Wallichii King) tree seeds using optimum process parameters and its characterization. Energy Conversion and Management, 135, 281-290, 2017. https://doi.org/10.1016/j.enconman.2016.12.087.
  • G. Szabados and Á. Bereczky, Experimental investigation of physicochemical properties of diesel, biodiesel and TBK-biodiesel fuels and combustion and emission analysis in CI internal combustion engine. Renewable Energy, 121, 568- 578, 2018. https://doi.org/10.1016/j.renene.2018.01.048.
  • K. Velmurugan, A. P. Sathiyagnanam, Impact of antioxidants on NOx emissions from a mango seed biodiesel powered DI diesel engine. Alexandria Engineering Journal, 55(1), 715-722, 2016. https://doi.org/10.1016/j.aej.2015.10.004.
  • S. R. Mishra, M. K. Mohanty, N. A. Panigrahi and A. K. Pattanaik, Impact of Simarouba glauca biodiesel blends as a fuel on the performance and emission analysis in an unmodified DICI engine. Renewable Energy Focus, 26, 11-16, 2018. https://doi.org/10.1016/j.ref.2018.05.002.
  • X. Zhang, R. Yang, P. Anburajan, Q. Van Le, M. Alsehli, C. Xia and K. Brindhadevi, Assessment of hydrogen and nanoparticles blended biodiesel on the diesel engine performance and emission characteristics. Fuel, 307, 121780, 2022. https://doi.org/10.1016/j.fuel.2021.121780.
  • M. Mofijur, H. H. Masjuki, M. A. Kalam and A. E. Atabani, Evaluation of biodiesel blending, engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian perspective. Energy, 55, 879-887, 2013. https://doi.org/10.1016/j.energy.2013.02.059.
  • M. Cardone, M. V. Prati, V. Rocco, M. Seggiani, A. Senatore and S. Vitolo, Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: engine performance and regulated and unregulated exhaust emissions. Environmental Science & Technology, 36(21), 4656-4662, 2002. https://doi.org/10.1021/es011078y.
  • V. K. Viswanathan, A. R. Kaladgi, P. Thomai, Ü. Ağbulut, M. Alwetaishi, Z. Said, S. Shaik and A. Afzal, Hybrid optimization and modelling of CI engine performance and emission characteristics of novel hybrid biodiesel blends. Renewable Energy, 198, 549-567, 2022. https://doi.org/10.1016/j.renene.2022.08.008.
  • K. Alagu, H. Venu, J. Jayaraman, V. D. Raju, L. Subramani, P. Appavu and S. Dhanasekar, Novelwater hyacinth biodiesel as a potential alternative fuel for existing unmodified diesel engine: Performance, combustion and emission characteristics. Energy, 179, 295-305, 2019. https://doi.org/10.1016/j.energy.2019.04.207.
  • M. A. Mujtaba, H. H. Masjuki, M. A. Kalam, F. Noor, M. Farooq, H. C. Ong, M. Gul, M. E. M. Soudagar, S. Bashir, I. M. R. Fattah and L. Razzaq, Effect of additivized biodiesel blends on diesel engine performance, emission, tribological characteristics, and lubricant tribology. Energies, 13(13), 3375, 2020. https://doi.org/10.3390/en13133375.
  • M. S. Gad and M. A. Ismail, Effect of waste cooking oil biodiesel blending with gasoline and kerosene on diesel engine performance, emissions and combustion characteristics. Process Safety and Environmental Protection, 149, 1-10, 2021. https://doi.org/10.1016/j.psep.2020.10.040.
  • A. K. Azad, M. G. Rasul, B. Giannangelo and R. Islam, Comparative study of diesel engine performance and emission with soybean and waste oil biodiesel fuels. International Journal of Automotive & Mechanical Engineering, 12, 2866-2881, 2015. http://dx.doi.org/10.15282/ijame.12.2015.6.0241.
  • M. S. Gad, A. S. El-Shafay and H. A. Hashish, Assessment of diesel engine performance, emissions and combustion characteristics burning biodiesel blends from jatropha seeds. Process Safety and Environmental Protection, 147, 518-526, 2021. https://doi.org/10.1016/j.psep.2020.11.034.
  • A. Shirneshan, B. H. Samani and B. Ghobadian, Optimization of biodiesel percentage in fuel mixture and engine operating conditions for diesel engine performance and emission characteristics by artificial bees colony algorithm. Fuel, 184, 518-526, 2016. https://doi.org/10.1016/j.fuel.2016.06.117.
  • J. Dharmaraja, D. D. Nguyen, S. Shobana, G. D. Saratale, S. Arvindnarayan, A. E. Atabani, S. W. Chang and G. Kumar, Engine performance, emission and bio characteristics of rice bran oil derived biodiesel blends. Fuel, 239, 153-161, 2019. https://doi.org/10.1016/j.fuel.2018.10.123.
  • N. Yilmaz and M. Ukaoma, Impact of biodiesel and propanol blends on engine performance, regulated emissions and PAH formation. International Journal of Energy Research, 46(15), 23433-23448, 2022. https://doi.org/10.1002/er.8640.
  • K. Sivaramakrishnan and P. Ravikumar, Performance optimization of karanja biodiesel engine using taguchi approach and multiple regressions. ARPN Journal of Engineering and Applied Sciences, 7(4), 506-516, 2012.
  • V. Aslan, Fuel characterization, engine performance characteristics and emissions analysis of different mustard seed biodiesel: An overview. Journal of Biotechnology, 370, 12-30, 2023. https://doi.org/10.1016/j.jbiotec.2023.05.006.
  • T. Agrawal, R. Gautam, S. Agrawal, V. Singh, M. Kumar and S. Kumar, Optimization of engine performance parameters and exhaust emissions in compression ignition engine fueled with biodiesel-alcohol blends using taguchi method, multiple regression and artificial neural network. Sustainable Futures, 2, 100039, 2020. https://doi.org/10.1016/j.sftr.2020.100039.
  • D. Singh, D. Sharma, S. L. Soni, C. S. Inda, S. Sharma, P. K. Sharma and A. Jhalani, A comprehensive review on 1st-generation biodiesel feedstock palm oil: production, engine performance, and exhaust emissions. BioEnergy Research, 14, 1-22, 2021. https://doi.org/10.1007/s12155-020-10171-2.
  • R. R. Al-Samaraae, A. E. Atabani, G. Uguz, G. Kumar, O. Arpa, A. Ayanoglu, M. N. Mohammed and H. Farouk, Perspective of safflower (Carthamus tinctorius) as a potential biodiesel feedstock in Turkey: characterization, engine performance and emissions analyses of butanol–biodiesel–diesel blends. Biofuels, 11(6), 715-731, 2020. https://doi.org/10.1080/17597269.2017.1398956.
  • R. Manimaran, T. Mohanraj, M. Venkatesan, R.Ganesan and D. Balasubramanian, A computational technique for prediction and optimization of VCR engine performance and emission parameters fuelled with Trichosanthes cucumerina biodiesel using RSM with desirability function approach. Energy, 254, 124293, 2022. https://doi.org/10.1016/j.energy.2022.124293.
  • S. J. M. Algayyim, A. P. Wandel, T. Yusaf and S. Al-Lwayzy, Butanol–acetone mixture blended with cottonseed biodiesel: Spray characteristics evolution, combustion characteristics, engine performance and emission. Proceedings of the Combustion Institute, 37(4), 4729-4739, 2019. https://doi.org/10.1016/j.proci.2018.08.035.
  • A. S. Kumara, D. Maheswarb and K. V. K. Reddyc, Comparision of diesel engine performance and emissions from neat and transesterified cotton seed oil. Jordan Journal of Mechanical and Industrial Engineering, 3(3), 190 - 197, 2009.
  • V. Narasiman, S. Jeyakumar and M. Mani, Experimental investigation of DI diesel engine performance with oxygenated additive and SOME biodiesel. Journal of Thermal Science and Technology, 10(1), JTST0014-JTST0014, 2015. https://doi.org/10.1299/jtst.2015jtst0014.
  • C. Rekhate and A. K. Prajapati, Production, engine performance, combustion, emission characteristics and economic feasibility of biodiesel from waste cooking oil: A review. Environmental Quality Management, 29(1), 7-35, 2019. https://doi.org/10.1002/tqem.21645.
  • A. M. Attia, M. Nour and S. A. Nada, Study of Egyptian castor biodiesel-diesel fuel properties and diesel engine performance for a wide range of blending ratios and operating conditions for the sake of the optimal blending ratio. Energy Conversion and Management, 174, 364-377, 2018. https://doi.org/10.1016/j.enconman.2018.08.016.
  • A. Tizvir, G. R. Molaeimanesh, A. R. Zahedi and S. Labbafi, Optimization of biodiesel production frommicroalgae and investigation of exhaust emissions and engine performance for biodiesel blended. Process Safety and Environmental Protection, 175, 319-340, 2023. https://doi.org/10.1016/j.psep.2023.05.056.
  • S. N. K. Reddy and M. M. Wani, Engine performance and emission studies by application of nanoparticles as additive in biodiesel diesel blends. Materials Today: Proceedings, 43, 3631-3634, 2021. https://doi.org/10.1016/j.matpr.2020.09.832.
  • S. R. Pala, V. S. P. Vanthala and J. Sagari, The effect of metallic and nonmetallic oxide nanoparticles dispersed Mahua biodiesel on diesel engine performance and emission characteristics. Petroleum Science and Technology, 1-18, 2023. https://doi.org/10.1080/10916466.2023.2190778.
  • M. Mofijur, H. H. Masjuki, M. A. Kalam, A. E. Atabani, I. R. Fattah and H. M. Mobarak, Comparative evaluation of performance and emission characteristics of Moringa oleifera and Palm oil based biodiesel in a diesel engine. Industrial Crops and Products, 53, 78-84, 2014. https://doi.org/10.1016/j.indcrop.2013.12.011.
  • E. K. Mohammed and M. A. Nemit-Allah, Experimental investigations of ignition delay period and performance of a diesel engine operated with Jatropha oil biodiesel. Alexandria Engineering Journal, 52(2), 141-149, 2013. https://doi.org/10.1016/j.aej.2012.12.006.
  • M. S. Gad and S. Jayaraj, A comparative study on the effect of nano-additives on the performance and emissions of a diesel engine run on Jatropha biodiesel. Fuel, 267, 117168, 2020. https://doi.org/10.1016/j.fuel.2020.117168.
  • S. Pai, A. Sharief and S. Kumar, Influence of ultra injection pressure with dynamic injection timing on CRDI engine performance using Simarouba biodiesel blends. International Journal of Automotive and Mechanical Engineering, 15(4), 5748-5759, 2018. https://doi.org/10.15282/ijame.15.4.2018.3.0440.
  • S. Jaichandar and K. Annamalai, Effects of open combustion chamber geometries on the performance of pongamia biodiesel in a DI diesel engine. Fuel, 98, 272-279, 2012. https://doi.org/10.1016/j.fuel.2012.04.004.
  • S. Simsek and S. Uslu, Comparative evaluation of the influence of waste vegetable oil and waste animal oil-based biodiesel on diesel engine performance and emissions. Fuel, 280, 118613, 2020. https://doi.org/10.1016/j.fuel.2020.118613.
  • K. Sivaramakrishnan and P. Ravikumar, Determination of cetane number of biodiesel and its influence on physical properties. ARPN journal of engineering and applied sciences, 7(2), 205-211, 2012.
  • H. Venkatesan, S. Sivamani, S. Sampath, V. Gopi, and D. Kumar, A comprehensive review on the effect of nano metallic additives on fuel properties, engine performance and emission characteristics. International Journal of Renewable Energy Research (IJRER), 7(2), 825-843, 2017.
  • I. Örs, S. Sarıkoç, A. E. Atabani, S. Ünalan and S. O. Akansu, The effects on performance, combustion and emission characteristics of DICI engine fuelled with TiO2 nanoparticles addition in diesel/biodiesel/n-butanol blends. Fuel, 234, 177-188, 2018. https://doi.org/10.1016/j.fuel.2018.07.024.
  • H. Karabaş and S. Boran, Comparison of engine performance and exhaust emission properties of diesel and safflower biodiesel using multi-response surface methodology. Environmental Progress & Sustainable Energy, 38(3), e13034, 2019. https://doi.org/10.1002/ep.13034.
  • A. K. Yadav, M. E. Khan, A. M. Dubey and A. Pal, Performance and emission characteristics of a transportation diesel engine operated with non-edible vegetable oils biodiesel. Case Studies in Thermal Engineering, 8, 236-244, 2016. https://doi.org/10.1016/j.csite.2016.08.001.
  • H. Özgünay, S. Çolak, G. Zengin, Ö. Sari, H. Sarikahya and L. Yüceer, Performance and emission study of biodiesel from leather industry pre-fleshings. Waste Management, 27(12), 1897-1901, 2007. https://doi.org/10.1016/j.wasman.2006.08.014.
  • W. H. Al Doori, A. H. Ahmed and H. Koten, Comparative study of biodiesel production from different waste oil sources for optimum operation conditions and better engine performance. Journal of Thermal Engineering, 8(4), 457-465, 2021. https://doi.org/10.18186/thermal.1135266.
  • J. C. Ge, H. Y. Kim, S. K. Yoon and N. J. Choi, Optimization of palm oil biodiesel blends and engine operating parameters to improve performance and PM morphology in a common rail direct injection diesel engine. Fuel, 260, 116326, 2020. https://doi.org/10.1016/j.fuel.2019.116326.
  • B. F. Lin, J. H. Huang and D. Y. Huang, Experimental study of the effects of vegetable oil methyl ester on DI diesel engine performance characteristics and pollutant emissions. Fuel, 88(9), 1779-1785, 2009. https://doi.org/10.1016/j.fuel.2009.04.006.
  • S. Gnanasekaran, N. Saravanan and M. Ilangkumaran, Influence of injection timing on performance, emission and combustion characteristics of a DI diesel engine running on fish oil biodiesel. Energy, 116, 1218-1229, 2006. https://doi.org/10.1016/j.energy.2016.10.039.
  • N. Panneerselvam, A. Murugesan, K. P. Porkodi, T. Jima, C. Vijayakumar and D. Subramaniam, Computational engine performance and emission analysis using Ceiba pentandra biodiesel. Biofuels, 7(3), 201-206, 2016. https://doi.org/10.1080/17597269.2015.1123985.
  • P. Rajendra, J. Kamalesh, G. Pranali, B. Vishal and S. Bhushan, A comprehensive review on influence of biodiesel and additives on performance and emission of diesel engine. Chemical Engineering Transactions, 65, 451-456, 2018. https://doi.org/10.3303/CET1865076.
  • M. I. Arbab, M. Varman, H. H. Masjuki, M. A. Kalam, S. Imtenan, H. Sajjad and I. R. Fattah, Evaluation of combustion, performance, and emissions of optimum palm–coconut blend in turbocharged and non-turbocharged conditions of a diesel engine. Energy Conversion and Management, 90, 111-120, 2015. https://doi.org/10.1016/j.enconman.2014.11.017.
  • B. A. Oni and D. Oluwatosin, Emission characteristics and performance of neem seed (Azadirachta indica) and camelina (Camelina sativa) based biodiesel in diesel engine. Renewable Energy, 149, 725-734, 2020. https://doi.org/10.1016/j.renene.2019.12.012.
  • A. Atmanli and N. Yilmaz, An experimental assessment on semi-low temperature combustion using waste oil biodiesel/C3-C5 alcohol blends in a diesel engine. Fuel, 260, 116357, 2020. https://doi.org/10.1016/j.fuel.2019.116357.
  • L. A. Raman, B. Deepanraj, S. Rajakumar and V. Sivasubramanian, Experimental investigation on performance, combustion and emission analysis of a direct injection diesel engine fuelled with rapeseed oil biodiesel. Fuel, 246, 69-74, 2019. https://doi.org/10.1016/j.fuel.2019.02.106.
  • M. J. Abedin, H. H. Masjuki, M. A. Kalam, A. Sanjid, S. A. Rahman and I. R. Fattah, Performance, emissions, and heat losses of palm and jatropha biodiesel blends in a diesel engine. Industrial Crops and Products, 59, 96-104, 2014. https://doi.org/10.1016/j.indcrop.2014.05.001.
  • E. Öztürk, Performance, emissions, combustion and injection characteristics of a diesel engine fuelled with canola oil–hazelnut soapstock biodiesel mixture. Fuel Processing Technology, 129, 183-191, 2015. https://doi.org/10.1016/j.fuproc.2014.09.016.
  • J. Neter, W. Wasserman and M. H. Kutner, Applied linear regression models. Irwin, Second Edition. ISBN: 0-256-07068-7, 1989.
  • R. Peck, C. Olsen and J. Devore, Introduction to statistics and data analysis. Thomson Learning Academic Resource Center. ISBN: 0-534-37092-6, 2001.
  • J. L. Hintze, NCSS User's Guide III Regression and Curve Fitting. NCSS Statistical System, 2007, https://www.ncss.com/download/ncss/manuals/, Accessed: 01.08.2023.
  • A. I. Bamgboye and A. C. Hansen, Prediction of cetane number of biodiesel fuel from the fatty acid methyl ester (FAME) composition. International Agrophysics, 22(1), 21-29, 2008.
  • N. Usta, An experimental study on performance and exhaust emissions of a diesel engine fuelled with tobacco seed oil methyl ester. Energy Conversion and Management, 46(15-16), 2373-2386, 2005. https://doi.org/10.1016/j.enconman.2004.12.002.
  • M. Mohamed, C. K. Tan, A. Fouda, M. S. Gad, O. Abu-Elyazeed and A. F. Hashem, Diesel engine performance, emissions and combustion characteristics of biodiesel and its blends derived from catalytic pyrolysis of waste cooking oil. Energies, 13(21), 5708, 2020. https://doi.org/10.3390/en13215708.

Bazı yakıt özelliklerine bağlı olarak çoklu non-linear korelasyonlar yoluyla saf biyodizellerin setan sayılarının tahmin edilmesi

Yıl 2023, Cilt: 12 Sayı: 4, 1593 - 1605, 15.10.2023
https://doi.org/10.28948/ngumuh.1342996

Öz

Literatürde saf biyodizellerin setan sayılarını özelliklerine (yağ asidi esterlerinin bileşimi, karbon atomu sayısı, çift bağ sayısı, zincir uzunluğu, sabunlaşma sayısı, iyot değeri, vb.) bağlı olarak tahmin etmek için çoklu doğrusal regresyon, makine öğrenmesi yöntemleri ve grup katkı yöntemleri kullanılmaktadır. Fakat, setan sayısı ile diğer yakıt özellikleri arasındaki ilişki üzerine nispeten sınırlı araştırma bulunmaktadır. Bu nedenle, bu çalışma, yoğunluk, kinematik viskozite, parlama noktası ve ısıl değere bağlı olarak saf biyodizellerin setan sayılarını tahmin etmek için çoklu doğrusal olmayan regresyon yöntemini kullanmayı amaçlamaktadır. Korelasyonları oluşturmak için, 100 farklı biyodizelin (metil ve etil esterler) yakıt özelliklerine ilişkin deneysel veriler literatürden toplanmıştır. Önerilen çoklu non-linear korelasyonların tahmin performansları, literatürde bulunan ve yaygın olarak önerilen çoklu doğrusal korelasyon ile karşılaştırılmıştır. Sonuçlara göre, %5'ten daha düşük bağıl hatalara ve yüksek determinasyon katsayısı (r2) değerlerine sahip olan güvenilir non-linear korelasyonlar elde edilmiştir.

Kaynakça

  • J. Yan, S. Gao, W. Zhao and T. H. Lee, Study of combustion and emission characteristics of a diesel engine fueled with diesel, butanol-diesel and hexanol-diesel mixtures under low intake pressure conditions. Energy Conversion and Management, 243, 114273, 2021.https://doi.org/10.1016/j.enconman.2021.114273
  • Z. G. Liu and A. Munnannur, Future diesel engines. Design and development of heavy duty diesel engines: A handbook, 887-914, 2020.
  • M. Z. Jacobson, Short‐term effects of controlling fossil‐fuel soot, biofuel soot and gases, and methane on climate, arctic ice, and air pollution health. Journal of Geophysical Research: Atmospheres, 115(D14), 2010. https://doi.org/10.1029/2009JD013795.
  • D. Adu-Mensah, D. Mei, L. Zuo, Q. Zhang and J. Wang, A review on partial hydrogenation of biodiesel and its influence on fuel properties. Fuel, 251, 660-668, 2019. https://doi.org/10.1016/j.fuel.2019.04.036.
  • M. Udayakumar, S. Sivaganesan and S. Sivamani, Process optimization of KOH catalyzed biodiesel production from crude sunflower-mahua oil. Biofuels, 13(8), 1031-1039, 2022. https://doi.org/10.1080/17597269.2022.2071068.
  • M. A. Shaah, F. Allafi, M. S. Hossain, A. Alsaedi, N. Ismail, M. O. A. Kadir and M. I. Ahmad, Candlenut oil: review on oil properties and future liquid biofuel prospects. International Journal of Energy Research, 45(12), 17057-17079, 2021. https://doi.org/10.1002/er.6446.
  • I. Raheem, M. N. B. Mohiddin, Y. H. Tan, J. Kansedo, N. M. Mubarak, M. O. Abdullah and M. L. Ibrahim, A review on influence of reactor technologies and kinetic studies for biodiesel application. Journal of Industrial and Engineering Chemistry, 91, 54-68, 2020. https://doi.org/10.1016/j.jiec.2020.08.024.
  • L. Zhang, B. Sheng, Z. Xin, Q. Liu and S. Sun, Kinetics of transesterification of palm oil and dimethyl carbonate for biodiesel production at the catalysis of heterogeneous base catalyst. Bioresource Technology, 101(21), 8144-8150, 2010. https://doi.org/10.1016/j.biortech.2010.05.069.
  • M. Mofijur, M. G. Rasul, J. Hyde, A. K. Azad, R. Mamat and M. M. K. Bhuiya, Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) blends on internal combustion engines emission reduction. Renewable and Sustainable Energy Reviews, 53, 265-278, 2016. https://doi.org/10.1016/j.rser.2015.08.046.
  • P. McCarthy, M. G. Rasul and S. Moazzem, Analysis and comparison of performance and emissions of an internal combustion engine fuelled with petroleum diesel and different bio-diesels. Fuel, 90(6), 2147-2157, 2011. https://doi.org/10.1016/j.fuel.2011.02.010.
  • I. Barabás and I. A. Todorut, Predicting the temperature dependent viscosity of biodiesel–diesel–bioethanol blends. Energy & Fuels, 25(12), 5767-5774, 2011. https://doi.org/10.1021/ef2007936.
  • S. R. Turns, An introduction to combustion. Concepts and applications. Second Edition. McGraw-Hill International Editions, Mechanical Engineering Series. ISBN: 0-07-230096-5, 2000.
  • M. Gülüm and A. Bilgin, Density, flash point and heating value variations of corn oil biodiesel–diesel fuel blends. Fuel Processing Technology, 134, 456-464, 2015. https://doi.org/10.1016/j.fuproc.2015.02.026.
  • J. B. Heywood, Internal combustion engine fundamentals. McGraw-Hill International Editions, Automotive Technology Series. ISBN: 0-07-100499-8, 1988.
  • V. Kumbhar, A. Pandey, C. R. Sonawane, A. S. El-Shafay, H. Panchal and A. J. Chamkha, Statistical analysis on prediction of biodiesel properties from its fatty acid composition. Case Studies in Thermal Engineering, 30, 101775, 2022. https://doi.org/10.1016/j.csite.2022.101775.
  • H. Yang, Z. Ring, Y. Briker, N. McLean, W. Friesen and C. Fairbridge, Neural network prediction of cetane number and density of diesel fuel from its chemical composition determined by LC and GC–MS. Fuel, 81(1), 65-74, 2002. https://doi.org/10.1016/S0016-2361(01)00121-1.
  • M. Gülüm, Multiple correlations to predict cetane number of pure biodiesels depending on other fuel properties. Eurasia Research Conferences, Scientific and Technical Research Association (STRA) Conference Proceedings, 2, 45, 2023.
  • R. Piloto-Rodríguez, Y. Sánchez-Borroto, M. Lapuerta, L. Goyos-Pérez and S. Verhelst, Prediction of the cetane number of biodiesel using artificial neural networks and multiple linear regression. Energy Conversion and Management, 65, 255-261, 2013. https://doi.org/10.1016/j.enconman.2012.07.023.
  • S. F. Ardabili, B. Najafi and S. Shamshirband, Fuzzy logic method for the prediction of cetane number using carbon number, double bounds, iodic, and saponification values of biodiesel fuels. Environmental Progress & Sustainable Energy, 38(2), 584-599, 2019. https://doi.org/10.1002/ep.12960.
  • D. Tong, C. Hu, K. Jiang and Y. Li, Cetane number prediction of biodiesel from the composition of the fatty acid methyl esters. Journal of the American Oil Chemists' Society, 88(3), 415-423, 2011. https://doi.org/10.1007/s11746-010-1672-0.
  • C. Y. Lin and X. E. Wu, Determination of cetane number from fatty acid compositions and structures of biodiesel. Processes, 10(8), 1502, 2022. https://doi.org/10.3390/pr10081502.
  • A. O. Emiroğlu, A. Keskin and M. Şen, Experimental investigation of the effects of turkey rendering fat biodiesel on combustion, performance and exhaust emissions of a diesel engine. Fuel, 216, 266-273, 2018. https://doi.org/10.1016/j.fuel.2017.12.026.
  • T. Kalyani, L. S. V. Prasad and A. Kolakoti, Effect of triacetin as an oxygenated additive in algae biodiesel fuelled CI engine combustion, performance, and exhaust emission analysis. Fuel, 338, 127366, 2023. https://doi.org/10.1016/j.fuel.2022.127366.
  • C. Kaya, C. Hamamci, A. Baysal, O. Akba, S. Erdogan and A. Saydut, Methyl ester of peanut (Arachis hypogea L.) seed oil as a potential feedstock for biodiesel production. Renewable Energy, 34(5), 1257-1260, 2009. https://doi.org/10.1016/j.renene.2008.10.002.
  • A. Saydut, M. Z. Duz, C. Kaya, A. B. Kafadar and C. Hamamci, Transesterified sesame (Sesamum indicum L.) seed oil as a biodiesel fuel. Bioresource Technology, 99(14), 6656-6660, 2008. https://doi.org/10.1016/j.biortech.2007.11.063.
  • I. A. Nehdi, H. Sbihi, C. P. Tan and S. I. Al-Resayes, Garden cress (Lepidium sativum Linn.) seed oil as a potential feedstock for biodiesel production. Bioresource Technology, 126, 193-197, 2012. https://doi.org/10.1016/j.biortech.2012.08.113.
  • G. Martínez, N. Sánchez, J. M. Encinar and J. F. González, Fuel properties of biodiesel from vegetable oils and oil mixtures. Influence of methyl esters distribution. Biomass and Bioenergy, 63, 22-32, 2014. https://doi.org/10.1016/j.biombioe.2014.01.034.
  • G. M. Kalu-Uka, S. Kumar, A. C. Kalu-Uka, S. Vikram, O. O. Okorafor, M. Kigozi, G. O. Ihekweme and A. P. Onwualu, Prospects for biodiesel production from Macrotermes nigeriensis: Process optimization and characterization of biodiesel properties. Biomass and Bioenergy, 146, 105980, 2021. https://doi.org/10.1016/j.biombioe.2021.105980.
  • B. B. Uzun, M. Kiliç, E. Apaydin-Varol and A. E. Pütün, Optimization of biodiesel production and fuel properties of blends. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 36(8), 898-906, 2014. https://doi.org/10.1080/15567036.2010.549907.
  • B. Sajjadi, A. A. A. Raman and H. Arandiyan, A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models. Renewable and Sustainable Energy Reviews, 63, 62-92, 2016. https://doi.org/10.1016/j.rser.2016.05.035.
  • A. Abdulvahitoğlu, Predicted fuel characteristics of prunus avium seed oil as a candidate for biodiesel production. International Journal of Automotive Engineering and Technologies, 8(4), 165-171, 2019. https://doi.org/10.18245/ijaet.625754.
  • G. Tüccar, E. Tosun and E. Uludamar, Investigations of effects of density and viscosity of diesel and biodiesel fuels on NOx and other emission formations. Academic Platform-Journal of Engineering and Science, 6(2), 81-85, 2018. https://doi.org/10.21541/apjes.371015.
  • A. R. Nasirudeen, D. Lasisi, L. A. Balogun, A. J. Eebo, F. O. Ogunsola, A. J. Adesope, S. O. Ogundare, F. A. Ola, Physico-chemical properties of yellow oleander (Thevetia peruviana) and their effects on the qualities of biodiesel. Arıd Zone Journal of Engineering, Technology and Environment, 15(4), 859-866, 2019.
  • M. Ozcanli and H. Serin, Evaluation of soybean/canola/palm biodiesel mixture as an alternative diesel fuel. Journal of Scientific & Industrial Research, 70, 466-470, 2011.
  • M. Illipilla, S. V. P. Lankapalli and J. Sagari, Influence of dispersant-mixed TiO2 nanoparticles on stability and physicochemical properties of Semecarpus anacardium biodiesel blend. International Nano Letters, 13(1), 53-62, 2023. https://doi.org/10.1007/s40089-022-00384-y.
  • J. Kari, V. S. P. Vanthala and J. Sagari, The effect of a surfactant and dispersant mixed Cr2O3 nanoparticles on the analysis of stability and physicochemical properties of a Mesua ferrea biodiesel blend. Petroleum Science and Technology, 1-17, 2022. https://doi.org/10.1080/10916466.2022.2117381.
  • V. Sharma and D. Ganesh, Combustion and emission characteristics of reformulated biodiesel fuel in a single-cylinder compression ignition engine. International Journal of Environmental Science and Technology, 17, 243-252, 2020. https://doi.org/10.1007/s13762-019-02285-8.
  • K. Srithar and K. A. Balasubramanian, Dual biodiesel for diesel engine-Property, performance and emission analysis. International Energy Journal, 14(3), 107-120, 2014.
  • C. C. Enweremadu and O. J. Alamu, Development and characterization of biodiesel from shea nut butter. International Agrophysics, 24(1), 29-34, 2010.
  • T. T. Kivevele and Z. Huan, Effects of antioxidants on the cetane number, viscosity, oxidation stability, and thermal properties of biodiesel produced from nonedible oils. Energy Technology, 1(9), 537-543, 2013. https://doi.org/10.1002/ente.201300072.
  • M. M. Musthafa, Development of performance and emission characteristics on coated diesel engine fuelled by biodiesel with cetane number enhancing additive. Energy, 134, 234-239, 2017. https://doi.org/10.1016/j.energy.2017.06.012.
  • J. Pullen and K. Saeed, Factors affecting biodiesel engine performance and exhaust emissions–Part I. Energy, 72, 1-16, 2014. https://doi.org/10.1016/j.energy.2014.04.015.
  • M. Mourad, K. R. Mahmoud and E. S. H. NourEldeen, Improving diesel engine performance and emissions characteristics fuelled with biodiesel. Fuel, 302, 121097, 2021. https://doi.org/10.1016/j.fuel.2021.121097.
  • U. Rajak, P. Nashine and T. N. Verma, Assessment of diesel engine performance using spirulina microalgae biodiesel. Energy, 166, 1025-1036, 2019. https://doi.org/10.1016/j.energy.2018.10.098.
  • P. M. Shameer and K. Ramesh, Experimental evaluation on performance, combustion behavior and influence of in-cylinder temperature on NOx emission in a DI diesel engine using thermal imager for various alternate fuel blends. Energy, 118, 1334-1344, 2017. https://doi.org/10.1016/j.energy.2016.11.017.
  • V. Ashokkumar, E. Agila, P. Sivakumar, Z. Salam, R. Rengasamy and F. N. Ani, Optimization and characterization of biodiesel production from microalgae Botryococcus grown at semi-continuous system. Energy Conversion and Management, 88, 936-946, 2014. https://doi.org/10.1016/j.enconman.2014.09.019.
  • S. S. Mostafa and N. S. El-Gendy, Evaluation of fuel properties for microalgae Spirulina platensis bio-diesel and its blends with Egyptian petro-diesel. Arabian Journal of Chemistry, 10, S2040-S2050, 2017. https://doi.org/10.1016/j.arabjc.2013.07.034.
  • S. Tayari, R. Abedi and A. Rahi, Comparative assessment of engine performance and emissions fueled with three different biodiesel generations. Renewable Energy, 147, 1058-1069, 2020. https://doi.org/10.1016/j.renene.2019.09.068.
  • C. M. Kshirsagar and R. Anand, Artificial neural network applied forecast on a parametric study of Calophyllum inophyllum methyl ester-diesel engine out responses. Applied Energy, 189, 555- 567, 2017. https://doi.org/10.1016/j.apenergy.2016.12.045.
  • N. Acharya, P. Nanda, S. Panda and S. Acharya, Analysis of properties and estimation of optimum blending ratio of blended mahua biodiesel. Engineering Science and Technology, An International Journal, 20(2), 511-517, 2017. https://doi.org/10.1016/j.jestch.2016.12.005.
  • Ş. Efe, M. A. Ceviz and H. Temur, Comparative engine characteristics of biodiesels from hazelnut, corn, soybean, canola and sunflower oils on DI diesel engine. Renewable Energy, 119, 142-151, 2018. https://doi.org/10.1016/j.renene.2017.12.011.
  • J. Kakati, T. K. Gogoi and K. Pakshirajan,Production of biodiesel from Amari (Amoora Wallichii King) tree seeds using optimum process parameters and its characterization. Energy Conversion and Management, 135, 281-290, 2017. https://doi.org/10.1016/j.enconman.2016.12.087.
  • G. Szabados and Á. Bereczky, Experimental investigation of physicochemical properties of diesel, biodiesel and TBK-biodiesel fuels and combustion and emission analysis in CI internal combustion engine. Renewable Energy, 121, 568- 578, 2018. https://doi.org/10.1016/j.renene.2018.01.048.
  • K. Velmurugan, A. P. Sathiyagnanam, Impact of antioxidants on NOx emissions from a mango seed biodiesel powered DI diesel engine. Alexandria Engineering Journal, 55(1), 715-722, 2016. https://doi.org/10.1016/j.aej.2015.10.004.
  • S. R. Mishra, M. K. Mohanty, N. A. Panigrahi and A. K. Pattanaik, Impact of Simarouba glauca biodiesel blends as a fuel on the performance and emission analysis in an unmodified DICI engine. Renewable Energy Focus, 26, 11-16, 2018. https://doi.org/10.1016/j.ref.2018.05.002.
  • X. Zhang, R. Yang, P. Anburajan, Q. Van Le, M. Alsehli, C. Xia and K. Brindhadevi, Assessment of hydrogen and nanoparticles blended biodiesel on the diesel engine performance and emission characteristics. Fuel, 307, 121780, 2022. https://doi.org/10.1016/j.fuel.2021.121780.
  • M. Mofijur, H. H. Masjuki, M. A. Kalam and A. E. Atabani, Evaluation of biodiesel blending, engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian perspective. Energy, 55, 879-887, 2013. https://doi.org/10.1016/j.energy.2013.02.059.
  • M. Cardone, M. V. Prati, V. Rocco, M. Seggiani, A. Senatore and S. Vitolo, Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: engine performance and regulated and unregulated exhaust emissions. Environmental Science & Technology, 36(21), 4656-4662, 2002. https://doi.org/10.1021/es011078y.
  • V. K. Viswanathan, A. R. Kaladgi, P. Thomai, Ü. Ağbulut, M. Alwetaishi, Z. Said, S. Shaik and A. Afzal, Hybrid optimization and modelling of CI engine performance and emission characteristics of novel hybrid biodiesel blends. Renewable Energy, 198, 549-567, 2022. https://doi.org/10.1016/j.renene.2022.08.008.
  • K. Alagu, H. Venu, J. Jayaraman, V. D. Raju, L. Subramani, P. Appavu and S. Dhanasekar, Novelwater hyacinth biodiesel as a potential alternative fuel for existing unmodified diesel engine: Performance, combustion and emission characteristics. Energy, 179, 295-305, 2019. https://doi.org/10.1016/j.energy.2019.04.207.
  • M. A. Mujtaba, H. H. Masjuki, M. A. Kalam, F. Noor, M. Farooq, H. C. Ong, M. Gul, M. E. M. Soudagar, S. Bashir, I. M. R. Fattah and L. Razzaq, Effect of additivized biodiesel blends on diesel engine performance, emission, tribological characteristics, and lubricant tribology. Energies, 13(13), 3375, 2020. https://doi.org/10.3390/en13133375.
  • M. S. Gad and M. A. Ismail, Effect of waste cooking oil biodiesel blending with gasoline and kerosene on diesel engine performance, emissions and combustion characteristics. Process Safety and Environmental Protection, 149, 1-10, 2021. https://doi.org/10.1016/j.psep.2020.10.040.
  • A. K. Azad, M. G. Rasul, B. Giannangelo and R. Islam, Comparative study of diesel engine performance and emission with soybean and waste oil biodiesel fuels. International Journal of Automotive & Mechanical Engineering, 12, 2866-2881, 2015. http://dx.doi.org/10.15282/ijame.12.2015.6.0241.
  • M. S. Gad, A. S. El-Shafay and H. A. Hashish, Assessment of diesel engine performance, emissions and combustion characteristics burning biodiesel blends from jatropha seeds. Process Safety and Environmental Protection, 147, 518-526, 2021. https://doi.org/10.1016/j.psep.2020.11.034.
  • A. Shirneshan, B. H. Samani and B. Ghobadian, Optimization of biodiesel percentage in fuel mixture and engine operating conditions for diesel engine performance and emission characteristics by artificial bees colony algorithm. Fuel, 184, 518-526, 2016. https://doi.org/10.1016/j.fuel.2016.06.117.
  • J. Dharmaraja, D. D. Nguyen, S. Shobana, G. D. Saratale, S. Arvindnarayan, A. E. Atabani, S. W. Chang and G. Kumar, Engine performance, emission and bio characteristics of rice bran oil derived biodiesel blends. Fuel, 239, 153-161, 2019. https://doi.org/10.1016/j.fuel.2018.10.123.
  • N. Yilmaz and M. Ukaoma, Impact of biodiesel and propanol blends on engine performance, regulated emissions and PAH formation. International Journal of Energy Research, 46(15), 23433-23448, 2022. https://doi.org/10.1002/er.8640.
  • K. Sivaramakrishnan and P. Ravikumar, Performance optimization of karanja biodiesel engine using taguchi approach and multiple regressions. ARPN Journal of Engineering and Applied Sciences, 7(4), 506-516, 2012.
  • V. Aslan, Fuel characterization, engine performance characteristics and emissions analysis of different mustard seed biodiesel: An overview. Journal of Biotechnology, 370, 12-30, 2023. https://doi.org/10.1016/j.jbiotec.2023.05.006.
  • T. Agrawal, R. Gautam, S. Agrawal, V. Singh, M. Kumar and S. Kumar, Optimization of engine performance parameters and exhaust emissions in compression ignition engine fueled with biodiesel-alcohol blends using taguchi method, multiple regression and artificial neural network. Sustainable Futures, 2, 100039, 2020. https://doi.org/10.1016/j.sftr.2020.100039.
  • D. Singh, D. Sharma, S. L. Soni, C. S. Inda, S. Sharma, P. K. Sharma and A. Jhalani, A comprehensive review on 1st-generation biodiesel feedstock palm oil: production, engine performance, and exhaust emissions. BioEnergy Research, 14, 1-22, 2021. https://doi.org/10.1007/s12155-020-10171-2.
  • R. R. Al-Samaraae, A. E. Atabani, G. Uguz, G. Kumar, O. Arpa, A. Ayanoglu, M. N. Mohammed and H. Farouk, Perspective of safflower (Carthamus tinctorius) as a potential biodiesel feedstock in Turkey: characterization, engine performance and emissions analyses of butanol–biodiesel–diesel blends. Biofuels, 11(6), 715-731, 2020. https://doi.org/10.1080/17597269.2017.1398956.
  • R. Manimaran, T. Mohanraj, M. Venkatesan, R.Ganesan and D. Balasubramanian, A computational technique for prediction and optimization of VCR engine performance and emission parameters fuelled with Trichosanthes cucumerina biodiesel using RSM with desirability function approach. Energy, 254, 124293, 2022. https://doi.org/10.1016/j.energy.2022.124293.
  • S. J. M. Algayyim, A. P. Wandel, T. Yusaf and S. Al-Lwayzy, Butanol–acetone mixture blended with cottonseed biodiesel: Spray characteristics evolution, combustion characteristics, engine performance and emission. Proceedings of the Combustion Institute, 37(4), 4729-4739, 2019. https://doi.org/10.1016/j.proci.2018.08.035.
  • A. S. Kumara, D. Maheswarb and K. V. K. Reddyc, Comparision of diesel engine performance and emissions from neat and transesterified cotton seed oil. Jordan Journal of Mechanical and Industrial Engineering, 3(3), 190 - 197, 2009.
  • V. Narasiman, S. Jeyakumar and M. Mani, Experimental investigation of DI diesel engine performance with oxygenated additive and SOME biodiesel. Journal of Thermal Science and Technology, 10(1), JTST0014-JTST0014, 2015. https://doi.org/10.1299/jtst.2015jtst0014.
  • C. Rekhate and A. K. Prajapati, Production, engine performance, combustion, emission characteristics and economic feasibility of biodiesel from waste cooking oil: A review. Environmental Quality Management, 29(1), 7-35, 2019. https://doi.org/10.1002/tqem.21645.
  • A. M. Attia, M. Nour and S. A. Nada, Study of Egyptian castor biodiesel-diesel fuel properties and diesel engine performance for a wide range of blending ratios and operating conditions for the sake of the optimal blending ratio. Energy Conversion and Management, 174, 364-377, 2018. https://doi.org/10.1016/j.enconman.2018.08.016.
  • A. Tizvir, G. R. Molaeimanesh, A. R. Zahedi and S. Labbafi, Optimization of biodiesel production frommicroalgae and investigation of exhaust emissions and engine performance for biodiesel blended. Process Safety and Environmental Protection, 175, 319-340, 2023. https://doi.org/10.1016/j.psep.2023.05.056.
  • S. N. K. Reddy and M. M. Wani, Engine performance and emission studies by application of nanoparticles as additive in biodiesel diesel blends. Materials Today: Proceedings, 43, 3631-3634, 2021. https://doi.org/10.1016/j.matpr.2020.09.832.
  • S. R. Pala, V. S. P. Vanthala and J. Sagari, The effect of metallic and nonmetallic oxide nanoparticles dispersed Mahua biodiesel on diesel engine performance and emission characteristics. Petroleum Science and Technology, 1-18, 2023. https://doi.org/10.1080/10916466.2023.2190778.
  • M. Mofijur, H. H. Masjuki, M. A. Kalam, A. E. Atabani, I. R. Fattah and H. M. Mobarak, Comparative evaluation of performance and emission characteristics of Moringa oleifera and Palm oil based biodiesel in a diesel engine. Industrial Crops and Products, 53, 78-84, 2014. https://doi.org/10.1016/j.indcrop.2013.12.011.
  • E. K. Mohammed and M. A. Nemit-Allah, Experimental investigations of ignition delay period and performance of a diesel engine operated with Jatropha oil biodiesel. Alexandria Engineering Journal, 52(2), 141-149, 2013. https://doi.org/10.1016/j.aej.2012.12.006.
  • M. S. Gad and S. Jayaraj, A comparative study on the effect of nano-additives on the performance and emissions of a diesel engine run on Jatropha biodiesel. Fuel, 267, 117168, 2020. https://doi.org/10.1016/j.fuel.2020.117168.
  • S. Pai, A. Sharief and S. Kumar, Influence of ultra injection pressure with dynamic injection timing on CRDI engine performance using Simarouba biodiesel blends. International Journal of Automotive and Mechanical Engineering, 15(4), 5748-5759, 2018. https://doi.org/10.15282/ijame.15.4.2018.3.0440.
  • S. Jaichandar and K. Annamalai, Effects of open combustion chamber geometries on the performance of pongamia biodiesel in a DI diesel engine. Fuel, 98, 272-279, 2012. https://doi.org/10.1016/j.fuel.2012.04.004.
  • S. Simsek and S. Uslu, Comparative evaluation of the influence of waste vegetable oil and waste animal oil-based biodiesel on diesel engine performance and emissions. Fuel, 280, 118613, 2020. https://doi.org/10.1016/j.fuel.2020.118613.
  • K. Sivaramakrishnan and P. Ravikumar, Determination of cetane number of biodiesel and its influence on physical properties. ARPN journal of engineering and applied sciences, 7(2), 205-211, 2012.
  • H. Venkatesan, S. Sivamani, S. Sampath, V. Gopi, and D. Kumar, A comprehensive review on the effect of nano metallic additives on fuel properties, engine performance and emission characteristics. International Journal of Renewable Energy Research (IJRER), 7(2), 825-843, 2017.
  • I. Örs, S. Sarıkoç, A. E. Atabani, S. Ünalan and S. O. Akansu, The effects on performance, combustion and emission characteristics of DICI engine fuelled with TiO2 nanoparticles addition in diesel/biodiesel/n-butanol blends. Fuel, 234, 177-188, 2018. https://doi.org/10.1016/j.fuel.2018.07.024.
  • H. Karabaş and S. Boran, Comparison of engine performance and exhaust emission properties of diesel and safflower biodiesel using multi-response surface methodology. Environmental Progress & Sustainable Energy, 38(3), e13034, 2019. https://doi.org/10.1002/ep.13034.
  • A. K. Yadav, M. E. Khan, A. M. Dubey and A. Pal, Performance and emission characteristics of a transportation diesel engine operated with non-edible vegetable oils biodiesel. Case Studies in Thermal Engineering, 8, 236-244, 2016. https://doi.org/10.1016/j.csite.2016.08.001.
  • H. Özgünay, S. Çolak, G. Zengin, Ö. Sari, H. Sarikahya and L. Yüceer, Performance and emission study of biodiesel from leather industry pre-fleshings. Waste Management, 27(12), 1897-1901, 2007. https://doi.org/10.1016/j.wasman.2006.08.014.
  • W. H. Al Doori, A. H. Ahmed and H. Koten, Comparative study of biodiesel production from different waste oil sources for optimum operation conditions and better engine performance. Journal of Thermal Engineering, 8(4), 457-465, 2021. https://doi.org/10.18186/thermal.1135266.
  • J. C. Ge, H. Y. Kim, S. K. Yoon and N. J. Choi, Optimization of palm oil biodiesel blends and engine operating parameters to improve performance and PM morphology in a common rail direct injection diesel engine. Fuel, 260, 116326, 2020. https://doi.org/10.1016/j.fuel.2019.116326.
  • B. F. Lin, J. H. Huang and D. Y. Huang, Experimental study of the effects of vegetable oil methyl ester on DI diesel engine performance characteristics and pollutant emissions. Fuel, 88(9), 1779-1785, 2009. https://doi.org/10.1016/j.fuel.2009.04.006.
  • S. Gnanasekaran, N. Saravanan and M. Ilangkumaran, Influence of injection timing on performance, emission and combustion characteristics of a DI diesel engine running on fish oil biodiesel. Energy, 116, 1218-1229, 2006. https://doi.org/10.1016/j.energy.2016.10.039.
  • N. Panneerselvam, A. Murugesan, K. P. Porkodi, T. Jima, C. Vijayakumar and D. Subramaniam, Computational engine performance and emission analysis using Ceiba pentandra biodiesel. Biofuels, 7(3), 201-206, 2016. https://doi.org/10.1080/17597269.2015.1123985.
  • P. Rajendra, J. Kamalesh, G. Pranali, B. Vishal and S. Bhushan, A comprehensive review on influence of biodiesel and additives on performance and emission of diesel engine. Chemical Engineering Transactions, 65, 451-456, 2018. https://doi.org/10.3303/CET1865076.
  • M. I. Arbab, M. Varman, H. H. Masjuki, M. A. Kalam, S. Imtenan, H. Sajjad and I. R. Fattah, Evaluation of combustion, performance, and emissions of optimum palm–coconut blend in turbocharged and non-turbocharged conditions of a diesel engine. Energy Conversion and Management, 90, 111-120, 2015. https://doi.org/10.1016/j.enconman.2014.11.017.
  • B. A. Oni and D. Oluwatosin, Emission characteristics and performance of neem seed (Azadirachta indica) and camelina (Camelina sativa) based biodiesel in diesel engine. Renewable Energy, 149, 725-734, 2020. https://doi.org/10.1016/j.renene.2019.12.012.
  • A. Atmanli and N. Yilmaz, An experimental assessment on semi-low temperature combustion using waste oil biodiesel/C3-C5 alcohol blends in a diesel engine. Fuel, 260, 116357, 2020. https://doi.org/10.1016/j.fuel.2019.116357.
  • L. A. Raman, B. Deepanraj, S. Rajakumar and V. Sivasubramanian, Experimental investigation on performance, combustion and emission analysis of a direct injection diesel engine fuelled with rapeseed oil biodiesel. Fuel, 246, 69-74, 2019. https://doi.org/10.1016/j.fuel.2019.02.106.
  • M. J. Abedin, H. H. Masjuki, M. A. Kalam, A. Sanjid, S. A. Rahman and I. R. Fattah, Performance, emissions, and heat losses of palm and jatropha biodiesel blends in a diesel engine. Industrial Crops and Products, 59, 96-104, 2014. https://doi.org/10.1016/j.indcrop.2014.05.001.
  • E. Öztürk, Performance, emissions, combustion and injection characteristics of a diesel engine fuelled with canola oil–hazelnut soapstock biodiesel mixture. Fuel Processing Technology, 129, 183-191, 2015. https://doi.org/10.1016/j.fuproc.2014.09.016.
  • J. Neter, W. Wasserman and M. H. Kutner, Applied linear regression models. Irwin, Second Edition. ISBN: 0-256-07068-7, 1989.
  • R. Peck, C. Olsen and J. Devore, Introduction to statistics and data analysis. Thomson Learning Academic Resource Center. ISBN: 0-534-37092-6, 2001.
  • J. L. Hintze, NCSS User's Guide III Regression and Curve Fitting. NCSS Statistical System, 2007, https://www.ncss.com/download/ncss/manuals/, Accessed: 01.08.2023.
  • A. I. Bamgboye and A. C. Hansen, Prediction of cetane number of biodiesel fuel from the fatty acid methyl ester (FAME) composition. International Agrophysics, 22(1), 21-29, 2008.
  • N. Usta, An experimental study on performance and exhaust emissions of a diesel engine fuelled with tobacco seed oil methyl ester. Energy Conversion and Management, 46(15-16), 2373-2386, 2005. https://doi.org/10.1016/j.enconman.2004.12.002.
  • M. Mohamed, C. K. Tan, A. Fouda, M. S. Gad, O. Abu-Elyazeed and A. F. Hashem, Diesel engine performance, emissions and combustion characteristics of biodiesel and its blends derived from catalytic pyrolysis of waste cooking oil. Energies, 13(21), 5708, 2020. https://doi.org/10.3390/en13215708.
Toplam 111 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Mert Gülüm 0000-0002-1792-3499

Erken Görünüm Tarihi 27 Eylül 2023
Yayımlanma Tarihi 15 Ekim 2023
Gönderilme Tarihi 14 Ağustos 2023
Kabul Tarihi 17 Eylül 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 12 Sayı: 4

Kaynak Göster

APA Gülüm, M. (2023). Estimating cetane numbers of pure biodiesels through multiple non-linear correlations depending on some fuel properties. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(4), 1593-1605. https://doi.org/10.28948/ngumuh.1342996
AMA Gülüm M. Estimating cetane numbers of pure biodiesels through multiple non-linear correlations depending on some fuel properties. NÖHÜ Müh. Bilim. Derg. Ekim 2023;12(4):1593-1605. doi:10.28948/ngumuh.1342996
Chicago Gülüm, Mert. “Estimating Cetane Numbers of Pure Biodiesels through Multiple Non-Linear Correlations Depending on Some Fuel Properties”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, sy. 4 (Ekim 2023): 1593-1605. https://doi.org/10.28948/ngumuh.1342996.
EndNote Gülüm M (01 Ekim 2023) Estimating cetane numbers of pure biodiesels through multiple non-linear correlations depending on some fuel properties. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 4 1593–1605.
IEEE M. Gülüm, “Estimating cetane numbers of pure biodiesels through multiple non-linear correlations depending on some fuel properties”, NÖHÜ Müh. Bilim. Derg., c. 12, sy. 4, ss. 1593–1605, 2023, doi: 10.28948/ngumuh.1342996.
ISNAD Gülüm, Mert. “Estimating Cetane Numbers of Pure Biodiesels through Multiple Non-Linear Correlations Depending on Some Fuel Properties”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/4 (Ekim 2023), 1593-1605. https://doi.org/10.28948/ngumuh.1342996.
JAMA Gülüm M. Estimating cetane numbers of pure biodiesels through multiple non-linear correlations depending on some fuel properties. NÖHÜ Müh. Bilim. Derg. 2023;12:1593–1605.
MLA Gülüm, Mert. “Estimating Cetane Numbers of Pure Biodiesels through Multiple Non-Linear Correlations Depending on Some Fuel Properties”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 12, sy. 4, 2023, ss. 1593-05, doi:10.28948/ngumuh.1342996.
Vancouver Gülüm M. Estimating cetane numbers of pure biodiesels through multiple non-linear correlations depending on some fuel properties. NÖHÜ Müh. Bilim. Derg. 2023;12(4):1593-605.

download