Araştırma Makalesi
BibTex RIS Kaynak Göster

Kalay katkısının Ba2Ca3Cu6-xSnxOy süperiletken seramiğin manyetik kaldırma ve manyetik sertlik performansına etkisi

Yıl 2024, Cilt: 13 Sayı: 3, 975 - 984, 15.07.2024
https://doi.org/10.28948/ngumuh.1488012

Öz

Bu çalışmada, katı hal reaksiyon yöntemiyle üretilen kalay katkılı Ba2Ca3Cu6-xSnxOy (x = 0.0, 0.5, 1.0, 1.5, 2.0) nominal kompozisyona sahip yüksek sıcaklık süperiletken (HTS) seramik numunelerin, manyetik akı kapasitesi üzerinde kalay katkısının etkileri araştırıldı. Süperiletken örneklere ait manyetik kaldırma kuvvetini (MLF) ölçmek için 300 mT değerinde sabit mıknatıs (PM) kullanıldı. MLF ölçümleri sıfır alan soğutma (ZFC), alan altında soğutma (FC) koşullarında, tek boyutta, düşey uzaklığa bağlı statik ölçüm şeklinde alındı. ZFC’de Maksimum MLF değeri, Fz=63 mN ile Sn20 örneğinde ölçüldü. ZFC’de kalay katkısının, tüm örneklerde çekici kuvveti düşürüp itici kuvveti baskın hale getirmesiyle akı yakalama kapasitesini zayıflattığı görüldü. ZFC’de MLF ölçümlerinden manyetik sertlik (stiffness) hesaplanarak kalay katkısının etkisi ortaya kondu. Ayrıca FC koşulunda 3 döngü üzerinden MLF ölçümleri alındı. MLF eğrilerinin belirtilen koşullarda önemli histeretik davranış sergilediği görüldü. HTS’lerin duyarlık gösterdiği bölgenin 0-30 mm aralığı olduğu belirlendi. Döngüsel MLF ölçümlerindeki aşağı yönlü kaymalar Bean'in Kritik Durum Modeline atfedildi.

Proje Numarası

FEB2016/25

Teşekkür

Bu çalışma, Niğde Ömer Halisdemir Üniversitesi BAP Birimi tarafından FEB2016/25 nolu, BAGEP projesi kapsamında desteklenmiştir.

Kaynakça

  • H. K. Onnes, The Resistance of Pure Mercury at Helium Temperatures. Commun. Phys. Lab. Univ. Leiden, 12, 1. 1911
  • W. Meissner, and R. Ochensenfield, Ein neuer Effeckt bei Eintritt der Supraleitfaehigkeit Naturwissenschaften 21, 787, 1933.
  • K. Nagashima, H. Seino, N. Sakai and M. Murakami, Superconducting magnetic bearing for a flywheel energy storage system using superconducting coils and bulk superconductors. Physica C: Superconductivity, 469, 1244-1249, 2009. https://doi.org/ 10.1016/j.physc.2009.05.245.
  • Y. H. Han, B. J. Park, S. Y. Jung and S. C. Han, Study of superconductor bearings for a 35 kWh superconductor flywheel energy storage system. Physica C: Superconductivity, 483, 156-161, 2012. https://doi.org/10.1016/j.physc.2012.08.002.
  • Y. Arai, H. Seino, K. Yoshizawa and K. Nagashima, Development of superconducting magnetic bearing with superconducting coil and bulk superconductor for flywheel energy storage system. Physica C: Superconductivity, 494, 250-254, 2013. https://doi.org/10.1016/j.physc.2013.04.039.
  • J. C. Wei and T. J. Yang, Theoretical Calculation of Magnetic Force for Type-II Superconductor in a Levitated Magnetic field. Chin. J. Phys, 34, 1344-1351, 1996.https://www.airitilibrary.com/Article/Detail?DocID=05779073-199612-201211270040-201211270040-1344-1351.
  • M. Wang, X. Yang, X. Wang, X. Wang, M. Zhang and D. Hao, Comparison of Y2Ba4CuBiOy Nanoparticles with CeO2 Doping on the Levitation Force of Single Domain YBCO Bulk Superconductor by TSIG Process. Journal of Materials Science and Chemical Engineering, 6, 90-98, (2018). https://doi.org/10.4236/ msce.2018.61010.
  • R. L. Byer, R. F. Begley and G. R. Stewart, Superconducting, Magnetically Levitated Merry-Go-Round. Am J Phys 42, 111-125, 1974. https://doi.org/10.1119/1.1987626.
  • J. S. Wang, S. Y. Wang, Y. W. Zeng, H. Y. Huang, F. Luo, Z. Xu, Q. X. Tang, G. Lin, C. F. Zhang, Z. Y. Ren, G. Zhao, D. Zhu, S. O. Wang, H. Jiang, M. Zhu, C. Deng, P. Hu, C. Y. Li, F. Liu, J. Lian, X. Wang, L. Wang, X. Shen and X. Dong, The first man-loading high temperature superconducting Maglev test vehicle in the world. Physica C, 378-381, 809-814, 2002. https://doi.org/10.1016/S0921-4534(02)01548-4.
  • W. Yang,Y. X. Liu, Z. Chen, Y. Wen,. Duan and M. Qiu, Levitation characteristics of a high-temperature superconducting maglev system for launching space vehicles. Physica C: Superconductivity, 455, 13-18, 2007. https://doi.org/10.1016/j.physc.2007.01.025.
  • Z. G. Deng, J. Zheng, J. Zhang, J. S. Wang, S. Y. Wang, Y. Zhang and L. Liu, Studies on the levitation height decay of the high temperature superconducting Maglev vehicle. Physica C: Superconductivity, 463-465, 1293-1296, 2007. https://doi.org/10.1016/ j.physc.2007.02.050.
  • Z. Deng, J. Zheng, J. Li, G. Ma, Y. Lu,Y. Zhang, S. Wang and J. Wang, Superconducting bulk magnet for maglev vehicle: Stable levitation performance above permanent magnet guideway. Materials Science and Engineering B, 151, 117-121, 2008. https://doi.org/10.1016/j.mseb.2008.03.011.
  • Y. H. Han, J. R. Hull, S. C. Han, N. H. Jeong, T. H. Sung and No Kwangsoo, Design and characteristics of a superconductor bearing. IEEE Transactions on Applied Superconductivity, 15, 2249-2252, 2005. https://doi.org/10.1109/TASC.2005.849623.
  • A. Cansiz and I. Yildizer, The design considerations for a superconducting magnetic bearing system. Cryogenics. 63, 180-185, 2014. http://dx.doi.org/ 10.1016/j.cryogenics.2014.06.006.
  • I. G. Chen, J. C. Hsu, G. Janm, C. C. Kuo, H. J. Liu and M. K. Wu, Magnetic Levitation Force of Single Grained YBCO Materials. Chinese Journal of Physics, 36(2), 420-4278, 1998. https://doi.org/ 10.1002/chin.199843296.
  • A.C. Rose-Innes and E.H. Rhoderick, “Introduction to Superconductivity”, 2nd edition, Pergamon Press Ltd., England, 1980.
  • A. Cansız, Force, Stiffness and Hysteresis Losses in High Temperature Superconducting Bearings. PhD Thesis, Illinois Instıtute of Technology, Chicago, 3, 1999.https://books.google.com.tr/books?id=ceBNwAACAAJ.
  • J. S. Choi, S. D. Park, B. H. Jun, Y. H. Han, N. H. Jeong, B. G. Kim, J. M. Sohn and C. J. Kim, Levitation force and trapped magnetic field of multi-grain YBCO bulk superconductors. Physica C 468, 1473–1476, 2008. https://doi.org/10.1016/j.physc.2008.05.200.
  • B. Zheng, J. Zheng, D. He, Y. Ren and Z. Deng, Magnetic Characteristics of Permanent Magnet Guideways at Low Temperature and its Effect on the Levitation Force of Bulk YBaCuO Superconductors. JALCOM, 656, 77-81, 2016. https://doi.org/10.1016/ j.jallcom.2015.09.116.
  • Z. M. Zhao, J. M. Xu, X. Y. Yuan and C. P. Zhang, Levitation force of melt-textured YBCO superconductors under non-quasi-static situation. Physica C, 549, 154-159, 2018. https://doi.org/ 10.1016/j.physc.2018.03.011.
  • C. P. Bean, Magnetization of Hard Superconductors. Phys. Rev. Lett., 8, 250-253, 1962. https://doi.org/10.1103/PhysRevLett.8.250.
  • T. H. Johansen, Z. J. Yang, H. Bratsberg, G. Helgesen and A. T. Skjeltorp, Lateral force on a magnet placed above a planar YBa2Cu3Ox superconductor. Appl. Phys. Lett., 58, 179-181, 1991. https://doi.org/10.1063/1.104965.
  • X-Y Zhang, Y-H Zhou and J. Zhou, Three-dimensional measurements of forces between magnet and superconductor in a levitation system. Physica C: Superconductivity and its applications, 467, 125-129, 2007. https://doi.org/10.1016/j.physc.2007.09.010.
  • S. Wang, J. Wang, C. Deng, Y. Lu, Y. Zeng, H. Song, H. Huang, H. Jing, Y. Huang, J. Zheng, X. Wang and Y. Zhang, An Update High-Temperature Superconducting Maglev Measurement System. IEEE Transactions on Applied Superconductivity, 17, 2067-2070, 2007. https://doi.org/10.1109/ TASC.2007.899257.
  • S. L. Chen, W. M. Yang, J. W. Li, X. C. Yuan, J. Ma and M. Wang, A new 3D levitation force measuring device for REBCO bulk superconductors. Physica C: Superconductivity and its applications, 496, 39-43, 2014. https://doi.org/10.1016/j.physc.2013.07.004.
  • B. Savaskan, E. T. Koparan, S. Celik, K. Ozturk and E. Yanmaz, Investigation on the levitation force behaviour of malic acid added bulk MgB2 superconductors. Physica C: Superconductivity, 502, 63-69, 2014. https://doi.org/10.1016/ j.physc.2014.04.032.
  • R. Parthasarathy and V. Seshubai, Significant Correlations Between Levitation-Suspension Forces and Critical Current Densities in Bulk YBCO/Ag Composite Superconductors Fabricated by Infiltration and Growth Processing Technique. J Supercond Nov Magn, 29, 1439-1447, 2016. https://doi.org/10.1007/ s10948-016-3431-4.
  • M. Abdioglu, U. K. Ozturk, S. B. Guner, M. Ozturk, H. Mollahasanoglu and E. Yanmaz, Enhancing magnetic levitation and guidance force and weight efficiency of high-temperature superconducting maglev systems by using sliced bulk YBCO. International Journal of Applied Ceramic Technology, 20, 3323-3823, 2023. https://doi.org/10.1111/ijac.14463.
  • R. J. Adler and W. W. Anderson, Force between a superconductor and a permanent magnet due to trapped flux. J. Appl. Phys., 68, 695-700, 1990. https://doi.org/10.1063/1.346800.
  • J. Bardeen, L. N. Cooper and J. R. Schrieffer, Theory of Superconductivity. Physical Review, 108, 1175-1204, 1957. https://doi.org/10.1103/ PhysRev.108.1175.
  • J. G. Bednorz and K. A. Muller, Possible High Tc Superconductivity in the La-Ba-CuO System. Zeitschrift für Physik B-Condensed Matter, 64, 189-193, 1986. http://dx.doi.org/10.1007/BF01303701.
  • P. Benzi, E. Bottizzo and N. Rizzi, Oxygen determination from cell dimensions in YBCO superconductors. J. Cryst. Growth 269: 625-629, 2004. https://doi.org/10.1016/j.jcrysgro.2004.05.082.
  • I-G Chen, J-C Hsu, G. Janm, C-C Kuo, H-J Liu, M. K. Wu,, Magnetic Levitation Force of Single Grained YBCO Materials. Chin. J. Phys., 36, 420-427, (1998). Magnetic Levitation Force of Single Grained YBCO Materials|Airiti Library
  • F. P. Dahl, Kamerlingh Onnes and the Discovery of Superconductivity: The Leyden Years. 1911–1919, University of California Press, Historical Studies in the Physical Sciences, 15 1–37, 1984. https://doi.org/ 10.2307/27757541.
  • I. B. Bobylev, E. G. Gerasimov, N. A. Zyuzeva, Improvement of critical parameters of YBa2Cu3O6.9 by low temperature treatment in the presence of water vapors. Cryogenics, 72, 36–43, 2015. https://doi.org/10.1016/j.cryogenics.2015.08.003.
  • K. Brodt, H. Fuess, E. F. Paulus, W. Assmus and J. Kowalewski, Untwinned single crystals of the high-temperature superconductor YBa2Cu3O7-δ. Acta Crystallographica C, 46, 354-358, 1990. https://doi.org/10.1107/S0108270189006803.
  • G. Calestani and C. Rizzoli, Crystal structure of the YBa2Cu3O7-δ superconductor by single-crystal X-ray diffraction. Nature, 328, 606-607, 1987. https://doi.org/10.1038/328606a0.
  • V. Calzona, M. R. Cimberle, C. Ferdeghini, M. Putti and A. S. Siri, AC Susceptibility and Magnetization of High-Tc Superconductors: Critical State Model for the intergranular Region. Physica C, 157, 425-430, 1989. https://doi.org/10.1016/0921-4534(89)90266-9.
  • P. Z. Chang, F. C. Moon, J. R. Hull and T. M. Mulcahy, Levitation force and magnetic stiffness in bulk high‐temperature superconductors. J. Appl. Phys., 67, 4358-4360, 1990. https://doi.org/10.1063/1.344927.
  • J. S. Choi, S. D. Park, B. H. Jun, Y. H. Han, N. H. Jeong, B. G. Kim, J. M. Sohn and C. J. Kim, Levitation force and trapped magnetic field of multi-grain YBCO bulk superconductors. Physica C, 468, 1473–1476, 2008. https://doi.org/10.1016/j.physc.2008.05.200.
  • B. Savaskan, M. Abdioglu and K. Ozturk, Determination of magnetic levitation force properties of bulk MgB2 for different permanent magnetic guideways in different cooling heights. Journal of Alloys and Compounds, 834, 155167, 2020. https://doi.org/10.1016/j.jallcom.2020.155167.
  • F. C. Moon, M. M. Yanoviak and R. Ware, Hysteretic levitation forces in superconducting ceramics. Appl. Phys. Lett., 52, 1534-1536, 1988. https://doi.org/ 10.1063/1.99700.
  • F. C. Moon, K. C. Weng and P. Z. Chang, Dynamic magnetic forces in superconducting ceramics. J. Appl. Phys., 66, 5643-5645, 1989. https://doi.org/ 10.1063/1.343677.
  • N. D. Valle, A. Sanchez, E. Pardo, C. Navau and D. X. Chen, Enhanced stability by field cooling in superconducting levitation with translational symmetry. Appl. Phys. Lett., 91, 112507, 2007. https://doi.org/10.1063/1.2785169.
  • Y. Yang and X. J. Zheng, Method for solution of the interaction between superconductor and permanent magnet. J. Appl. Phys., 101, 113922, 2007. https://doi.org/10.1063/1.2745082.
  • A. Sanchez, N. Del-Valle, C. Navau and D. X. Chen, Critical-current density analysis of force and stability in maglev systems. J. Appl. Phys.,105, 023906, 2009. http://dx.doi.org/10.1063/1.3054922.
  • Y. Y. Lu, B. J. Lu and S. Y. Wang, The Relationship of Magnetic Stiffness Between Single and Multiple YBCO Superconductors over Permanent Magnet Guideway. J. Low Temp. Phys., 164, 279-286, 2011. https://doi.org/10.1007/s10909-011-0379-4.
  • O. Ozogul, Calculation of Levitation Force Using a Critical-State Model. J. Supercond. Nov. Magn., 25, 221-225, 2012. https://doi.org/10.1007/s10948-011-1281-7.
  • Y. Yeshurun, A. P. Malozemoff and A. Shaulov, Magnetic relaxation in high-temperature superconductors. Rev. Mod. Phys., 68, 911-949, 1996. https://doi.org/10.1103/RevModPhys.68.911.
  • Ş. Ünlüer, İ. Karaca and N. Şimşek, Refinement of the Low-temperature phase with nano SnO doping in Ba-Ca-Cu-O ceramics. Journal of Molecular Structure, 1226, 129408, 2021. https://doi.org/ 10.1016/j.molstruc.2020.129408
  • İ. Karaca, N. Şimşek, S. Özen and M. T. Güler, Infiltration effects on (RE) 123 superconductors. Chinese Journal of Physics, 59, 556-566, 2019. https://doi.org/10.1016/j.cjph.2019.03.016.
  • F. C. Moon, Superconducting Levitation: Applications to Bearings and Magnetic Transportation. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004.
  • M. Murakami, Melt Processed High-Temperature Superconductors. World Scientific, Singapore, 1992. 9789814335898_fmatter (worldscientific.com).
  • J. Baumann, M. Lojka, A. Dennis, Y. Shi, J. H. Durrell, T. Hlásek and D. A. Cardwell, Statistical evaluation of the mechanical and flux trapping properties of standard and thin-wall EuBCO(Ag) bulk superconductors. Journal of the American Ceramic Society, 107, 2609-2617, 2023. https://doi.org/10.1111/jace.19601
  • W. M. Yang, L. Zhou, Y. Feng, P. X. Zhang, J. R. Wang, C. P. Zhang, Z. M. Yu, X. D. Tang and W. Wei, The effect of magnet configurations on the levitation force of melt processed YBCO bulk superconductors. Physica C, 354, 5-12, 2001. https://doi.org/ 10.1016/S0921-4534(01)00014-4.
  • K. Nagashima, T. Otani and M. Murakami, Magnetic interaction between permanent magnets and bulk superconductors. Physica C, 328, 137-144, 1999. https://doi.org/10.1016/S0921-4534(99)00567-5.
  • W. M. Yang, L. Zhou, Y. Feng, P. X. Zhang Nicolsky, R, Jr R. de Andrade, The characterization of levitation force and attractive force of single-domain YBCO bulk under different field cooling process. Physica C, 398, 141–146, 2003. https://doi.org/10.1016/S0921-4534(03)01276-0.
  • M. Murakami, Novel application of high Tc bulk superconductors. Appl. Supercond., 1, 1157-1173, 1993. https://doi.org/10.1016/0964-1807(93)90424-Z.
  • 57 L. Shlyk, G. Krabbes and G. Fuchs, Trapped field and levitation force in melt-textured YBCO doped with Ni and Li. Physica C, 390, 325–329, 2003. https://doi.org/10.1016/S0921-4534(03)00737-8.
  • Y-N Wang, W-M Yang, P-T Yang, C-Y Zhang, J-L Chen, L-J Zhang and L. Chen, Influence of trapped field on the levitation force of SmBCO bulk superconductor. Physica C Sup. and its App., 542, 28–33, 2017. https://doi.org/10.1016/j.physc.2017.09.004.
  • F. C. Moon, Superconducting Levitation, 2nd edition, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004.
  • W. Liu, S. Y. Wang, H. Jing, J. Zheng, M. Jiang and J. S. Wang, Levitation performance of YBCO bulk in different applied magnetic fields. Physica C, 468, 974–977, 2008. https://doi.org/ 10.1016/j.physc.2008.04.013.
  • E, Perini, G, Giunchi, M, Geri and A. Morandi, Experimental and numerical investigation of the levitation force between bulk permanent magnet and MgB2 disk. IEEE Trans. Appl. Supercond., 19, 2124 – 2128, 2009. https://doi.org/ 10.1109/TASC.2009.2019141.
  • O. Erdem, M. Abdioglu, S. B. Guner, S. Celik and T. Kucukomeroglu, Improvement in levitation force performance of bulk MgB2 superconductors through coronene powder adding. J. Alloy. Comp., 727, 1213-1220, 2017. https://doi.org/ 10.1016/j.jallcom.2017.08.242.
  • İ. Karaca, Characterization of a Cylindrical Superconductor Disk Prepared by the Wet Technique with Microstructure Analysis and Levitation Force Measurements Using a Permanent Magnet. Chinese Journal of Physics, 47, 5, 690-696, 2009. http://PSROC.phys.ntu.edu.tw/cjp.
  • S. B. Guner, S. Celik and M. Tomakin, The Investigation of Magnetic Levitation Performances of Single Grain YBCO at Different Temperatures. Journal of Alloys and Compounds, 705,247-252, 2017. https://doi.org/10.1016/j.jallcom.2017.02.134.
  • M. Abdioglu, K. Ozturk, H. Gedikli, M. Ekici and A. Cansiz, Levitation and guidance force efficiencies of bulk YBCO for different permanent magnetic guideways. Journal of Alloys and Compounds, 630, 260–265, 2015. https://doi.org/10.1016/ j.jallcom.2015.01.044.

Effect of tin dopant to magnetic levitation and magnetic stiffness performance of Ba2Ca3Cu6-xSnxOy superconducting ceramics

Yıl 2024, Cilt: 13 Sayı: 3, 975 - 984, 15.07.2024
https://doi.org/10.28948/ngumuh.1488012

Öz

In this study, the effects of tin doping on the magnetic flux capacity of tin-doped Ba2Ca3Cu6-xSnxOy (x = 0.0, 0.5, 1.0, 1.5, 2.0) nominal composition high temperature superconducting (HTS) ceramic samples produced by solid state reaction method were investigated. A permanent magnet (PM) of 300 mT was used to measure the magnetic levitation force (MLF) of the superconducting samples. MLF measurements were taken in zero field cooling (ZFC) and field cooling (FC) conditions as static measurements in one dimension, depending on the vertical distance. Maximum MLF value at ZFC was measured in Sn20 sample with Fz=63 mN. Tin doping in ZFC was seen to weaken the flux trapping capacity by reducing the attractive force and dominating the repulsive force in all samples. The effect of tin doping was revealed by calculating the magnetic stiffness from MLF measurements in the ZFC condition. Also, MLF measurements were taken over 3 loops in FC condition. It was observed that MLF curves exhibited significant hysteretic behavior under the specified conditions. It was determined that the region where HTSs showed sensitivity was in the 0-30 mm range. Downward shifts in the cyclic MLF measurements were attributed to Bean's Critical State Model.

Proje Numarası

FEB2016/25

Kaynakça

  • H. K. Onnes, The Resistance of Pure Mercury at Helium Temperatures. Commun. Phys. Lab. Univ. Leiden, 12, 1. 1911
  • W. Meissner, and R. Ochensenfield, Ein neuer Effeckt bei Eintritt der Supraleitfaehigkeit Naturwissenschaften 21, 787, 1933.
  • K. Nagashima, H. Seino, N. Sakai and M. Murakami, Superconducting magnetic bearing for a flywheel energy storage system using superconducting coils and bulk superconductors. Physica C: Superconductivity, 469, 1244-1249, 2009. https://doi.org/ 10.1016/j.physc.2009.05.245.
  • Y. H. Han, B. J. Park, S. Y. Jung and S. C. Han, Study of superconductor bearings for a 35 kWh superconductor flywheel energy storage system. Physica C: Superconductivity, 483, 156-161, 2012. https://doi.org/10.1016/j.physc.2012.08.002.
  • Y. Arai, H. Seino, K. Yoshizawa and K. Nagashima, Development of superconducting magnetic bearing with superconducting coil and bulk superconductor for flywheel energy storage system. Physica C: Superconductivity, 494, 250-254, 2013. https://doi.org/10.1016/j.physc.2013.04.039.
  • J. C. Wei and T. J. Yang, Theoretical Calculation of Magnetic Force for Type-II Superconductor in a Levitated Magnetic field. Chin. J. Phys, 34, 1344-1351, 1996.https://www.airitilibrary.com/Article/Detail?DocID=05779073-199612-201211270040-201211270040-1344-1351.
  • M. Wang, X. Yang, X. Wang, X. Wang, M. Zhang and D. Hao, Comparison of Y2Ba4CuBiOy Nanoparticles with CeO2 Doping on the Levitation Force of Single Domain YBCO Bulk Superconductor by TSIG Process. Journal of Materials Science and Chemical Engineering, 6, 90-98, (2018). https://doi.org/10.4236/ msce.2018.61010.
  • R. L. Byer, R. F. Begley and G. R. Stewart, Superconducting, Magnetically Levitated Merry-Go-Round. Am J Phys 42, 111-125, 1974. https://doi.org/10.1119/1.1987626.
  • J. S. Wang, S. Y. Wang, Y. W. Zeng, H. Y. Huang, F. Luo, Z. Xu, Q. X. Tang, G. Lin, C. F. Zhang, Z. Y. Ren, G. Zhao, D. Zhu, S. O. Wang, H. Jiang, M. Zhu, C. Deng, P. Hu, C. Y. Li, F. Liu, J. Lian, X. Wang, L. Wang, X. Shen and X. Dong, The first man-loading high temperature superconducting Maglev test vehicle in the world. Physica C, 378-381, 809-814, 2002. https://doi.org/10.1016/S0921-4534(02)01548-4.
  • W. Yang,Y. X. Liu, Z. Chen, Y. Wen,. Duan and M. Qiu, Levitation characteristics of a high-temperature superconducting maglev system for launching space vehicles. Physica C: Superconductivity, 455, 13-18, 2007. https://doi.org/10.1016/j.physc.2007.01.025.
  • Z. G. Deng, J. Zheng, J. Zhang, J. S. Wang, S. Y. Wang, Y. Zhang and L. Liu, Studies on the levitation height decay of the high temperature superconducting Maglev vehicle. Physica C: Superconductivity, 463-465, 1293-1296, 2007. https://doi.org/10.1016/ j.physc.2007.02.050.
  • Z. Deng, J. Zheng, J. Li, G. Ma, Y. Lu,Y. Zhang, S. Wang and J. Wang, Superconducting bulk magnet for maglev vehicle: Stable levitation performance above permanent magnet guideway. Materials Science and Engineering B, 151, 117-121, 2008. https://doi.org/10.1016/j.mseb.2008.03.011.
  • Y. H. Han, J. R. Hull, S. C. Han, N. H. Jeong, T. H. Sung and No Kwangsoo, Design and characteristics of a superconductor bearing. IEEE Transactions on Applied Superconductivity, 15, 2249-2252, 2005. https://doi.org/10.1109/TASC.2005.849623.
  • A. Cansiz and I. Yildizer, The design considerations for a superconducting magnetic bearing system. Cryogenics. 63, 180-185, 2014. http://dx.doi.org/ 10.1016/j.cryogenics.2014.06.006.
  • I. G. Chen, J. C. Hsu, G. Janm, C. C. Kuo, H. J. Liu and M. K. Wu, Magnetic Levitation Force of Single Grained YBCO Materials. Chinese Journal of Physics, 36(2), 420-4278, 1998. https://doi.org/ 10.1002/chin.199843296.
  • A.C. Rose-Innes and E.H. Rhoderick, “Introduction to Superconductivity”, 2nd edition, Pergamon Press Ltd., England, 1980.
  • A. Cansız, Force, Stiffness and Hysteresis Losses in High Temperature Superconducting Bearings. PhD Thesis, Illinois Instıtute of Technology, Chicago, 3, 1999.https://books.google.com.tr/books?id=ceBNwAACAAJ.
  • J. S. Choi, S. D. Park, B. H. Jun, Y. H. Han, N. H. Jeong, B. G. Kim, J. M. Sohn and C. J. Kim, Levitation force and trapped magnetic field of multi-grain YBCO bulk superconductors. Physica C 468, 1473–1476, 2008. https://doi.org/10.1016/j.physc.2008.05.200.
  • B. Zheng, J. Zheng, D. He, Y. Ren and Z. Deng, Magnetic Characteristics of Permanent Magnet Guideways at Low Temperature and its Effect on the Levitation Force of Bulk YBaCuO Superconductors. JALCOM, 656, 77-81, 2016. https://doi.org/10.1016/ j.jallcom.2015.09.116.
  • Z. M. Zhao, J. M. Xu, X. Y. Yuan and C. P. Zhang, Levitation force of melt-textured YBCO superconductors under non-quasi-static situation. Physica C, 549, 154-159, 2018. https://doi.org/ 10.1016/j.physc.2018.03.011.
  • C. P. Bean, Magnetization of Hard Superconductors. Phys. Rev. Lett., 8, 250-253, 1962. https://doi.org/10.1103/PhysRevLett.8.250.
  • T. H. Johansen, Z. J. Yang, H. Bratsberg, G. Helgesen and A. T. Skjeltorp, Lateral force on a magnet placed above a planar YBa2Cu3Ox superconductor. Appl. Phys. Lett., 58, 179-181, 1991. https://doi.org/10.1063/1.104965.
  • X-Y Zhang, Y-H Zhou and J. Zhou, Three-dimensional measurements of forces between magnet and superconductor in a levitation system. Physica C: Superconductivity and its applications, 467, 125-129, 2007. https://doi.org/10.1016/j.physc.2007.09.010.
  • S. Wang, J. Wang, C. Deng, Y. Lu, Y. Zeng, H. Song, H. Huang, H. Jing, Y. Huang, J. Zheng, X. Wang and Y. Zhang, An Update High-Temperature Superconducting Maglev Measurement System. IEEE Transactions on Applied Superconductivity, 17, 2067-2070, 2007. https://doi.org/10.1109/ TASC.2007.899257.
  • S. L. Chen, W. M. Yang, J. W. Li, X. C. Yuan, J. Ma and M. Wang, A new 3D levitation force measuring device for REBCO bulk superconductors. Physica C: Superconductivity and its applications, 496, 39-43, 2014. https://doi.org/10.1016/j.physc.2013.07.004.
  • B. Savaskan, E. T. Koparan, S. Celik, K. Ozturk and E. Yanmaz, Investigation on the levitation force behaviour of malic acid added bulk MgB2 superconductors. Physica C: Superconductivity, 502, 63-69, 2014. https://doi.org/10.1016/ j.physc.2014.04.032.
  • R. Parthasarathy and V. Seshubai, Significant Correlations Between Levitation-Suspension Forces and Critical Current Densities in Bulk YBCO/Ag Composite Superconductors Fabricated by Infiltration and Growth Processing Technique. J Supercond Nov Magn, 29, 1439-1447, 2016. https://doi.org/10.1007/ s10948-016-3431-4.
  • M. Abdioglu, U. K. Ozturk, S. B. Guner, M. Ozturk, H. Mollahasanoglu and E. Yanmaz, Enhancing magnetic levitation and guidance force and weight efficiency of high-temperature superconducting maglev systems by using sliced bulk YBCO. International Journal of Applied Ceramic Technology, 20, 3323-3823, 2023. https://doi.org/10.1111/ijac.14463.
  • R. J. Adler and W. W. Anderson, Force between a superconductor and a permanent magnet due to trapped flux. J. Appl. Phys., 68, 695-700, 1990. https://doi.org/10.1063/1.346800.
  • J. Bardeen, L. N. Cooper and J. R. Schrieffer, Theory of Superconductivity. Physical Review, 108, 1175-1204, 1957. https://doi.org/10.1103/ PhysRev.108.1175.
  • J. G. Bednorz and K. A. Muller, Possible High Tc Superconductivity in the La-Ba-CuO System. Zeitschrift für Physik B-Condensed Matter, 64, 189-193, 1986. http://dx.doi.org/10.1007/BF01303701.
  • P. Benzi, E. Bottizzo and N. Rizzi, Oxygen determination from cell dimensions in YBCO superconductors. J. Cryst. Growth 269: 625-629, 2004. https://doi.org/10.1016/j.jcrysgro.2004.05.082.
  • I-G Chen, J-C Hsu, G. Janm, C-C Kuo, H-J Liu, M. K. Wu,, Magnetic Levitation Force of Single Grained YBCO Materials. Chin. J. Phys., 36, 420-427, (1998). Magnetic Levitation Force of Single Grained YBCO Materials|Airiti Library
  • F. P. Dahl, Kamerlingh Onnes and the Discovery of Superconductivity: The Leyden Years. 1911–1919, University of California Press, Historical Studies in the Physical Sciences, 15 1–37, 1984. https://doi.org/ 10.2307/27757541.
  • I. B. Bobylev, E. G. Gerasimov, N. A. Zyuzeva, Improvement of critical parameters of YBa2Cu3O6.9 by low temperature treatment in the presence of water vapors. Cryogenics, 72, 36–43, 2015. https://doi.org/10.1016/j.cryogenics.2015.08.003.
  • K. Brodt, H. Fuess, E. F. Paulus, W. Assmus and J. Kowalewski, Untwinned single crystals of the high-temperature superconductor YBa2Cu3O7-δ. Acta Crystallographica C, 46, 354-358, 1990. https://doi.org/10.1107/S0108270189006803.
  • G. Calestani and C. Rizzoli, Crystal structure of the YBa2Cu3O7-δ superconductor by single-crystal X-ray diffraction. Nature, 328, 606-607, 1987. https://doi.org/10.1038/328606a0.
  • V. Calzona, M. R. Cimberle, C. Ferdeghini, M. Putti and A. S. Siri, AC Susceptibility and Magnetization of High-Tc Superconductors: Critical State Model for the intergranular Region. Physica C, 157, 425-430, 1989. https://doi.org/10.1016/0921-4534(89)90266-9.
  • P. Z. Chang, F. C. Moon, J. R. Hull and T. M. Mulcahy, Levitation force and magnetic stiffness in bulk high‐temperature superconductors. J. Appl. Phys., 67, 4358-4360, 1990. https://doi.org/10.1063/1.344927.
  • J. S. Choi, S. D. Park, B. H. Jun, Y. H. Han, N. H. Jeong, B. G. Kim, J. M. Sohn and C. J. Kim, Levitation force and trapped magnetic field of multi-grain YBCO bulk superconductors. Physica C, 468, 1473–1476, 2008. https://doi.org/10.1016/j.physc.2008.05.200.
  • B. Savaskan, M. Abdioglu and K. Ozturk, Determination of magnetic levitation force properties of bulk MgB2 for different permanent magnetic guideways in different cooling heights. Journal of Alloys and Compounds, 834, 155167, 2020. https://doi.org/10.1016/j.jallcom.2020.155167.
  • F. C. Moon, M. M. Yanoviak and R. Ware, Hysteretic levitation forces in superconducting ceramics. Appl. Phys. Lett., 52, 1534-1536, 1988. https://doi.org/ 10.1063/1.99700.
  • F. C. Moon, K. C. Weng and P. Z. Chang, Dynamic magnetic forces in superconducting ceramics. J. Appl. Phys., 66, 5643-5645, 1989. https://doi.org/ 10.1063/1.343677.
  • N. D. Valle, A. Sanchez, E. Pardo, C. Navau and D. X. Chen, Enhanced stability by field cooling in superconducting levitation with translational symmetry. Appl. Phys. Lett., 91, 112507, 2007. https://doi.org/10.1063/1.2785169.
  • Y. Yang and X. J. Zheng, Method for solution of the interaction between superconductor and permanent magnet. J. Appl. Phys., 101, 113922, 2007. https://doi.org/10.1063/1.2745082.
  • A. Sanchez, N. Del-Valle, C. Navau and D. X. Chen, Critical-current density analysis of force and stability in maglev systems. J. Appl. Phys.,105, 023906, 2009. http://dx.doi.org/10.1063/1.3054922.
  • Y. Y. Lu, B. J. Lu and S. Y. Wang, The Relationship of Magnetic Stiffness Between Single and Multiple YBCO Superconductors over Permanent Magnet Guideway. J. Low Temp. Phys., 164, 279-286, 2011. https://doi.org/10.1007/s10909-011-0379-4.
  • O. Ozogul, Calculation of Levitation Force Using a Critical-State Model. J. Supercond. Nov. Magn., 25, 221-225, 2012. https://doi.org/10.1007/s10948-011-1281-7.
  • Y. Yeshurun, A. P. Malozemoff and A. Shaulov, Magnetic relaxation in high-temperature superconductors. Rev. Mod. Phys., 68, 911-949, 1996. https://doi.org/10.1103/RevModPhys.68.911.
  • Ş. Ünlüer, İ. Karaca and N. Şimşek, Refinement of the Low-temperature phase with nano SnO doping in Ba-Ca-Cu-O ceramics. Journal of Molecular Structure, 1226, 129408, 2021. https://doi.org/ 10.1016/j.molstruc.2020.129408
  • İ. Karaca, N. Şimşek, S. Özen and M. T. Güler, Infiltration effects on (RE) 123 superconductors. Chinese Journal of Physics, 59, 556-566, 2019. https://doi.org/10.1016/j.cjph.2019.03.016.
  • F. C. Moon, Superconducting Levitation: Applications to Bearings and Magnetic Transportation. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004.
  • M. Murakami, Melt Processed High-Temperature Superconductors. World Scientific, Singapore, 1992. 9789814335898_fmatter (worldscientific.com).
  • J. Baumann, M. Lojka, A. Dennis, Y. Shi, J. H. Durrell, T. Hlásek and D. A. Cardwell, Statistical evaluation of the mechanical and flux trapping properties of standard and thin-wall EuBCO(Ag) bulk superconductors. Journal of the American Ceramic Society, 107, 2609-2617, 2023. https://doi.org/10.1111/jace.19601
  • W. M. Yang, L. Zhou, Y. Feng, P. X. Zhang, J. R. Wang, C. P. Zhang, Z. M. Yu, X. D. Tang and W. Wei, The effect of magnet configurations on the levitation force of melt processed YBCO bulk superconductors. Physica C, 354, 5-12, 2001. https://doi.org/ 10.1016/S0921-4534(01)00014-4.
  • K. Nagashima, T. Otani and M. Murakami, Magnetic interaction between permanent magnets and bulk superconductors. Physica C, 328, 137-144, 1999. https://doi.org/10.1016/S0921-4534(99)00567-5.
  • W. M. Yang, L. Zhou, Y. Feng, P. X. Zhang Nicolsky, R, Jr R. de Andrade, The characterization of levitation force and attractive force of single-domain YBCO bulk under different field cooling process. Physica C, 398, 141–146, 2003. https://doi.org/10.1016/S0921-4534(03)01276-0.
  • M. Murakami, Novel application of high Tc bulk superconductors. Appl. Supercond., 1, 1157-1173, 1993. https://doi.org/10.1016/0964-1807(93)90424-Z.
  • 57 L. Shlyk, G. Krabbes and G. Fuchs, Trapped field and levitation force in melt-textured YBCO doped with Ni and Li. Physica C, 390, 325–329, 2003. https://doi.org/10.1016/S0921-4534(03)00737-8.
  • Y-N Wang, W-M Yang, P-T Yang, C-Y Zhang, J-L Chen, L-J Zhang and L. Chen, Influence of trapped field on the levitation force of SmBCO bulk superconductor. Physica C Sup. and its App., 542, 28–33, 2017. https://doi.org/10.1016/j.physc.2017.09.004.
  • F. C. Moon, Superconducting Levitation, 2nd edition, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004.
  • W. Liu, S. Y. Wang, H. Jing, J. Zheng, M. Jiang and J. S. Wang, Levitation performance of YBCO bulk in different applied magnetic fields. Physica C, 468, 974–977, 2008. https://doi.org/ 10.1016/j.physc.2008.04.013.
  • E, Perini, G, Giunchi, M, Geri and A. Morandi, Experimental and numerical investigation of the levitation force between bulk permanent magnet and MgB2 disk. IEEE Trans. Appl. Supercond., 19, 2124 – 2128, 2009. https://doi.org/ 10.1109/TASC.2009.2019141.
  • O. Erdem, M. Abdioglu, S. B. Guner, S. Celik and T. Kucukomeroglu, Improvement in levitation force performance of bulk MgB2 superconductors through coronene powder adding. J. Alloy. Comp., 727, 1213-1220, 2017. https://doi.org/ 10.1016/j.jallcom.2017.08.242.
  • İ. Karaca, Characterization of a Cylindrical Superconductor Disk Prepared by the Wet Technique with Microstructure Analysis and Levitation Force Measurements Using a Permanent Magnet. Chinese Journal of Physics, 47, 5, 690-696, 2009. http://PSROC.phys.ntu.edu.tw/cjp.
  • S. B. Guner, S. Celik and M. Tomakin, The Investigation of Magnetic Levitation Performances of Single Grain YBCO at Different Temperatures. Journal of Alloys and Compounds, 705,247-252, 2017. https://doi.org/10.1016/j.jallcom.2017.02.134.
  • M. Abdioglu, K. Ozturk, H. Gedikli, M. Ekici and A. Cansiz, Levitation and guidance force efficiencies of bulk YBCO for different permanent magnetic guideways. Journal of Alloys and Compounds, 630, 260–265, 2015. https://doi.org/10.1016/ j.jallcom.2015.01.044.
Toplam 67 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektronik,Optik ve Manyetik Malzemeler, Malzeme Karekterizasyonu, Metaller ve Alaşım Malzemeleri , Malzeme Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Şahin Ünlüer 0000-0002-8197-5592

Proje Numarası FEB2016/25
Erken Görünüm Tarihi 3 Temmuz 2024
Yayımlanma Tarihi 15 Temmuz 2024
Gönderilme Tarihi 22 Mayıs 2024
Kabul Tarihi 5 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 3

Kaynak Göster

APA Ünlüer, Ş. (2024). Kalay katkısının Ba2Ca3Cu6-xSnxOy süperiletken seramiğin manyetik kaldırma ve manyetik sertlik performansına etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(3), 975-984. https://doi.org/10.28948/ngumuh.1488012
AMA Ünlüer Ş. Kalay katkısının Ba2Ca3Cu6-xSnxOy süperiletken seramiğin manyetik kaldırma ve manyetik sertlik performansına etkisi. NÖHÜ Müh. Bilim. Derg. Temmuz 2024;13(3):975-984. doi:10.28948/ngumuh.1488012
Chicago Ünlüer, Şahin. “Kalay katkısının Ba2Ca3Cu6-XSnxOy süperiletken seramiğin Manyetik kaldırma Ve Manyetik Sertlik performansına Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, sy. 3 (Temmuz 2024): 975-84. https://doi.org/10.28948/ngumuh.1488012.
EndNote Ünlüer Ş (01 Temmuz 2024) Kalay katkısının Ba2Ca3Cu6-xSnxOy süperiletken seramiğin manyetik kaldırma ve manyetik sertlik performansına etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 3 975–984.
IEEE Ş. Ünlüer, “Kalay katkısının Ba2Ca3Cu6-xSnxOy süperiletken seramiğin manyetik kaldırma ve manyetik sertlik performansına etkisi”, NÖHÜ Müh. Bilim. Derg., c. 13, sy. 3, ss. 975–984, 2024, doi: 10.28948/ngumuh.1488012.
ISNAD Ünlüer, Şahin. “Kalay katkısının Ba2Ca3Cu6-XSnxOy süperiletken seramiğin Manyetik kaldırma Ve Manyetik Sertlik performansına Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/3 (Temmuz 2024), 975-984. https://doi.org/10.28948/ngumuh.1488012.
JAMA Ünlüer Ş. Kalay katkısının Ba2Ca3Cu6-xSnxOy süperiletken seramiğin manyetik kaldırma ve manyetik sertlik performansına etkisi. NÖHÜ Müh. Bilim. Derg. 2024;13:975–984.
MLA Ünlüer, Şahin. “Kalay katkısının Ba2Ca3Cu6-XSnxOy süperiletken seramiğin Manyetik kaldırma Ve Manyetik Sertlik performansına Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 13, sy. 3, 2024, ss. 975-84, doi:10.28948/ngumuh.1488012.
Vancouver Ünlüer Ş. Kalay katkısının Ba2Ca3Cu6-xSnxOy süperiletken seramiğin manyetik kaldırma ve manyetik sertlik performansına etkisi. NÖHÜ Müh. Bilim. Derg. 2024;13(3):975-84.

download