Araştırma Makalesi
BibTex RIS Kaynak Göster

Akışkan viskoz sönümleyicilerin bitişik nizamlı betonarme binalarda gerekli boşluk mesafesine etkisi

Yıl 2024, Cilt: 13 Sayı: 4, 1231 - 1239, 15.10.2024
https://doi.org/10.28948/ngumuh.1499280

Öz

Çalışmada bitişik nizamlı betonarme binalarda akışkan viskoz sönümleyici (FVD) kullanımı ile geleneksel ankastre mesnetli modellere göre gerekli derz mesafesinin değişimi incelenmiştir. Ayrıca Türkiye Bina Deprem Yönetmeliği (TBDY-2018) hükümlerine göre önerilen gerekli derz mesafesinin yeterliliği irdelenmiştir. Bu amaç doğrultusunda 3 ve 7 katlı geleneksel ankastre mesnetli ve FVD sönümleyiciye sahip bitişik nizamlı konut binaları modellenmiştir. Yapısal elemanların ve FVD sönümleyicilerin doğrusal olmayan davranışı dikkate alınmıştır. Toplam 44 adet zaman tanım alanında dinamik analiz, spektrum uyumlu olarak seçilen 11 adet kayıt takımı kullanılarak ankastre mesnetli geleneksel model ve FVD sönümleyiciye sahip bitişik nizamlı modeller için toplam 44 adet zaman tanım alanında dinamik analiz yapılmıştır. Analizler sonucunda, FVD sönümleyici kullanımının gerekli derz mesafesini ankastre mesnetli modele göre ortalama %43.6 azalttığı görülmüştür. Ayrıca geleneksel ankastre mesnetli binalar için TBDY-2018’de önerilen boşluk mesafesinin %32.7 yetersiz kalırken, FVD kullanımı ile %42.2 güvenli tarafta kaldığı belirlenmiştir. Bu yönüyle yeni yapılacak veya güçlendirilecek mevcut bitişik nizamlı binalar için FVD sönümleyici kullanımının çekiçleme etkilerinin önlenmesi veya azaltılması için efektif bir alternatif olabileceği sonucuna varılmıştır.

Kaynakça

  • M. Doğan ve A. Günaydın, Pounding of adjacent RC buildings during seismic loads. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi. 22(1), 129-145, 2009.
  • M. Miari, K.K. Choong and R. Jankowski, Seismic pounding between adjacent buildings: Identification of parameters, soil interaction issues and mitigation measures. Soil Dynamics and Earthquake Engineering, 121, 135-150, 2019. https://doi.org/10.1016/ j.soildyn.2019.02.024.
  • E. Rosenblueth and R. Meli, The 1985 Mexico earthquake. Concrete International, 8:23–34, 1986.
  • M.R. Degg, Some implications of the 1985 Mexican earthquake for hazard assessment. In Geohazards: Natural and man-made. Dordrecht: Springer Netherlands, 105-114, 1992. https://doi.org/10.1007/ 978-94-011-2310-5_11
  • R. Valles-Mattox and A. Reinhorn, Evaluation, prevention and mitigation of pounding effects in building structures. State University of New York at Buffalo Department of Civil Engineering Buffalo, NY 14260, Technical Report NCEER-97-0001, 20 February 1996.
  • S. Anagnostopoulos, Building pounding re-examined: how serious a problem is it. The eleventh world conference on earthquake engineering, pp. 2101-2108, Patras, Greece, 1996.
  • S. Anagnostopoulos, Earthquake induced pounding: State of the art. 10th European conference on earthquake engineering, pp. 897–905, Vienna, Austria 28 August-2 September 1995.
  • M. Miari and R. Jankowski, Analysis of floor-to-column pounding of buildings founded on different soil types. Bulletin of Earthquake Engineering, 20(13), 7241-7262, 2022. https://doi.org/10.1007/s10518-022-01482-0.
  • V. Jeng and W.L. Tzeng, Assessment of seismic pounding hazard for Taipei City. Engineering Structures, 22(5), 459-471, 2000. https://doi.org/10.1016/S0141-0296(98)00123-0.
  • G. Cole, R. Dhakal, A.J. Carr and Bull D, Building pounding state of the art: Identifying structures vulnerable to pounding damage, 2010 New Zealand Society for Earthquake Engineering Conference, pp. 11-19, Napier, New Zealand, 2010.
  • E. A. Mavronicola, P.C. Polycarpou and P. Komodromos, Spatial seismic modeling of base‐isolated buildings pounding against moat walls: effects of ground motion directionality and mass eccentricity. Earthquake Engineering & Structural Dynamics, 46(7), 1161-1179, 2017. https://doi.org/10.1002/eqe.2850
  • B. I. Patil, B. B. Biradar and R. Doddamani, Mitigation of seismic pounding observed in adjacent buildings with fluid viscous damper. In Sustainability Trends and Challenges in Civil Engineering: Select Proceedings of CTCS 2020, Springer Singapore, pp. 711-731, 2022. , https://doi.org/10.1007/978-981-16-2826-9_45
  • Taylor devices inc, Fluid viscous dampers general guidelines for engineers including a brief history, Taylor devices inc., New York, USA, 2020.
  • M. Miari, K. K. Choong and R. Jankowski, Seismic pounding between adjacent buildings: Identification of parameters, soil interaction issues and mitigation measures. Soil Dynamics and Earthquake Engineering, 121, 135-150, 2019. https:// doi.org/10.1016/j.soildyn.2019.02.024
  • D. Isobe, T. Ohta, T. Inoue and F. Matsueda, Seismic pounding and collapse behavior of neighboring buildings with different natural periods. Natural Science 4: 686-693, 2012. http://dx.doi.org/10.4236/ns.2012.428090
  • A. Elgammal, A. Seleemah, M. Elsharkawy and H. Elwardany, Comprehensive review on seismic pounding between adjacent buildings and available mitigation measures. Archives of Computational Methods in Engineering, 1-36, 2024. https://doi.org/10.1007/s11831-024-10114-6
  • E. Ozer, Seismic pounding of adjacent buildings considering torsional effects. Bulletin of Earthquake Engineering, 22, 2139–2171, 2024, https://doi.org/10.1007/s10518-023-01849-x.
  • C. G. Karayannis, and M. C. Naoum, Torsional behavior of multistory RC frame structures due to asymmetric seismic interaction. Engineering Structures, 163, 93-111, 2018. https://doi.org/10.1016/j.engstruct.2018.02.038
  • V. Jeng, K. Kasai, B.F. Maison. A spectral difference method to estimate building separations to avoid pounding. Earthquake Spectra, 8:201–223, 1992. https://doi.org/10.1193/1.1585
  • M. Barbato, E. Tubaldi, A probabilistic performance‐based approach for mitigating the seismic pounding risk between adjacent buildings. Earthquake Engineering and Structural Dynamics, 42, 1203-1219, 2013. https://doi.org/10.1002/eqe.2267
  • M. J. Favvata, Minimum required separation gap for adjacent RC frames with potential inter-story seismic pounding. Engineering Structures, 152, 643–659, 2017. https://doi.org/10.1016/j.engstruct.2017.09.025
  • M. G. Flenga, M.J. Favvata, Probabilistic seismic assessment of the pounding risk based on the local demands of a multistory RC frame structure. Engineering Structures 245:112789, 2021. https:// doi. org/ 10. 1016/j.engst ruct. 2021. 112789
  • C.G. Karayannis and M.C. Naoum Torsional behavior of multistory RC frame structures due to asymmetric seismic interaction. Engineering Structures, 163:93–111, 2018. https:// doi. org/ 10. 1016/j. engst ruct. 2018. 02. 038.
  • E. Ozer, The effect of fluid viscous dampers on performance of a residential building, early edition process in Pamukkale University Journal of Engineering Sciences, 2023. https:// doi. org/ 10.5505/pajes.2023.39345
  • M. Martinez-Rodrigoand, M. L. Romero, An optimum retrofit strategy for moment resisting frames with nonlinear viscous dampers for seismic applications. Engineering Structures, 25(7), 913-925, 2003. https://doi.org/10.1016/S0141-0296(03)00025-7
  • A.H. Deringöl, E.M. Güneyisi and O. Hansu, Combined Effect of Bearing Stiffness of the Base Isolator and Damping Characteristics of the Viscous Damper on the Nonlinear Response of Buildings. International Journal of Steel Structures, 22(5), 1497-1517, 2022. https://doi.org/10.1007/s13296-022-00656-5
  • T. Guo, J. Xu, W. Xu, Z. Di, Seismic upgrade of existing buildings with fluid viscous dampers: Design methodologies and case study. Journal of Performance of Constructed Facilities, 29(6), 04014175, 2015. https://doi.org/10.1061/(ASCE)CF.1943-509.0000671
  • M. Hicyilmaz, M. Doğan, H. Gönen, Investigation of optimum viscous damper distribution in steel frames with set-back irregularities. Pamukkale University Journal of Engineering Sciences, 24(6),1024-1029, 2018. https://doi.org/10.5505/pajes.2017.69094
  • H. Elwardany, R. Jankowski, and A. Seleemah, Mitigating the seismic pounding of multi-story buildings in series using linear and nonlinear fluid viscous dampers. Archives of Civil and Mechanical Engineering, 21(4), 137, 2021. https://doi.org/10.1007/s43452-021-00249-9
  • A. Rayegani and G. Nouri, Application of smart dampers for prevention of seismic pounding in isolated structures subjected to near-fault earthquakes. Journal of Earthquake Engineering, 26(8), 4069-4084, 2022. https://doi.org/10.1080/13632469.2020.1822230
  • E. Ç. Kandemir, Dalgacık Uyumu Analizi ile Optimum Viskoz Damper Kapasitesi Hesabı, Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 30(1), 115-122, 2022. https://doi.org/10.31796/ogummf.1003961
  • E. Ç. Kandemir, Alternate approach for calculating the optimum viscous damper size. Građevinar, 75(02.), 153-162,2023.https://doi.org/10.14256/JCE.3539.2022
  • E. Ç. Kandemir-Mazanoglu, K. Mazanoglu, An optimization study for viscous dampers between adjacent buildings. Mechanical Systems and Signal Processing, 89, 88-96, 2017. https://doi.org/10.1016/j.ymssp.2016.06.001
  • TBDY-2018, Türkiye Bina Deprem Yönetmeliği, Çevre ve Şehircilik Bakanlığı. Ankara, Türkiye, 30364, 2018.
  • SAP2000 V-20 CSI. Integrated Finite Element Analysis and Design of Structures Basic Analysis Reference Manual. Berkeley, USA, 2020.
  • H. B. Ozmen, M. Inel, S. M. Senel , & A. H. Kayhan, Load carrying system characteristics of existing Turkish RC building stock. International Journal of Civil Engineering, 13(1),76-91, 2015.
  • H. B. Ozmen, M. Inel, Damage potential of earthquake records for RC building stock. Earthq. Struct, 10(6), 1315-1330, 2016. http://dx.doi.org/10.12989/eas.2016.10.6.1315
  • H. B. Ozmen, M. Inel, Effect of rapid screening parameters on seismic performance of RC buildings. Structural engineering and mechanics: An international journal, 62(4), 391-399, 2017. https://doi.org/10.12989/sem.2017.62.4.391
  • C. Zhai, S. Jiang, S. Li, L. Xie, Dimensional analysis of earthquake-induced pounding between adjacent inelastic MDOF buildings. Earthq Eng and Eng Vib 14:295–313, 2015. https://doi.org/10.1007/ s11803-015-0024-3.
  • R. Jankowski, Non-linear FEM analysis of earthquake-induced pounding between the main building and the stairway tower of the Olive View Hospital. Eng Struct 31(8):1851–1864, 2009, https://doi. org/10.1016/j.engstruct.2009.03.024
  • C.G. Karayannis, M.C. Naoum, Torsional behavior of multistory RC frame structures due to asymmetric seismic interaction. Eng Struct 163:93–111, 2018. https://doi.org/10.1016/j.engstruct.2018.02.038
  • TS498, Design Loads for Buildings. Turkish Standards Institution. Ankara, Turkey, 1997.
  • J. B. Mander, Seismic design of bridge piers. Research report 84-2. Department of Civil Engineering, University of Canterbury, Christchurch (New Zealand), 1984.
  • SEMAp Sargı Etkisi Modelleme Analiz Programı, Tubitak Proje No: 105M024 Ankara, Turkey (in Turkish), 2008.
  • B.T. Cayci, M. Akpinar, Seismic pounding effects on typical building structures considering soil-structure interaction. In: Structures, vol 34. Elsevier, pp 1858–1871, 2021. https://doi.org/10.1016/j.istruc.2021. 08.133
  • E. C. Kandemir & R. Jankowski, Effect of soil on the capacity of viscous dampers between adjacent buildings. Gradevinar,75, 329-342, 2023. https://doi.org/10.14256/JCE.3597.2022
  • M. Mokhtari & H. Naderpour, Seismic vulnerability assessment of reinforced concrete buildings having nonlinear fluid viscous dampers. Bulletin of Earthquake Engineering, 20(13), 7675-7704, 2022. https://doi.org/10.1007/s10518-022-01508-7
  • S. Muthukumar, R. Desroches, Evaluation of impact models for seismic pounding. In: 13th world conference on earthquake engineering, Vancouver, BC, Canada, 235, August 1–6, 2004.
  • PEER Ground Motion Database http://peer.berkeley.edu (09.09.2019).

The effect on required gap distance in adjacent reinforced concrete buildings of fluid viscous dampers

Yıl 2024, Cilt: 13 Sayı: 4, 1231 - 1239, 15.10.2024
https://doi.org/10.28948/ngumuh.1499280

Öz

In the study, the change in the required gap distance with the use of fluid viscous damper-(FVD) in adjacent reinforced concrete buildings compared to traditional fixed-base models was examined. Additionally, the adequacy of the required gap distance recommended respect to the provisions of the Turkish Building Earthquake Code-(TBEC-2018) was examined. For this purpose, 3- and 7-story residential buildings with conventional fixed-base and FVD dampers were modelled. Nonlinear behavior for structural elements and FVD dampers was considered. A total of 44 nonlinear time history analysis was carried out for the conventional model with fixed-base and with FVD dampers adjacent model, using 11 ground motion pairs selected as spectrum compatible. As a result of the analysis, it was calculated that the use of FVD damper reduced the required gap distance by average of 43.6% compared to the fixed-base model. Additionally, it was determined that while the gap distance recommended in TBDY-2018 was 32.7% insufficient for fixed base buildings, was 42.2% remained on the safe side with the use of FVD. In this respect, it has been concluded that the use of FVD dampers can be an effective alternative to prevent or reduce the effects of pounding for existing or new adjacent buildings.

Kaynakça

  • M. Doğan ve A. Günaydın, Pounding of adjacent RC buildings during seismic loads. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi. 22(1), 129-145, 2009.
  • M. Miari, K.K. Choong and R. Jankowski, Seismic pounding between adjacent buildings: Identification of parameters, soil interaction issues and mitigation measures. Soil Dynamics and Earthquake Engineering, 121, 135-150, 2019. https://doi.org/10.1016/ j.soildyn.2019.02.024.
  • E. Rosenblueth and R. Meli, The 1985 Mexico earthquake. Concrete International, 8:23–34, 1986.
  • M.R. Degg, Some implications of the 1985 Mexican earthquake for hazard assessment. In Geohazards: Natural and man-made. Dordrecht: Springer Netherlands, 105-114, 1992. https://doi.org/10.1007/ 978-94-011-2310-5_11
  • R. Valles-Mattox and A. Reinhorn, Evaluation, prevention and mitigation of pounding effects in building structures. State University of New York at Buffalo Department of Civil Engineering Buffalo, NY 14260, Technical Report NCEER-97-0001, 20 February 1996.
  • S. Anagnostopoulos, Building pounding re-examined: how serious a problem is it. The eleventh world conference on earthquake engineering, pp. 2101-2108, Patras, Greece, 1996.
  • S. Anagnostopoulos, Earthquake induced pounding: State of the art. 10th European conference on earthquake engineering, pp. 897–905, Vienna, Austria 28 August-2 September 1995.
  • M. Miari and R. Jankowski, Analysis of floor-to-column pounding of buildings founded on different soil types. Bulletin of Earthquake Engineering, 20(13), 7241-7262, 2022. https://doi.org/10.1007/s10518-022-01482-0.
  • V. Jeng and W.L. Tzeng, Assessment of seismic pounding hazard for Taipei City. Engineering Structures, 22(5), 459-471, 2000. https://doi.org/10.1016/S0141-0296(98)00123-0.
  • G. Cole, R. Dhakal, A.J. Carr and Bull D, Building pounding state of the art: Identifying structures vulnerable to pounding damage, 2010 New Zealand Society for Earthquake Engineering Conference, pp. 11-19, Napier, New Zealand, 2010.
  • E. A. Mavronicola, P.C. Polycarpou and P. Komodromos, Spatial seismic modeling of base‐isolated buildings pounding against moat walls: effects of ground motion directionality and mass eccentricity. Earthquake Engineering & Structural Dynamics, 46(7), 1161-1179, 2017. https://doi.org/10.1002/eqe.2850
  • B. I. Patil, B. B. Biradar and R. Doddamani, Mitigation of seismic pounding observed in adjacent buildings with fluid viscous damper. In Sustainability Trends and Challenges in Civil Engineering: Select Proceedings of CTCS 2020, Springer Singapore, pp. 711-731, 2022. , https://doi.org/10.1007/978-981-16-2826-9_45
  • Taylor devices inc, Fluid viscous dampers general guidelines for engineers including a brief history, Taylor devices inc., New York, USA, 2020.
  • M. Miari, K. K. Choong and R. Jankowski, Seismic pounding between adjacent buildings: Identification of parameters, soil interaction issues and mitigation measures. Soil Dynamics and Earthquake Engineering, 121, 135-150, 2019. https:// doi.org/10.1016/j.soildyn.2019.02.024
  • D. Isobe, T. Ohta, T. Inoue and F. Matsueda, Seismic pounding and collapse behavior of neighboring buildings with different natural periods. Natural Science 4: 686-693, 2012. http://dx.doi.org/10.4236/ns.2012.428090
  • A. Elgammal, A. Seleemah, M. Elsharkawy and H. Elwardany, Comprehensive review on seismic pounding between adjacent buildings and available mitigation measures. Archives of Computational Methods in Engineering, 1-36, 2024. https://doi.org/10.1007/s11831-024-10114-6
  • E. Ozer, Seismic pounding of adjacent buildings considering torsional effects. Bulletin of Earthquake Engineering, 22, 2139–2171, 2024, https://doi.org/10.1007/s10518-023-01849-x.
  • C. G. Karayannis, and M. C. Naoum, Torsional behavior of multistory RC frame structures due to asymmetric seismic interaction. Engineering Structures, 163, 93-111, 2018. https://doi.org/10.1016/j.engstruct.2018.02.038
  • V. Jeng, K. Kasai, B.F. Maison. A spectral difference method to estimate building separations to avoid pounding. Earthquake Spectra, 8:201–223, 1992. https://doi.org/10.1193/1.1585
  • M. Barbato, E. Tubaldi, A probabilistic performance‐based approach for mitigating the seismic pounding risk between adjacent buildings. Earthquake Engineering and Structural Dynamics, 42, 1203-1219, 2013. https://doi.org/10.1002/eqe.2267
  • M. J. Favvata, Minimum required separation gap for adjacent RC frames with potential inter-story seismic pounding. Engineering Structures, 152, 643–659, 2017. https://doi.org/10.1016/j.engstruct.2017.09.025
  • M. G. Flenga, M.J. Favvata, Probabilistic seismic assessment of the pounding risk based on the local demands of a multistory RC frame structure. Engineering Structures 245:112789, 2021. https:// doi. org/ 10. 1016/j.engst ruct. 2021. 112789
  • C.G. Karayannis and M.C. Naoum Torsional behavior of multistory RC frame structures due to asymmetric seismic interaction. Engineering Structures, 163:93–111, 2018. https:// doi. org/ 10. 1016/j. engst ruct. 2018. 02. 038.
  • E. Ozer, The effect of fluid viscous dampers on performance of a residential building, early edition process in Pamukkale University Journal of Engineering Sciences, 2023. https:// doi. org/ 10.5505/pajes.2023.39345
  • M. Martinez-Rodrigoand, M. L. Romero, An optimum retrofit strategy for moment resisting frames with nonlinear viscous dampers for seismic applications. Engineering Structures, 25(7), 913-925, 2003. https://doi.org/10.1016/S0141-0296(03)00025-7
  • A.H. Deringöl, E.M. Güneyisi and O. Hansu, Combined Effect of Bearing Stiffness of the Base Isolator and Damping Characteristics of the Viscous Damper on the Nonlinear Response of Buildings. International Journal of Steel Structures, 22(5), 1497-1517, 2022. https://doi.org/10.1007/s13296-022-00656-5
  • T. Guo, J. Xu, W. Xu, Z. Di, Seismic upgrade of existing buildings with fluid viscous dampers: Design methodologies and case study. Journal of Performance of Constructed Facilities, 29(6), 04014175, 2015. https://doi.org/10.1061/(ASCE)CF.1943-509.0000671
  • M. Hicyilmaz, M. Doğan, H. Gönen, Investigation of optimum viscous damper distribution in steel frames with set-back irregularities. Pamukkale University Journal of Engineering Sciences, 24(6),1024-1029, 2018. https://doi.org/10.5505/pajes.2017.69094
  • H. Elwardany, R. Jankowski, and A. Seleemah, Mitigating the seismic pounding of multi-story buildings in series using linear and nonlinear fluid viscous dampers. Archives of Civil and Mechanical Engineering, 21(4), 137, 2021. https://doi.org/10.1007/s43452-021-00249-9
  • A. Rayegani and G. Nouri, Application of smart dampers for prevention of seismic pounding in isolated structures subjected to near-fault earthquakes. Journal of Earthquake Engineering, 26(8), 4069-4084, 2022. https://doi.org/10.1080/13632469.2020.1822230
  • E. Ç. Kandemir, Dalgacık Uyumu Analizi ile Optimum Viskoz Damper Kapasitesi Hesabı, Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 30(1), 115-122, 2022. https://doi.org/10.31796/ogummf.1003961
  • E. Ç. Kandemir, Alternate approach for calculating the optimum viscous damper size. Građevinar, 75(02.), 153-162,2023.https://doi.org/10.14256/JCE.3539.2022
  • E. Ç. Kandemir-Mazanoglu, K. Mazanoglu, An optimization study for viscous dampers between adjacent buildings. Mechanical Systems and Signal Processing, 89, 88-96, 2017. https://doi.org/10.1016/j.ymssp.2016.06.001
  • TBDY-2018, Türkiye Bina Deprem Yönetmeliği, Çevre ve Şehircilik Bakanlığı. Ankara, Türkiye, 30364, 2018.
  • SAP2000 V-20 CSI. Integrated Finite Element Analysis and Design of Structures Basic Analysis Reference Manual. Berkeley, USA, 2020.
  • H. B. Ozmen, M. Inel, S. M. Senel , & A. H. Kayhan, Load carrying system characteristics of existing Turkish RC building stock. International Journal of Civil Engineering, 13(1),76-91, 2015.
  • H. B. Ozmen, M. Inel, Damage potential of earthquake records for RC building stock. Earthq. Struct, 10(6), 1315-1330, 2016. http://dx.doi.org/10.12989/eas.2016.10.6.1315
  • H. B. Ozmen, M. Inel, Effect of rapid screening parameters on seismic performance of RC buildings. Structural engineering and mechanics: An international journal, 62(4), 391-399, 2017. https://doi.org/10.12989/sem.2017.62.4.391
  • C. Zhai, S. Jiang, S. Li, L. Xie, Dimensional analysis of earthquake-induced pounding between adjacent inelastic MDOF buildings. Earthq Eng and Eng Vib 14:295–313, 2015. https://doi.org/10.1007/ s11803-015-0024-3.
  • R. Jankowski, Non-linear FEM analysis of earthquake-induced pounding between the main building and the stairway tower of the Olive View Hospital. Eng Struct 31(8):1851–1864, 2009, https://doi. org/10.1016/j.engstruct.2009.03.024
  • C.G. Karayannis, M.C. Naoum, Torsional behavior of multistory RC frame structures due to asymmetric seismic interaction. Eng Struct 163:93–111, 2018. https://doi.org/10.1016/j.engstruct.2018.02.038
  • TS498, Design Loads for Buildings. Turkish Standards Institution. Ankara, Turkey, 1997.
  • J. B. Mander, Seismic design of bridge piers. Research report 84-2. Department of Civil Engineering, University of Canterbury, Christchurch (New Zealand), 1984.
  • SEMAp Sargı Etkisi Modelleme Analiz Programı, Tubitak Proje No: 105M024 Ankara, Turkey (in Turkish), 2008.
  • B.T. Cayci, M. Akpinar, Seismic pounding effects on typical building structures considering soil-structure interaction. In: Structures, vol 34. Elsevier, pp 1858–1871, 2021. https://doi.org/10.1016/j.istruc.2021. 08.133
  • E. C. Kandemir & R. Jankowski, Effect of soil on the capacity of viscous dampers between adjacent buildings. Gradevinar,75, 329-342, 2023. https://doi.org/10.14256/JCE.3597.2022
  • M. Mokhtari & H. Naderpour, Seismic vulnerability assessment of reinforced concrete buildings having nonlinear fluid viscous dampers. Bulletin of Earthquake Engineering, 20(13), 7675-7704, 2022. https://doi.org/10.1007/s10518-022-01508-7
  • S. Muthukumar, R. Desroches, Evaluation of impact models for seismic pounding. In: 13th world conference on earthquake engineering, Vancouver, BC, Canada, 235, August 1–6, 2004.
  • PEER Ground Motion Database http://peer.berkeley.edu (09.09.2019).
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Deprem Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Esra Özer 0000-0002-7778-0119

Erken Görünüm Tarihi 2 Eylül 2024
Yayımlanma Tarihi 15 Ekim 2024
Gönderilme Tarihi 11 Haziran 2024
Kabul Tarihi 2 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 4

Kaynak Göster

APA Özer, E. (2024). Akışkan viskoz sönümleyicilerin bitişik nizamlı betonarme binalarda gerekli boşluk mesafesine etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(4), 1231-1239. https://doi.org/10.28948/ngumuh.1499280
AMA Özer E. Akışkan viskoz sönümleyicilerin bitişik nizamlı betonarme binalarda gerekli boşluk mesafesine etkisi. NÖHÜ Müh. Bilim. Derg. Ekim 2024;13(4):1231-1239. doi:10.28948/ngumuh.1499280
Chicago Özer, Esra. “Akışkan Viskoz sönümleyicilerin bitişik Nizamlı Betonarme Binalarda Gerekli boşluk Mesafesine Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, sy. 4 (Ekim 2024): 1231-39. https://doi.org/10.28948/ngumuh.1499280.
EndNote Özer E (01 Ekim 2024) Akışkan viskoz sönümleyicilerin bitişik nizamlı betonarme binalarda gerekli boşluk mesafesine etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 4 1231–1239.
IEEE E. Özer, “Akışkan viskoz sönümleyicilerin bitişik nizamlı betonarme binalarda gerekli boşluk mesafesine etkisi”, NÖHÜ Müh. Bilim. Derg., c. 13, sy. 4, ss. 1231–1239, 2024, doi: 10.28948/ngumuh.1499280.
ISNAD Özer, Esra. “Akışkan Viskoz sönümleyicilerin bitişik Nizamlı Betonarme Binalarda Gerekli boşluk Mesafesine Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/4 (Ekim 2024), 1231-1239. https://doi.org/10.28948/ngumuh.1499280.
JAMA Özer E. Akışkan viskoz sönümleyicilerin bitişik nizamlı betonarme binalarda gerekli boşluk mesafesine etkisi. NÖHÜ Müh. Bilim. Derg. 2024;13:1231–1239.
MLA Özer, Esra. “Akışkan Viskoz sönümleyicilerin bitişik Nizamlı Betonarme Binalarda Gerekli boşluk Mesafesine Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 13, sy. 4, 2024, ss. 1231-9, doi:10.28948/ngumuh.1499280.
Vancouver Özer E. Akışkan viskoz sönümleyicilerin bitişik nizamlı betonarme binalarda gerekli boşluk mesafesine etkisi. NÖHÜ Müh. Bilim. Derg. 2024;13(4):1231-9.

download