Araştırma Makalesi
BibTex RIS Kaynak Göster

AlSi10Mg alaşımının içyapı ve mekanik özellikleri üzerine sıcak presleme yönteminin etkisi

Yıl 2024, Cilt: 13 Sayı: 4, 1420 - 1427, 15.10.2024
https://doi.org/10.28948/ngumuh.1520826

Öz

Bu çalışmada, sıcak presleme yöntemi kullanılarak üretilen ve farklı presleme sıcaklıklarında yoğunlaştırılan AlSi10Mg alaşımının mikroyapısı ve mekanik özelliklerinin incelenmesi araştırılmıştır. Bu amaçla AlSi10Mg alaşımı numunelerine soğuk presleme (N0) ve 450 oC (N1), 500 oC (N2), 550 oC (N3) sıcaklarında sıcak presleme işlemi uygulanmıştır. Soğuk presleme yapılan N0 numunesindeki porozite miktarının N1, N2 ve N3 numunelerine göre yüksek olduğu ve artan sıcaklıkla yoğunluk değerlerinin arttığı, porozite miktarının ise azaldığı belirlenmiştir. Ayrıca, içyapı incelemelerinde artan sıcaklıkla birlikte içyapıdaki silisyum (Si) parçacıklarının giderek küreselleştiği ve yapı içerişe homojen bir şekilde dağıldığı gözlenmiştir. Buna göre, N0, N1, N2 ve N3 kodlu numunelerde en yüksek sertlik değerini yaklaşık %45’lik artış sergileyen N3 numunesi göstermiştir. Buna ilaveten N0, N1, N2 ve N3 numunelerinin yoğunluk değerleri sırasıyla 2.3523, 2.6165, 2.6191 ve 2.6287 gr/cm3 olarak belirlenmiştir. Çekme dayanım değerlerinde ise en yüksek çekme dayanım değeri N3 numunesinde 186 MPa olarak, en düşük çekme dayanım değeri ise N1 numunesinde 156 MPa olarak belirlenmiştir. Buna göre N3 numunesi N1 numunesine göre %20 oranında daha yüksek çekme dayanımı performansı sergilemiştir. Numunelere uygulanan bütün pres sıcakları için çekme ve darbe kırılma yüzeylerinin yarılma düzlemlerinden ve yırtılma sırtlarından oluştuğu belirlenmiştir. Ayrıca, çekme ve darbe deneylerinden elde edilen kırılma yüzeylerinde, artan presleme sıcaklığı ile sertliğin artmasından dolayı yarılma düzlemlerinin genişliklerinin arttığı tespit edilmiştir.

Kaynakça

  • L. Griffing, Aluminum and Aluminum Alloys, Welding Handbook. Springer, Macmillan Education UK, 319–479, 1972.
  • L. Girelli, M. Giovagnoli, M. Tocci, A. Pola,, A. Fortini, M. Merlin, and G.M. La Vecchia, Evaluation of the impact behaviour of AlSi10Mg alloy produced using laser additive manufacturing, Materials Science and Engineering:A, 748, 38–51 , 2019. https://doi.org/10.1016/j.msea.2019.01.078.
  • L. Lattanzi, A. Fortini, M. Giovagnoli, and M. Merlin, Influence of Mg and Ti on both eutectic solidification and modifying efficiency in Sr-modified Al-7Si cast alloys, Metallurgia Italiana, 110 (2), 5–15, 2018.
  • N. Takata, H. Kodaira, K. Sekizawa, A. Suzuki, and M. Kobashi, Change in microstructure of selectively laser melted AlSi10Mg alloy with heat treatments, Materials Science and Engineering: A, 704, 218–28, 2017. https://doi.org/10.1016/j.msea.2017.08.029.
  • M. Fousová, D. Dvorský, A. Michalcová, and D. Vojtěch, Changes in the microstructure and mechanical properties of additively manufactured AlSi10Mg alloy after exposure to elevated temperatures, Materials Characterization, 137, 119–26, 2018. https://doi.org/10.1016/j.matchar.2018.01.028.
  • A. H. Maamoun, M. Elbestawi, G. K. Dosbaeva, and S. C. Veldhuis, Thermal post-processing of AlSi10Mg parts produced by Selective Laser Melting using recycled powder, Additive Manufacturing, 21, 234–47, 2018. https://doi.org/10.1016/j.addma.2018.03.014.
  • S. J. Andersen, C. D. Marioara, R. Vissers,, A. Frøseth, and H. W. Zandbergen, The structural relation between precipitates in Al-Mg-Si alloys, the Al-matrix and diamond silicon, with emphasis on the trigonal phase U1-MgAl2Si2, Materials Science and Engineering: A, 444(1–2), 157–69, 2007. https://doi.org/10.1016/ j.msea.2006.08.084.
  • R. Vissers, M. A. van Huis, J. Jansen, H. W. Zandbergen, and C.D.M.S.J. Andersen, The crystal structure of the β’ phase in Al–Mg–Si alloys, Acta Materialia, 55 (11), 3815–3823, 2007. https://doi.org/10.1016/j.actamat.2007.02.032
  • H. Chen, J. Lu, Y. Kong, K. Li, T. Yang, A. Meingast, M. Yang, Q. Lu, and Y. Du, Atomic scale investigation of the crystal structure and interfaces of the B′ precipitate in Al-Mg-Si alloys, Acta Materialia, 185, 193–203, 2020. https://doi.org/10.1016/j.actamat. 2019.11.059.
  • H.W. Zandbergen, S.J. Andersen, and J. Jansen, Structure determination of Mg5Si6:particles in Al by dynamic electron diffraction studies, Science, 277(5330), 1221–1225, 1997. https://doi.org/ 10.1126/science.277.5330.1221.
  • J.H. Rao, Y. Zhang, K. Zhang, A. Huang, C.H.J. Davies, and X. Wu, Multiple precipitation pathways in an Al-7Si-0.6Mg alloy fabricated by selective laser melting, Scripta Materialia, 160, 66–69, 2019. https://doi.org/10.1016/j.scriptamat.2018.09.045.
  • S. Marola, D. Manfredi, G. Fiore, M.G. Poletti, M. Lombardi, P. Fino, and L. Battezzati, A comparison of Selective Laser Melting with bulk rapid solidification of AlSi10Mg alloy, Journal of Alloys and Compounds, 742, 271–279, 2018. https://doi.org/10.1016/ j.jallcom.2018.01.309.
  • T. Maeshima and K. Oh-ishi, Solute clustering and supersaturated solid solution of AlSi10Mg alloy fabricated by selective laser melting, Heliyon, 5(2), 2019. https://doi.org/10.1016/j.heliyon.2019.e01186.
  • G. Atxaga, A. Pelayo, and A. M. Irisarri, Effect of microstructure on fatigue behaviour of cast Al-7Si-Mg alloy, Materials Science and Technology, 17(4), 446–450, 2001. https://doi.org/10.1179/ 026708301101510023.
  • K. T. Kashyap, S. Murali, K. S. Raman, and K. S. S. Murthy, Casting and heat treatment variables of Al–7Si–Mg alloy, Materials Science and Technology (United Kingdom), 9(3), 189–204, 1993. https://doi.org/10.1179/mst.1993.9.3.189.
  • Z. Y. Ma, S. R. Sharma, and R. S. Mishra, Microstructural modification of As-cast Al-Si-Mg alloy by friction stir processing, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 37(11), 3323–3336, 2006. https://doi.org/10.1007/BF02586167.
  • T. J. Hurley and R. G. Atkinson, Effects of modification practice on aluminum A-356 Alloys, AFS Transactions, 1985.
  • H. Hyer, L. Zhou, S. Park, G. Gottsfritz, G. Benson, B. Tolentino, B. McWilliams, K. Cho, and Y. Sohn, Understanding the laser powder bed fusion of AlSi10Mg alloy, Metallography, Microstructure, and Analysis, 9(4), 484–502, 2020. https://doi.org/ 10.1007/s13632-020-00659-w.
  • B. Chen, S. K. Moon, X. Yao, G. Bi, J. Shen, J. Umeda, and K. Kondoh, Comparison study on additive manufacturing (AM) and Powder Metallurgy (PM) AlSi10Mg Alloys, Jom, 70(5), 644–649, 2018. https://doi.org/10.1007/s11837-018-2793-4.
  • J. Wu, X.Q. Wang, W. Wang, M.M. Attallah, and M.H. Loretto, Microstructure and strength of selectively laser melted AlSi10Mg, Acta Materialia, 117, 311–20, 2016. https://doi.org/10.1016/j.actamat.2016.07.012.
  • B. Chen,, S. K. Moon, X. Yao, G. Bi, J. Shen, J. Umeda, and K. Kondoh, Strength and strain hardening of a selective laser melted AlSi10Mg alloy, Scripta Materialia, 141, 45–49, 2017. https://doi.org/ 10.1016/j.scriptamat.2017.07.025.
  • K. G. Prashanth, S. Scudino, H. J. Klauss, K. B. Surreddi, L. Löber, Z. Wang, A.K. Chaubey, U. Kühn, and J. Eckert, Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment, Materials Science and Engineering: A, 590, 153–160, 2014. https://doi.org/10.1016/ j.msea.2013.10.023.
  • L. Thijs, K. Kempen, J.P. Kruth, and J. Van Humbeeck, Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder, Acta Materialia, 61(5), 1809–1819, 2013. https://doi.org/10.1016/j.actamat.2012.11.052.
  • K.G. Prashanth, S. Scudino, and J. Eckert, Defining the tensile properties of Al-12Si parts produced by selective laser melting, Acta Materialia, 126, 25–35, 2017. https://doi.org/10.1016/j.actamat.2016.12.044.
  • F.V. Lenel, Powder Metallurgy Principles and Applications. Metal Powder Industries Federation, 370, 1980.
  • G. S. Upadhyaya, Powder Metallurgy Technology. Cambridge Int Science Publishing, 2014.
  • R. Sundaresan and F.H. Froes, Mechanical Alloying, Jom, 39(8), 22–27, 1987. https://doi.org/10.1007/ BF03258604.
  • J. C. Hastie, J. Koelblin, M. E. Kartal, M. M. Attallah, and R. Martinez, Evolution of internal pores within AlSi10Mg manufactured by laser powder bed fusion under tension: As-built and heat treated conditions, Materials and Design, 204, 2021. https://doi.org/ 10.1016/j.matdes.2021.109645.
  • Q. Xu, W. Li, Y. Yin, J. Zhou, and H. Nan, Finite element simulation of real cavity closure in cast Ti6Al4V alloy during hot isostatic pressing, China Foundry, 8, 2022. https://doi.org/10.1007/s41230-022-1173-4
  • W. Schneller, M. Leitner, S. Pomberger, S. Springer, F. Beter, and F. Grün, Effect of post treatment on the microstructure, surface roughness and residual stress regarding the fatigue strength of selectively laser melted AlSi10Mg structures, Journal of Manufacturing and Materials Processing, 3(4), 2019. https://doi.org/10.3390/jmmp3040089.
  • I. Rosenthal, R. Shneck, and A. Stern, Heat treatment effect on the mechanical properties and fracture mechanism in AlSi10Mg fabricated by additive manufacturing selective laser melting process, Materials Science and Engineering: A, 729, 310–322, 2018. https://doi.org/10.1016/j.msea.2018.05.074.
  • J. G. Santos Macías, L. Zhao, D. Tingaud, B. Bacroix, G. Pyka, C. van der Rest, L. Ryelandt, and A. Simar, Hot isostatic pressing of laser powder bed fusion AlSi10Mg: parameter identification and mechanical properties, Journal of Materials Science, 57(21), 9726–9740, 2022. https://doi.org/10.1007/s10853-022-07027-9.
  • T. Hirata, T. Kimura, and T. Nakamoto, Effects of hot isostatic pressing and internal porosity on the performance of selective laser melted AlSi10Mg alloys, Materials Science and Engineering: A, 772, 2020. https://doi.org/10.1016/j.msea.2019.138713.
  • W.H. Kan, Y. Nadot, M. Foley, L. Ridosz, G. Proust, and J.M. Cairney, Factors that affect the properties of additively-manufactured AlSi10Mg: Porosity versus microstructure, Additive Manufacturing, 29, 2019. https://doi.org/10.1016/j.addma.2019.100805.
  • C. Ozay and O.E. Karlidag, Hot press sintering effects and wear resistance of the Al-B 4 C composite coatings of an AA-2024 alloy , Materials Testing, 63(12), 1150–1156, 2019. https://doi.org/10.1515/mt-2021-0057.

Effect of hot pressing method on the microstructure and mechanical properties of AlSi10Mg alloy

Yıl 2024, Cilt: 13 Sayı: 4, 1420 - 1427, 15.10.2024
https://doi.org/10.28948/ngumuh.1520826

Öz

In this study, the microstructure and mechanical properties of AlSi10Mg alloy produced by hot pressing method and densified at different pressing temperatures were investigated. For this purpose, AlSi10Mg alloy samples were cold pressed (N0) and hot pressed at 450 oC (N1), 500 oC (N2), 550 oC (N3). It was determined that the amount of porosity in the cold pressed N0 sample was higher than the N1, N2 and N3 samples and the density values increased with increasing temperature and the amount of porosity decreased. In addition, it was observed that the silicon (Si) particles in the microstructure became increasingly spherical and homogeneously distributed in the structure with increasing temperature. Accordingly, the highest hardness value in N0, N1, N2 and N3 coded specimens was observed in N3 specimen with an increase of approximately 45 %. In addition, the density values of N0, N1, N2 and N3 samples were determined as 2.3523, 2.6165, 2.6191 and 2.6287 gr/cm3, respectively. In tensile strength values, the highest tensile strength value was determined as 186 MPa in sample N3 and the lowest tensile strength value was determined as 156 MPa in sample N1. Accordingly, N3 specimen exhibited 20 % higher tensile strength performance than N1 specimen. It was determined that the tensile and impact fracture surfaces consisted of cleavage planes and tear ridges for all press temperatures applied to the specimens. In addition, it was determined that the widths of the cleavage planes increased in the fracture surfaces obtained from tensile and impact tests due to the increase in hardness with increasing pressing temperature.

Kaynakça

  • L. Griffing, Aluminum and Aluminum Alloys, Welding Handbook. Springer, Macmillan Education UK, 319–479, 1972.
  • L. Girelli, M. Giovagnoli, M. Tocci, A. Pola,, A. Fortini, M. Merlin, and G.M. La Vecchia, Evaluation of the impact behaviour of AlSi10Mg alloy produced using laser additive manufacturing, Materials Science and Engineering:A, 748, 38–51 , 2019. https://doi.org/10.1016/j.msea.2019.01.078.
  • L. Lattanzi, A. Fortini, M. Giovagnoli, and M. Merlin, Influence of Mg and Ti on both eutectic solidification and modifying efficiency in Sr-modified Al-7Si cast alloys, Metallurgia Italiana, 110 (2), 5–15, 2018.
  • N. Takata, H. Kodaira, K. Sekizawa, A. Suzuki, and M. Kobashi, Change in microstructure of selectively laser melted AlSi10Mg alloy with heat treatments, Materials Science and Engineering: A, 704, 218–28, 2017. https://doi.org/10.1016/j.msea.2017.08.029.
  • M. Fousová, D. Dvorský, A. Michalcová, and D. Vojtěch, Changes in the microstructure and mechanical properties of additively manufactured AlSi10Mg alloy after exposure to elevated temperatures, Materials Characterization, 137, 119–26, 2018. https://doi.org/10.1016/j.matchar.2018.01.028.
  • A. H. Maamoun, M. Elbestawi, G. K. Dosbaeva, and S. C. Veldhuis, Thermal post-processing of AlSi10Mg parts produced by Selective Laser Melting using recycled powder, Additive Manufacturing, 21, 234–47, 2018. https://doi.org/10.1016/j.addma.2018.03.014.
  • S. J. Andersen, C. D. Marioara, R. Vissers,, A. Frøseth, and H. W. Zandbergen, The structural relation between precipitates in Al-Mg-Si alloys, the Al-matrix and diamond silicon, with emphasis on the trigonal phase U1-MgAl2Si2, Materials Science and Engineering: A, 444(1–2), 157–69, 2007. https://doi.org/10.1016/ j.msea.2006.08.084.
  • R. Vissers, M. A. van Huis, J. Jansen, H. W. Zandbergen, and C.D.M.S.J. Andersen, The crystal structure of the β’ phase in Al–Mg–Si alloys, Acta Materialia, 55 (11), 3815–3823, 2007. https://doi.org/10.1016/j.actamat.2007.02.032
  • H. Chen, J. Lu, Y. Kong, K. Li, T. Yang, A. Meingast, M. Yang, Q. Lu, and Y. Du, Atomic scale investigation of the crystal structure and interfaces of the B′ precipitate in Al-Mg-Si alloys, Acta Materialia, 185, 193–203, 2020. https://doi.org/10.1016/j.actamat. 2019.11.059.
  • H.W. Zandbergen, S.J. Andersen, and J. Jansen, Structure determination of Mg5Si6:particles in Al by dynamic electron diffraction studies, Science, 277(5330), 1221–1225, 1997. https://doi.org/ 10.1126/science.277.5330.1221.
  • J.H. Rao, Y. Zhang, K. Zhang, A. Huang, C.H.J. Davies, and X. Wu, Multiple precipitation pathways in an Al-7Si-0.6Mg alloy fabricated by selective laser melting, Scripta Materialia, 160, 66–69, 2019. https://doi.org/10.1016/j.scriptamat.2018.09.045.
  • S. Marola, D. Manfredi, G. Fiore, M.G. Poletti, M. Lombardi, P. Fino, and L. Battezzati, A comparison of Selective Laser Melting with bulk rapid solidification of AlSi10Mg alloy, Journal of Alloys and Compounds, 742, 271–279, 2018. https://doi.org/10.1016/ j.jallcom.2018.01.309.
  • T. Maeshima and K. Oh-ishi, Solute clustering and supersaturated solid solution of AlSi10Mg alloy fabricated by selective laser melting, Heliyon, 5(2), 2019. https://doi.org/10.1016/j.heliyon.2019.e01186.
  • G. Atxaga, A. Pelayo, and A. M. Irisarri, Effect of microstructure on fatigue behaviour of cast Al-7Si-Mg alloy, Materials Science and Technology, 17(4), 446–450, 2001. https://doi.org/10.1179/ 026708301101510023.
  • K. T. Kashyap, S. Murali, K. S. Raman, and K. S. S. Murthy, Casting and heat treatment variables of Al–7Si–Mg alloy, Materials Science and Technology (United Kingdom), 9(3), 189–204, 1993. https://doi.org/10.1179/mst.1993.9.3.189.
  • Z. Y. Ma, S. R. Sharma, and R. S. Mishra, Microstructural modification of As-cast Al-Si-Mg alloy by friction stir processing, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 37(11), 3323–3336, 2006. https://doi.org/10.1007/BF02586167.
  • T. J. Hurley and R. G. Atkinson, Effects of modification practice on aluminum A-356 Alloys, AFS Transactions, 1985.
  • H. Hyer, L. Zhou, S. Park, G. Gottsfritz, G. Benson, B. Tolentino, B. McWilliams, K. Cho, and Y. Sohn, Understanding the laser powder bed fusion of AlSi10Mg alloy, Metallography, Microstructure, and Analysis, 9(4), 484–502, 2020. https://doi.org/ 10.1007/s13632-020-00659-w.
  • B. Chen, S. K. Moon, X. Yao, G. Bi, J. Shen, J. Umeda, and K. Kondoh, Comparison study on additive manufacturing (AM) and Powder Metallurgy (PM) AlSi10Mg Alloys, Jom, 70(5), 644–649, 2018. https://doi.org/10.1007/s11837-018-2793-4.
  • J. Wu, X.Q. Wang, W. Wang, M.M. Attallah, and M.H. Loretto, Microstructure and strength of selectively laser melted AlSi10Mg, Acta Materialia, 117, 311–20, 2016. https://doi.org/10.1016/j.actamat.2016.07.012.
  • B. Chen,, S. K. Moon, X. Yao, G. Bi, J. Shen, J. Umeda, and K. Kondoh, Strength and strain hardening of a selective laser melted AlSi10Mg alloy, Scripta Materialia, 141, 45–49, 2017. https://doi.org/ 10.1016/j.scriptamat.2017.07.025.
  • K. G. Prashanth, S. Scudino, H. J. Klauss, K. B. Surreddi, L. Löber, Z. Wang, A.K. Chaubey, U. Kühn, and J. Eckert, Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment, Materials Science and Engineering: A, 590, 153–160, 2014. https://doi.org/10.1016/ j.msea.2013.10.023.
  • L. Thijs, K. Kempen, J.P. Kruth, and J. Van Humbeeck, Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder, Acta Materialia, 61(5), 1809–1819, 2013. https://doi.org/10.1016/j.actamat.2012.11.052.
  • K.G. Prashanth, S. Scudino, and J. Eckert, Defining the tensile properties of Al-12Si parts produced by selective laser melting, Acta Materialia, 126, 25–35, 2017. https://doi.org/10.1016/j.actamat.2016.12.044.
  • F.V. Lenel, Powder Metallurgy Principles and Applications. Metal Powder Industries Federation, 370, 1980.
  • G. S. Upadhyaya, Powder Metallurgy Technology. Cambridge Int Science Publishing, 2014.
  • R. Sundaresan and F.H. Froes, Mechanical Alloying, Jom, 39(8), 22–27, 1987. https://doi.org/10.1007/ BF03258604.
  • J. C. Hastie, J. Koelblin, M. E. Kartal, M. M. Attallah, and R. Martinez, Evolution of internal pores within AlSi10Mg manufactured by laser powder bed fusion under tension: As-built and heat treated conditions, Materials and Design, 204, 2021. https://doi.org/ 10.1016/j.matdes.2021.109645.
  • Q. Xu, W. Li, Y. Yin, J. Zhou, and H. Nan, Finite element simulation of real cavity closure in cast Ti6Al4V alloy during hot isostatic pressing, China Foundry, 8, 2022. https://doi.org/10.1007/s41230-022-1173-4
  • W. Schneller, M. Leitner, S. Pomberger, S. Springer, F. Beter, and F. Grün, Effect of post treatment on the microstructure, surface roughness and residual stress regarding the fatigue strength of selectively laser melted AlSi10Mg structures, Journal of Manufacturing and Materials Processing, 3(4), 2019. https://doi.org/10.3390/jmmp3040089.
  • I. Rosenthal, R. Shneck, and A. Stern, Heat treatment effect on the mechanical properties and fracture mechanism in AlSi10Mg fabricated by additive manufacturing selective laser melting process, Materials Science and Engineering: A, 729, 310–322, 2018. https://doi.org/10.1016/j.msea.2018.05.074.
  • J. G. Santos Macías, L. Zhao, D. Tingaud, B. Bacroix, G. Pyka, C. van der Rest, L. Ryelandt, and A. Simar, Hot isostatic pressing of laser powder bed fusion AlSi10Mg: parameter identification and mechanical properties, Journal of Materials Science, 57(21), 9726–9740, 2022. https://doi.org/10.1007/s10853-022-07027-9.
  • T. Hirata, T. Kimura, and T. Nakamoto, Effects of hot isostatic pressing and internal porosity on the performance of selective laser melted AlSi10Mg alloys, Materials Science and Engineering: A, 772, 2020. https://doi.org/10.1016/j.msea.2019.138713.
  • W.H. Kan, Y. Nadot, M. Foley, L. Ridosz, G. Proust, and J.M. Cairney, Factors that affect the properties of additively-manufactured AlSi10Mg: Porosity versus microstructure, Additive Manufacturing, 29, 2019. https://doi.org/10.1016/j.addma.2019.100805.
  • C. Ozay and O.E. Karlidag, Hot press sintering effects and wear resistance of the Al-B 4 C composite coatings of an AA-2024 alloy , Materials Testing, 63(12), 1150–1156, 2019. https://doi.org/10.1515/mt-2021-0057.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Tasarım ve Davranışları, Triboloji, Toz Metalurjisi
Bölüm Araştırma Makaleleri
Yazarlar

Murat Beder 0000-0001-8117-2151

Erken Görünüm Tarihi 4 Ekim 2024
Yayımlanma Tarihi 15 Ekim 2024
Gönderilme Tarihi 23 Temmuz 2024
Kabul Tarihi 12 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 4

Kaynak Göster

APA Beder, M. (2024). AlSi10Mg alaşımının içyapı ve mekanik özellikleri üzerine sıcak presleme yönteminin etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(4), 1420-1427. https://doi.org/10.28948/ngumuh.1520826
AMA Beder M. AlSi10Mg alaşımının içyapı ve mekanik özellikleri üzerine sıcak presleme yönteminin etkisi. NÖHÜ Müh. Bilim. Derg. Ekim 2024;13(4):1420-1427. doi:10.28948/ngumuh.1520826
Chicago Beder, Murat. “AlSi10Mg alaşımının içyapı Ve Mekanik özellikleri üzerine sıcak Presleme yönteminin Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, sy. 4 (Ekim 2024): 1420-27. https://doi.org/10.28948/ngumuh.1520826.
EndNote Beder M (01 Ekim 2024) AlSi10Mg alaşımının içyapı ve mekanik özellikleri üzerine sıcak presleme yönteminin etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 4 1420–1427.
IEEE M. Beder, “AlSi10Mg alaşımının içyapı ve mekanik özellikleri üzerine sıcak presleme yönteminin etkisi”, NÖHÜ Müh. Bilim. Derg., c. 13, sy. 4, ss. 1420–1427, 2024, doi: 10.28948/ngumuh.1520826.
ISNAD Beder, Murat. “AlSi10Mg alaşımının içyapı Ve Mekanik özellikleri üzerine sıcak Presleme yönteminin Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/4 (Ekim 2024), 1420-1427. https://doi.org/10.28948/ngumuh.1520826.
JAMA Beder M. AlSi10Mg alaşımının içyapı ve mekanik özellikleri üzerine sıcak presleme yönteminin etkisi. NÖHÜ Müh. Bilim. Derg. 2024;13:1420–1427.
MLA Beder, Murat. “AlSi10Mg alaşımının içyapı Ve Mekanik özellikleri üzerine sıcak Presleme yönteminin Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 13, sy. 4, 2024, ss. 1420-7, doi:10.28948/ngumuh.1520826.
Vancouver Beder M. AlSi10Mg alaşımının içyapı ve mekanik özellikleri üzerine sıcak presleme yönteminin etkisi. NÖHÜ Müh. Bilim. Derg. 2024;13(4):1420-7.

download