Araştırma Makalesi
BibTex RIS Kaynak Göster

Sert kabuklu araç üstü kamp çadırının aerodinamik tasarımı ve analizi

Yıl 2024, Cilt: 13 Sayı: 4, 1355 - 1363, 15.10.2024
https://doi.org/10.28948/ngumuh.1527130

Öz

Kampçılar, araçlarını ve çadırlarını tek bir yerde bulabildikleri için araç üstü çadırlar, ikili bir amaca hizmet eden önemli bir ürün haline gelmiştir. Sert kabuklu araç üstü çadırların tasarımında en önemli parametrelerden birisi aerodinamik bir geometriye sahip olmasıdır. Araçlar için kullanılacak bu tür dış ekipmanlar, yoldaki sürtünmeyi azaltarak, daha sessiz, pürüzsüz, verimli ve genel olarak güvenli bir sürüş sağlayacak şekilde tasarlanmalıdır. Böylece yakıt verimliliğinin sağlanmasının yanında aracın konfor ve performansına da olumlu yönde katkı sağlayacağı açıktır. Bu gereksinimler dikkate alınarak bu çalışmada NACA 0021 geometrisi temelinde sert kabuklu araç üstü çadırın, tasarım geometrisi (Model M) oluşturulmuştur. Model M’nin aerodinamik performansı, Ansys Fluent hesaplamalı akışkanlar dinamiği paket programı ile analiz edilmiştir. Ayrıca, ticari bir araç üstü çadır modeli ile aynı analizler gerçekleştirilmiş ve aerodinamik performansları karşılaştırılmıştır. Model M’nin ticari modele göre ortalama %86.31 daha az sürükleme kuvveti ve %13.20 daha az basma kuvveti oluşturduğu gözlemlenmiştir.

Kaynakça

  • K. Sommer, Holidays at home-Camping and glamping as a part of domestic tourism: An overview and analysis of camping (and in particular luxury camping) as an alternative form of domestic tourism in the time of the coronavirus,. Tourismus & Hospitality, 1-20, 2020.
  • G. G. Silverman, Camping with Kids: The Complete Guide to Car, Tent, and RV Camping, Wilderness Press, ss. 264, 2008.
  • K. Sommer, Types of camping accommodation. https://camping-tourismus.com/verschiedene-arten-von-camping-unterkuenften/, Accessed 26.04.2021.
  • Fortune Business Insights, Camping equipment market size, share & industry analysis, by product type (backpacks, sleeping bags, tents, cooking system, furniture, and others), distribution channel (offline stores and online stores), regional forecast, 2024-2032. https://www.fortunebusinessinsights.com/camping-equipment-market-104508, Accessed 28.06.2024.
  • Business Wire, Top 3 trends impacting the camping equipment market in the US through 2021: Technavio, https://www.businesswire.com/news/home/20170707005423/en/, Accessed 26.04 2021.
  • Off Road Tents, The Roof Top Tent Guide: The Basics To Start Camping Off The Ground (Roof Top Tents), Independently Published, ss. 43, 2019.
  • N. Espiner, E. J. Stewart, H. Fitt, S. Page, and S. Espiner, From tents and maps to vans and apps: Exploring camping mobilities, Tourism Geographies, 25(2-3), 670-689, 2023, https://doi.org/10.1080/14616688.2021.1964588.
  • A. Neal, What You Need to Know About Rooftop Tent Camping, Gears and Accessories, Tents, https://tongmetal.com.au/rooftop-tent-camping/, Accessed 26.04.2021.
  • A. Jambor and M. Beyer, New cars—new materials, Materials & Design, 18(4-6), 203-209, 1997, https://doi.org/10.1016/S0261-3069(97)00049-6
  • M. Bellman, R. Agarwal, J. Naber and L. Chusak, Reducing energy consumption of ground vehicles by active flow control, Energy Sustainability, 43949, 785-793, 2010, https://doi.org/10.1115/ES2010-90363
  • K. S. Song, S. O. Kang, S. O. Jun, , H. I. Park, J. D. Kee, K. H. Kim, and D. H. Lee, Aerodynamic design optimization of rear body shapes of a sedan for drag reduction, International Journal of Automotive Technology, 13, 905-914, 2012, https://doi.org/10.1007/s12239-012-0091-7.
  • R. M. Wood, Impact of advanced aerodynamic technology on transportation energy consumption, SAE transactions, 113, 854-874, 2004, https://www.jstor.org/stable/44724908
  • W. Sheng, R. M. Galbraith, and F. N. Coton, A new stall-onset criterion for low speed dynamic-stall, Journal of Solar Energy Engineering, 128(4), 461-471, 2006, https://doi.org/10.1115/1.2346703
  • M. Özden, H. H. Açıkel, M. S. Genç, and K. Koca, Recognizing flow evaluation on surface of naca0015 airfoil at various angles of attack, 275-280. International Asian Congress On Contemporary Sciences – VII, Bakü-Azerbaycan, IKSAD, ss. 711, December 09-11, 2022.
  • R. Şahin, M. Ayvazoğlu, S. Keskin, M. Özden, H. H. Açıkel, and M. S. Genç, Effect of airfoil thickness on flow over the symmetric airfoils: part I-experimental analysis. In 2023 10th International Conference on Recent Advances in Air and Space Technologies (RAST), IEEE, pp. 01-06, 2023.
  • H. Mansour, R. Afify, and O. Kassem, Three-dimensional simulation of new car profile. Fluids, 6(1), 8, 2020, https://doi.org/10.3390/fluids6010008
  • V. Chiplunkar, R. Gujar, A. Adiverekar, R. Kulkarni, and A. Thonge, Computational fluid dynamics analysis for an active rear-wing design to improve cornering speed for a high-performance car. Materials Today: Proceedings, 77, 887-896, 2023, https://doi.org/10.1016/j.matpr.2022.12.040
  • J. Broniszewski, and J. R. Piechna, Fluid-structure interaction analysis of a competitive car during brake-in-turn manoeuvre. Energies, 15(8), 2917, 2022, https://doi.org/10.3390/en15082917
  • F. J. Granados-Ortiz, P. Morales-Higueras, J. Ortega-Casanova, 3D CFD simulation of the interaction between front wheels&brake ducts and optimised five-element F1 race car front wings under regulations. Alexandria Engineering Journal, 69, 677-698, 2023, https://doi.org/10.1016/j.aej.2023.02.011
  • Bundutec rooftop tent., https://bundutec.co.uk/ Accessed 08.03 2024.
  • J. E. Matsson, An introduction to ansys fluent 2023. Sdc Publications. ss. 932, 2023.
  • I. Ramlan, and N. Darlis, Comparison between solidworks and ansys flow simulation on aerodynamic studies. Journal of Design for Sustainable and Environment, 2(2), 1-10, 2020.
  • F.T. Johnson, E. N. Tinoco, and N. J. Yu, Thirty years of development and application of CFD at Boeing Commercial Airplanes, Seattle. Computers & Fluids, 34(10), 1115-1151, 2005, https://doi.org/10.1016/j.compfluid.2004.06.005
  • S. R. M. Naidu, V. M. Madhavan, S. Chinta, R. Manikandan, A. Premkumar, and R. Girimurugan, Analysis of aerodynamic characteristics of car diffuser for dissimilar diffuser angles on Sedan’s using CFD. Materials Today: Proceedings, 92, 240-248, 2023, https://doi.org/10.1016/j.matpr.2023.04.379
  • K. Koca, and M. Özden, Flow properties of an Ahmed Body with different passive flow control methods, Gazi University Journal of Science Part C: Design Technology, 12(1), 1-16, 2024, https://doi.org/10.29109/gujsc.1333049
  • R. Lanzafame, S. Mauro, and M. Messina, 2D CFD modeling of H-Darrieus wind turbines using a transition turbulence model. Energy Procedia, 45, 131-140, 2014, https://doi.org/10.1016/j.egypro.2014.01.015
  • X. Xu, H. Li, and Y. Lin, Mesh–Order independence in CFD simulation. IEEE Access, 7, 119069-119081, 2019, https://doi.org/10.1109/ACCESS.2019.2937450

Aerodynamic design and analysis of a hard-shell rooftop camping tent

Yıl 2024, Cilt: 13 Sayı: 4, 1355 - 1363, 15.10.2024
https://doi.org/10.28948/ngumuh.1527130

Öz

Since campers can find their vehicles and tents in one place, rooftop tents have become an important product that serves a dual purpose. One of the most critical parameters in the design of hard-shell rooftop tents is their aerodynamic geometry. Such external vehicle equipment should be designed to reduce road friction, providing a quieter, smoother, and safer ride, while also improving efficiency. Thus, it is clear that in addition to providing fuel efficiency, it will also contribute positively to the comfort and performance of the vehicle. In this study, considering these requirements, the design geometry (called Model M) of the hard-shell rooftop tent was based on the NACA 0021 geometry. Model M’s aerodynamic performance was then analyzed using Ansys Fluent computational fluid dynamics programs. In addition, the same analyses were performed on a commercial hard-shell rooftop tent model (Commercial Model), and their aerodynamic performances were compared. It was found that Model M produced an average of 86.31% less drag force and 13.20% less downforce than the commercial model.

Kaynakça

  • K. Sommer, Holidays at home-Camping and glamping as a part of domestic tourism: An overview and analysis of camping (and in particular luxury camping) as an alternative form of domestic tourism in the time of the coronavirus,. Tourismus & Hospitality, 1-20, 2020.
  • G. G. Silverman, Camping with Kids: The Complete Guide to Car, Tent, and RV Camping, Wilderness Press, ss. 264, 2008.
  • K. Sommer, Types of camping accommodation. https://camping-tourismus.com/verschiedene-arten-von-camping-unterkuenften/, Accessed 26.04.2021.
  • Fortune Business Insights, Camping equipment market size, share & industry analysis, by product type (backpacks, sleeping bags, tents, cooking system, furniture, and others), distribution channel (offline stores and online stores), regional forecast, 2024-2032. https://www.fortunebusinessinsights.com/camping-equipment-market-104508, Accessed 28.06.2024.
  • Business Wire, Top 3 trends impacting the camping equipment market in the US through 2021: Technavio, https://www.businesswire.com/news/home/20170707005423/en/, Accessed 26.04 2021.
  • Off Road Tents, The Roof Top Tent Guide: The Basics To Start Camping Off The Ground (Roof Top Tents), Independently Published, ss. 43, 2019.
  • N. Espiner, E. J. Stewart, H. Fitt, S. Page, and S. Espiner, From tents and maps to vans and apps: Exploring camping mobilities, Tourism Geographies, 25(2-3), 670-689, 2023, https://doi.org/10.1080/14616688.2021.1964588.
  • A. Neal, What You Need to Know About Rooftop Tent Camping, Gears and Accessories, Tents, https://tongmetal.com.au/rooftop-tent-camping/, Accessed 26.04.2021.
  • A. Jambor and M. Beyer, New cars—new materials, Materials & Design, 18(4-6), 203-209, 1997, https://doi.org/10.1016/S0261-3069(97)00049-6
  • M. Bellman, R. Agarwal, J. Naber and L. Chusak, Reducing energy consumption of ground vehicles by active flow control, Energy Sustainability, 43949, 785-793, 2010, https://doi.org/10.1115/ES2010-90363
  • K. S. Song, S. O. Kang, S. O. Jun, , H. I. Park, J. D. Kee, K. H. Kim, and D. H. Lee, Aerodynamic design optimization of rear body shapes of a sedan for drag reduction, International Journal of Automotive Technology, 13, 905-914, 2012, https://doi.org/10.1007/s12239-012-0091-7.
  • R. M. Wood, Impact of advanced aerodynamic technology on transportation energy consumption, SAE transactions, 113, 854-874, 2004, https://www.jstor.org/stable/44724908
  • W. Sheng, R. M. Galbraith, and F. N. Coton, A new stall-onset criterion for low speed dynamic-stall, Journal of Solar Energy Engineering, 128(4), 461-471, 2006, https://doi.org/10.1115/1.2346703
  • M. Özden, H. H. Açıkel, M. S. Genç, and K. Koca, Recognizing flow evaluation on surface of naca0015 airfoil at various angles of attack, 275-280. International Asian Congress On Contemporary Sciences – VII, Bakü-Azerbaycan, IKSAD, ss. 711, December 09-11, 2022.
  • R. Şahin, M. Ayvazoğlu, S. Keskin, M. Özden, H. H. Açıkel, and M. S. Genç, Effect of airfoil thickness on flow over the symmetric airfoils: part I-experimental analysis. In 2023 10th International Conference on Recent Advances in Air and Space Technologies (RAST), IEEE, pp. 01-06, 2023.
  • H. Mansour, R. Afify, and O. Kassem, Three-dimensional simulation of new car profile. Fluids, 6(1), 8, 2020, https://doi.org/10.3390/fluids6010008
  • V. Chiplunkar, R. Gujar, A. Adiverekar, R. Kulkarni, and A. Thonge, Computational fluid dynamics analysis for an active rear-wing design to improve cornering speed for a high-performance car. Materials Today: Proceedings, 77, 887-896, 2023, https://doi.org/10.1016/j.matpr.2022.12.040
  • J. Broniszewski, and J. R. Piechna, Fluid-structure interaction analysis of a competitive car during brake-in-turn manoeuvre. Energies, 15(8), 2917, 2022, https://doi.org/10.3390/en15082917
  • F. J. Granados-Ortiz, P. Morales-Higueras, J. Ortega-Casanova, 3D CFD simulation of the interaction between front wheels&brake ducts and optimised five-element F1 race car front wings under regulations. Alexandria Engineering Journal, 69, 677-698, 2023, https://doi.org/10.1016/j.aej.2023.02.011
  • Bundutec rooftop tent., https://bundutec.co.uk/ Accessed 08.03 2024.
  • J. E. Matsson, An introduction to ansys fluent 2023. Sdc Publications. ss. 932, 2023.
  • I. Ramlan, and N. Darlis, Comparison between solidworks and ansys flow simulation on aerodynamic studies. Journal of Design for Sustainable and Environment, 2(2), 1-10, 2020.
  • F.T. Johnson, E. N. Tinoco, and N. J. Yu, Thirty years of development and application of CFD at Boeing Commercial Airplanes, Seattle. Computers & Fluids, 34(10), 1115-1151, 2005, https://doi.org/10.1016/j.compfluid.2004.06.005
  • S. R. M. Naidu, V. M. Madhavan, S. Chinta, R. Manikandan, A. Premkumar, and R. Girimurugan, Analysis of aerodynamic characteristics of car diffuser for dissimilar diffuser angles on Sedan’s using CFD. Materials Today: Proceedings, 92, 240-248, 2023, https://doi.org/10.1016/j.matpr.2023.04.379
  • K. Koca, and M. Özden, Flow properties of an Ahmed Body with different passive flow control methods, Gazi University Journal of Science Part C: Design Technology, 12(1), 1-16, 2024, https://doi.org/10.29109/gujsc.1333049
  • R. Lanzafame, S. Mauro, and M. Messina, 2D CFD modeling of H-Darrieus wind turbines using a transition turbulence model. Energy Procedia, 45, 131-140, 2014, https://doi.org/10.1016/j.egypro.2014.01.015
  • X. Xu, H. Li, and Y. Lin, Mesh–Order independence in CFD simulation. IEEE Access, 7, 119069-119081, 2019, https://doi.org/10.1109/ACCESS.2019.2937450
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Aerodinamik (Hipersonik Aerodinamik Hariç), Makine Mühendisliğinde Sayısal Yöntemler
Bölüm Araştırma Makaleleri
Yazarlar

Özkan Özmen 0000-0001-9746-3500

Mümin Özden Bu kişi benim 0009-0002-3882-6724

Erken Görünüm Tarihi 11 Eylül 2024
Yayımlanma Tarihi 15 Ekim 2024
Gönderilme Tarihi 2 Ağustos 2024
Kabul Tarihi 27 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 4

Kaynak Göster

APA Özmen, Ö., & Özden, M. (2024). Sert kabuklu araç üstü kamp çadırının aerodinamik tasarımı ve analizi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(4), 1355-1363. https://doi.org/10.28948/ngumuh.1527130
AMA Özmen Ö, Özden M. Sert kabuklu araç üstü kamp çadırının aerodinamik tasarımı ve analizi. NÖHÜ Müh. Bilim. Derg. Ekim 2024;13(4):1355-1363. doi:10.28948/ngumuh.1527130
Chicago Özmen, Özkan, ve Mümin Özden. “Sert Kabuklu Araç üstü Kamp çadırının Aerodinamik tasarımı Ve Analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, sy. 4 (Ekim 2024): 1355-63. https://doi.org/10.28948/ngumuh.1527130.
EndNote Özmen Ö, Özden M (01 Ekim 2024) Sert kabuklu araç üstü kamp çadırının aerodinamik tasarımı ve analizi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 4 1355–1363.
IEEE Ö. Özmen ve M. Özden, “Sert kabuklu araç üstü kamp çadırının aerodinamik tasarımı ve analizi”, NÖHÜ Müh. Bilim. Derg., c. 13, sy. 4, ss. 1355–1363, 2024, doi: 10.28948/ngumuh.1527130.
ISNAD Özmen, Özkan - Özden, Mümin. “Sert Kabuklu Araç üstü Kamp çadırının Aerodinamik tasarımı Ve Analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/4 (Ekim 2024), 1355-1363. https://doi.org/10.28948/ngumuh.1527130.
JAMA Özmen Ö, Özden M. Sert kabuklu araç üstü kamp çadırının aerodinamik tasarımı ve analizi. NÖHÜ Müh. Bilim. Derg. 2024;13:1355–1363.
MLA Özmen, Özkan ve Mümin Özden. “Sert Kabuklu Araç üstü Kamp çadırının Aerodinamik tasarımı Ve Analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 13, sy. 4, 2024, ss. 1355-63, doi:10.28948/ngumuh.1527130.
Vancouver Özmen Ö, Özden M. Sert kabuklu araç üstü kamp çadırının aerodinamik tasarımı ve analizi. NÖHÜ Müh. Bilim. Derg. 2024;13(4):1355-63.

download