Araştırma Makalesi
BibTex RIS Kaynak Göster

Statistical analysis of mechanical properties of waste glass powder substituted glass fiber mortars by ANOVA

Yıl 2025, Cilt: 14 Sayı: 2, 1 - 1

Öz

Using waste in the cement and concrete industry helps reduce costs and the need for large storage spaces for waste disposal. In particular, disposing of waste glass powder (WGP) from the glass industry requires significant storage capacity. Therefore, utilizing WGP as a raw material in construction is both an environmentally and economically viable solution. This study examined the workability, flexural strength, compressive strength, and splitting tensile strength of glass fiber-reinforced mortars containing WGP. A face-centered composite design was used to determine 13 test points. The fiber ratio was selected at 0%, 0.3%, and 0.6% by weight of the mixture, while WGP substitution levels were 0%, 7.5%, and 15% by weight of cement. The results indicate that adding glass fiber and WGP reduces flow value, flexural strength, compressive strength, and splitting tensile strength. However, at higher glass fiber ratios, the negative effect of WGP on flow value and compressive strength is less pronounced. The R2 values for flow value, flexural strength, compressive strength, and splitting tensile strength were 0.9983, 0.9586, 0.9069, and 0.8526, respectively, indicating a strong correlation between the tested parameters and the predictive model.

Proje Numarası

-

Kaynakça

  • Y. Jiang, T.C. Ling, K.H. Mo, and C. Shi, A critical review of waste glass powder – Multiple roles of utilization in cement-based materials and construction products, J Environ Manage, 242, 2019. https://doi.org/10.1016/j.jenvman.2019.04.098.
  • J.X. Lu, B.J. Zhan, Z.H. Duan, and C.S. Poon, Using glass powder to improve the durability of architectural mortar prepared with glass aggregates, Mater Des, 135, 2017. https://doi.org/10.1016/j.matdes.2017.09.016.
  • M. Mirzahosseini, and K.A. Riding, Influence of different particle sizes on reactivity of finely ground glass as supplementary cementitious material (SCM), Cem Concr Compos, 56, 2015. https://doi.org/ 10.1016/j.cemconcomp.2014.10.004.
  • V. Aydeniz, Cam Atık Geri Dönüşümü ve Geliştirme Çalışmaları, n.d. https://turktay.com/images/upload/06f31d963cc52c08d1bdb5e67cc1f84a.pdf (accessed September 13, 2024).
  • K. Afshinnia, and P.R. Rangaraju, Impact of combined use of ground glass powder and crushed glass aggregate on selected properties of Portland cement concrete, Constr Build Mater, 117, 2016. https://doi.org/ 10.1016/j.conbuildmat.2016.04.072.
  • T.C. Ling, and C.S. Poon, Stress-strain behaviour of fire exposed self-compacting glass concrete, Fire Mater, 37, 2013. https://doi.org/10.1002/fam.2131.
  • E.E. Ali, and S.H. Al-Tersawy, Recycled glass as a partial replacement for fine aggregate in self compacting concrete, Constr Build Mater, 35, 2012. https://doi.org/10.1016/j.conbuildmat.2012.04.117.
  • T.C. Ling, C.S. Poon, and S.C. Kou, Feasibility of using recycled glass in architectural cement mortars, Cem Concr Compos, 33, 2011. https://doi.org/ 10.1016/j.cemconcomp.2011.05.006.
  • C. Zhou, M. Li, Q.D. Nguyen, X. Lin, A. Castel, Y. Pang, Z. Deng, T. Shi, and C. Mai, Application of waste glass powder for sustainable concrete: design, performance, perspective, Materials, 18, 2025. https://doi.org/10.3390/ma18040734.
  • S.B. Park, and B.C. Lee, Studies on expansion properties in mortar containing waste glass and fibers, Cem Concr Res, 34, 2004. https://doi.org/ 10.1016/j.cemconres.2003.12.005.
  • R. Redden, and N. Neithalath, Microstructure, strength, and moisture stability of alkali activated glass powder-based binders, Cem Concr Compos, 45, 2014. https://doi.org/10.1016/j.cemconcomp.2013.09.011.
  • S.A. Memon, T.Y. Lo, and H. Cui, Utilization of waste glass powder for latent heat storage application in buildings, Energy Build, 66, 2013. https://doi.org/ 10.1016/j.enbuild.2013.07.056.
  • V. Ducman, A. Mladenovič, and J.S. Šuput, Lightweight aggregate based on waste glass and its alkali-silica reactivity, Cem Concr Res, 32, 2002. https://doi.org/10.1016/S0008-8846(01)00663-9.
  • S.P. Muñoz Pérez, J.F. Santisteban Purizaca, S.M. Castillo Matute, et al., Glass fiber reinforced concrete: overview of mechanical and microstructural analysis, Innov. Infrastruct. Solut. 9, 116, 2024. https://doi.org/ 10.1007/s41062-024-01429-1.
  • H.Z. Hassan, and N.M. Saeed, Fiber reinforced concrete: a state of the art, Discov Mater 4, 101, 2024. https://doi.org/10.1007/s43939-024-00171-w.
  • E.J. Barbero, Introduction to composite materials design, third edition, 2017. https://doi.org/ 10.1201/9781315296494.
  • A. Çavdar, Investigation of freeze-thaw effects on mechanical properties of fiber reinforced cement mortars, Compos B Eng, 58, 2014. https://doi.org/ 10.1016/j.compositesb.2013.11.013.
  • T. Simões, H. Costa, D. Dias-da-Costa, and E. Júlio, Influence of type and dosage of micro-fibres on the physical properties of fibre reinforced mortar matrixes, Constr Build Mater, 187, 2018. https://doi.org/ 10.1016/j.conbuildmat.2018.08.058.
  • L. Fenu, D. Forni, and E. Cadoni, Dynamic behaviour of cement mortars reinforced with glass and basalt fibres, Compos B Eng, 92, 2016. https://doi.org/ 10.1016/j.compositesb.2016.02.035.
  • M. Rezania, H. Moradnezhad, M. Panahandeh, M.J. Rahimpoor Kami, A. Rahmani, and B.V. Hosseini, Effects of Diethanolamine (DEA) and Glass Fibre Reinforced polymer (GFRP) on setting time and mechanical properties of shotcrete, Journal of Building Engineering, 31, 2020. https://doi.org/10.1016/ j.jobe.2020.101343.
  • M.T. Cihan, and Y.E. Avşar, Predictability of the Mechanical Properties of Glass Fibrous Mortar, Arab J Sci Eng, 48, 2023. https://doi.org/10.1007/s13369-022-07018-7.
  • R.H. Myers, D.C. Montgomery, and C.M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using ... - Raymond H. Myers, Douglas C. Montgomery, Christine M. Anderson-Cook - Google Books, Wiley (2009).
  • TSE, TS EN 196-1 Methods of testing cement - Part 1: Determination of strength, Turkish Standards Institute, Ankara, 2016.
  • C. Shi, Y. Wu, C. Riefler, H. Wang, Characteristics and pozzolanic reactivity of glass powders, Cem Concr Res, 35, 2005. https://doi.org/10.1016/ j.cemconres.2004.05.015.
  • L.A. Pereira-De-Oliveira, J.P. Castro-Gomes, and P.M.S. Santos, The potential pozzolanic activity of glass and red-clay ceramic waste as cement mortars components, Constr Build Mater, 31, 2012. https://doi.org/10.1016/j.conbuildmat.2011.12.110.
  • R. Idir, M. Cyr, and A. Tagnit-Hamou, Pozzolanic properties of fine and coarse color-mixed glass cullet, Cem Concr Compos, 33, 2011. https://doi.org/10.1016/ j.cemconcomp.2010.09.013.
  • M. Liu, Incorporating ground glass in self-compacting concrete, Constr Build Mater, 25, 2011. https://doi.org/10.1016/j.conbuildmat.2010.06.092.
  • M. Mirzahosseini, and K.A. Riding, Influence of different particle sizes on reactivity of finely ground glass as supplementary cementitious material (SCM), Cem Concr Compos, 56, 2015. https://doi.org/10.1016/ j.cemconcomp.2014.10.004.
  • A. Karamberi, and A. Moutsatsou, Participation of coloured glass cullet in cementitious materials, Cem Concr Compos, 27, 2005. https://doi.org/10.1016/ j.cemconcomp.2004.02.021.
  • J. xin Lu, Z. Hua Duan, and C.S. Poon, Combined use of waste glass powder and cullet in architectural mortar, Cem Concr Compos, 82, 2017. https://doi.org/10.1016/ j.cemconcomp.2017.05.011.
  • TSE, TS EN 1015-3 Methods of test for mortar for masonry- Part 3: Determination of consistence of fresh mortar (by flow table), Turkish Standards Institute (2000).
  • TSE, TS EN 12390-6 Testing hardened concrete - Part 6: Tensile splitting strength of test specimens, Turkish Standards Institute (2024).
  • G.E.P. Box, and D.R. Cox, An Analysis of Transformations, Journal of the Royal Statistical Society: Series B (Methodological), 26, 1964. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x.
  • N. Kaemingk, Stat-Ease, Statease (2018).

Atık cam tozu ikameli cam elyaf içeren harçların mekanik özelliklerinin ANOVA ile istatistiksel analizi

Yıl 2025, Cilt: 14 Sayı: 2, 1 - 1

Öz

Atıkların çimento ve beton endüstrisinde kullanılması, maliyetin ve atık bertarafı için büyük depolama alanlarına olan ihtiyacın azaltılmasına yardımcı olur. Özellikle cam endüstrisinden çıkan atık cam tozunun (WGP) bertaraf edilmesi önemli bir depolama kapasitesi gerektirmektedir. Bu nedenle, WGP'nin inşaatta hammadde olarak kullanılması hem çevresel hem de ekonomik açıdan uygulanabilir bir çözümdür. Bu çalışmada, WGP içeren cam lif takviyeli harçların işlenebilirliği, eğilmede çekme, basınç ve yarmada çekme dayanımları incelenmiştir. Yüzey merkezli kompozit tasarım 13 test noktasını belirlemek için kullanılmıştır. Lif oranı karışımın ağırlığına göre %0, %0.3 ve %0.6 olarak seçilirken, WGP ikame seviyeleri çimentonun ağırlığına göre %0, %7.5 ve %15 olarak belirlenmiştir. Sonuçlar, cam lif ve WGP ilavesinin yayılma değerini, eğilmede çekme, basınç ve yarmada çekme dayanımını azalttığını göstermektedir. Bununla birlikte, daha yüksek cam lif oranlarında, WGP'nin yayılma değeri ve basınç dayanımı üzerindeki olumsuz etkisi daha az belirgindir. Yayılma değeri, eğilmede çekme, basınç ve yarmada çekme dayanımı için R2 değerleri sırasıyla 0.9983, 0.9586, 0.9069 ve 0.8526 olup test edilen parametreler ile tahmini model arasında güçlü bir korelasyon olduğunu göstermektedir.

Proje Numarası

-

Kaynakça

  • Y. Jiang, T.C. Ling, K.H. Mo, and C. Shi, A critical review of waste glass powder – Multiple roles of utilization in cement-based materials and construction products, J Environ Manage, 242, 2019. https://doi.org/10.1016/j.jenvman.2019.04.098.
  • J.X. Lu, B.J. Zhan, Z.H. Duan, and C.S. Poon, Using glass powder to improve the durability of architectural mortar prepared with glass aggregates, Mater Des, 135, 2017. https://doi.org/10.1016/j.matdes.2017.09.016.
  • M. Mirzahosseini, and K.A. Riding, Influence of different particle sizes on reactivity of finely ground glass as supplementary cementitious material (SCM), Cem Concr Compos, 56, 2015. https://doi.org/ 10.1016/j.cemconcomp.2014.10.004.
  • V. Aydeniz, Cam Atık Geri Dönüşümü ve Geliştirme Çalışmaları, n.d. https://turktay.com/images/upload/06f31d963cc52c08d1bdb5e67cc1f84a.pdf (accessed September 13, 2024).
  • K. Afshinnia, and P.R. Rangaraju, Impact of combined use of ground glass powder and crushed glass aggregate on selected properties of Portland cement concrete, Constr Build Mater, 117, 2016. https://doi.org/ 10.1016/j.conbuildmat.2016.04.072.
  • T.C. Ling, and C.S. Poon, Stress-strain behaviour of fire exposed self-compacting glass concrete, Fire Mater, 37, 2013. https://doi.org/10.1002/fam.2131.
  • E.E. Ali, and S.H. Al-Tersawy, Recycled glass as a partial replacement for fine aggregate in self compacting concrete, Constr Build Mater, 35, 2012. https://doi.org/10.1016/j.conbuildmat.2012.04.117.
  • T.C. Ling, C.S. Poon, and S.C. Kou, Feasibility of using recycled glass in architectural cement mortars, Cem Concr Compos, 33, 2011. https://doi.org/ 10.1016/j.cemconcomp.2011.05.006.
  • C. Zhou, M. Li, Q.D. Nguyen, X. Lin, A. Castel, Y. Pang, Z. Deng, T. Shi, and C. Mai, Application of waste glass powder for sustainable concrete: design, performance, perspective, Materials, 18, 2025. https://doi.org/10.3390/ma18040734.
  • S.B. Park, and B.C. Lee, Studies on expansion properties in mortar containing waste glass and fibers, Cem Concr Res, 34, 2004. https://doi.org/ 10.1016/j.cemconres.2003.12.005.
  • R. Redden, and N. Neithalath, Microstructure, strength, and moisture stability of alkali activated glass powder-based binders, Cem Concr Compos, 45, 2014. https://doi.org/10.1016/j.cemconcomp.2013.09.011.
  • S.A. Memon, T.Y. Lo, and H. Cui, Utilization of waste glass powder for latent heat storage application in buildings, Energy Build, 66, 2013. https://doi.org/ 10.1016/j.enbuild.2013.07.056.
  • V. Ducman, A. Mladenovič, and J.S. Šuput, Lightweight aggregate based on waste glass and its alkali-silica reactivity, Cem Concr Res, 32, 2002. https://doi.org/10.1016/S0008-8846(01)00663-9.
  • S.P. Muñoz Pérez, J.F. Santisteban Purizaca, S.M. Castillo Matute, et al., Glass fiber reinforced concrete: overview of mechanical and microstructural analysis, Innov. Infrastruct. Solut. 9, 116, 2024. https://doi.org/ 10.1007/s41062-024-01429-1.
  • H.Z. Hassan, and N.M. Saeed, Fiber reinforced concrete: a state of the art, Discov Mater 4, 101, 2024. https://doi.org/10.1007/s43939-024-00171-w.
  • E.J. Barbero, Introduction to composite materials design, third edition, 2017. https://doi.org/ 10.1201/9781315296494.
  • A. Çavdar, Investigation of freeze-thaw effects on mechanical properties of fiber reinforced cement mortars, Compos B Eng, 58, 2014. https://doi.org/ 10.1016/j.compositesb.2013.11.013.
  • T. Simões, H. Costa, D. Dias-da-Costa, and E. Júlio, Influence of type and dosage of micro-fibres on the physical properties of fibre reinforced mortar matrixes, Constr Build Mater, 187, 2018. https://doi.org/ 10.1016/j.conbuildmat.2018.08.058.
  • L. Fenu, D. Forni, and E. Cadoni, Dynamic behaviour of cement mortars reinforced with glass and basalt fibres, Compos B Eng, 92, 2016. https://doi.org/ 10.1016/j.compositesb.2016.02.035.
  • M. Rezania, H. Moradnezhad, M. Panahandeh, M.J. Rahimpoor Kami, A. Rahmani, and B.V. Hosseini, Effects of Diethanolamine (DEA) and Glass Fibre Reinforced polymer (GFRP) on setting time and mechanical properties of shotcrete, Journal of Building Engineering, 31, 2020. https://doi.org/10.1016/ j.jobe.2020.101343.
  • M.T. Cihan, and Y.E. Avşar, Predictability of the Mechanical Properties of Glass Fibrous Mortar, Arab J Sci Eng, 48, 2023. https://doi.org/10.1007/s13369-022-07018-7.
  • R.H. Myers, D.C. Montgomery, and C.M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using ... - Raymond H. Myers, Douglas C. Montgomery, Christine M. Anderson-Cook - Google Books, Wiley (2009).
  • TSE, TS EN 196-1 Methods of testing cement - Part 1: Determination of strength, Turkish Standards Institute, Ankara, 2016.
  • C. Shi, Y. Wu, C. Riefler, H. Wang, Characteristics and pozzolanic reactivity of glass powders, Cem Concr Res, 35, 2005. https://doi.org/10.1016/ j.cemconres.2004.05.015.
  • L.A. Pereira-De-Oliveira, J.P. Castro-Gomes, and P.M.S. Santos, The potential pozzolanic activity of glass and red-clay ceramic waste as cement mortars components, Constr Build Mater, 31, 2012. https://doi.org/10.1016/j.conbuildmat.2011.12.110.
  • R. Idir, M. Cyr, and A. Tagnit-Hamou, Pozzolanic properties of fine and coarse color-mixed glass cullet, Cem Concr Compos, 33, 2011. https://doi.org/10.1016/ j.cemconcomp.2010.09.013.
  • M. Liu, Incorporating ground glass in self-compacting concrete, Constr Build Mater, 25, 2011. https://doi.org/10.1016/j.conbuildmat.2010.06.092.
  • M. Mirzahosseini, and K.A. Riding, Influence of different particle sizes on reactivity of finely ground glass as supplementary cementitious material (SCM), Cem Concr Compos, 56, 2015. https://doi.org/10.1016/ j.cemconcomp.2014.10.004.
  • A. Karamberi, and A. Moutsatsou, Participation of coloured glass cullet in cementitious materials, Cem Concr Compos, 27, 2005. https://doi.org/10.1016/ j.cemconcomp.2004.02.021.
  • J. xin Lu, Z. Hua Duan, and C.S. Poon, Combined use of waste glass powder and cullet in architectural mortar, Cem Concr Compos, 82, 2017. https://doi.org/10.1016/ j.cemconcomp.2017.05.011.
  • TSE, TS EN 1015-3 Methods of test for mortar for masonry- Part 3: Determination of consistence of fresh mortar (by flow table), Turkish Standards Institute (2000).
  • TSE, TS EN 12390-6 Testing hardened concrete - Part 6: Tensile splitting strength of test specimens, Turkish Standards Institute (2024).
  • G.E.P. Box, and D.R. Cox, An Analysis of Transformations, Journal of the Royal Statistical Society: Series B (Methodological), 26, 1964. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x.
  • N. Kaemingk, Stat-Ease, Statease (2018).
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapı Malzemeleri
Bölüm Makaleler
Yazarlar

Mehmet Timur Cihan 0000-0001-5555-5589

Veysel Akyüncü 0000-0003-3171-1553

Proje Numarası -
Erken Görünüm Tarihi 5 Mart 2025
Yayımlanma Tarihi
Gönderilme Tarihi 1 Ekim 2024
Kabul Tarihi 24 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 2

Kaynak Göster

APA Cihan, M. T., & Akyüncü, V. (2025). Statistical analysis of mechanical properties of waste glass powder substituted glass fiber mortars by ANOVA. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(2), 1-1. https://doi.org/10.28948/ngumuh.1558323
AMA Cihan MT, Akyüncü V. Statistical analysis of mechanical properties of waste glass powder substituted glass fiber mortars by ANOVA. NÖHÜ Müh. Bilim. Derg. Mart 2025;14(2):1-1. doi:10.28948/ngumuh.1558323
Chicago Cihan, Mehmet Timur, ve Veysel Akyüncü. “Statistical Analysis of Mechanical Properties of Waste Glass Powder Substituted Glass Fiber Mortars by ANOVA”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, sy. 2 (Mart 2025): 1-1. https://doi.org/10.28948/ngumuh.1558323.
EndNote Cihan MT, Akyüncü V (01 Mart 2025) Statistical analysis of mechanical properties of waste glass powder substituted glass fiber mortars by ANOVA. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 2 1–1.
IEEE M. T. Cihan ve V. Akyüncü, “Statistical analysis of mechanical properties of waste glass powder substituted glass fiber mortars by ANOVA”, NÖHÜ Müh. Bilim. Derg., c. 14, sy. 2, ss. 1–1, 2025, doi: 10.28948/ngumuh.1558323.
ISNAD Cihan, Mehmet Timur - Akyüncü, Veysel. “Statistical Analysis of Mechanical Properties of Waste Glass Powder Substituted Glass Fiber Mortars by ANOVA”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/2 (Mart 2025), 1-1. https://doi.org/10.28948/ngumuh.1558323.
JAMA Cihan MT, Akyüncü V. Statistical analysis of mechanical properties of waste glass powder substituted glass fiber mortars by ANOVA. NÖHÜ Müh. Bilim. Derg. 2025;14:1–1.
MLA Cihan, Mehmet Timur ve Veysel Akyüncü. “Statistical Analysis of Mechanical Properties of Waste Glass Powder Substituted Glass Fiber Mortars by ANOVA”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 14, sy. 2, 2025, ss. 1-1, doi:10.28948/ngumuh.1558323.
Vancouver Cihan MT, Akyüncü V. Statistical analysis of mechanical properties of waste glass powder substituted glass fiber mortars by ANOVA. NÖHÜ Müh. Bilim. Derg. 2025;14(2):1-.

download