Fırçasız doğru akım motorların adaptif filtre tabanlı MRAS ile hız algılayıcısız doğrudan moment kontrolü
Yıl 2025,
Cilt: 14 Sayı: 2, 1 - 1
Canberk Tuzcu
,
Engin Cemal Mengüç
,
Rıdvan Demir
,
Remzi İnan
Öz
Bu çalışma, kalıcı mıknatıslı fırçasız doğru akım motoru (SMFDAM) sürücüsünde gereken rotor hızını tahmin etmek için en küçük ortalama kare (Least mean square, LMS), en küçük ortalama kurtosis (LMK) ve en küçük ortalama dördüncü (Least mean fourth, LMF) yaklaşımlarına dayalı model referanslı adaptif sistem (Model reference adaptive system, MRAS) tahmin edicilerini tanıtmaktadır. Önerilen MRAS tahmin edicileri, referans modeli olarak hizmet eden ölçülen stator akımları ile adaptif modelin çıkışında üretilen stator akımları arasındaki hata terimini minimize ederek rotor hızını doğrudan kestirmektedir. Ayrıca, rotor hızını kapsayan ağırlık vektörleri üç tahmin edicide de her örnekleme adımında adaptif olarak güncellendiğinden, geleneksel MRAS çerçevelerinde yaygın olarak kullanılan sabit kazançlı orantılı-integral bir denetleyiciye olan ihtiyacı ortadan kaldırmaktadır. Önerilen tahmin edicilerin başarımları, zorlu çalışma senaryoları altında doğrudan moment kontrolü (DMK) tabanlı bir SMFDAM sürücüsü aracılığıyla değerlendirilmiştir. Benzetim sonuçları, önerilen kestiricilerin başarımlarının birbirlerine alternatif olduğunu göstermiştir. Özellikle, hız kestiriminde LMF tabanlı MRAS yapısı diğer MRAS yapılarından bir miktar daha iyi başarım sağlarken, 3-faz stator akım kestiriminde LMS ve LMK tabanlı MRAS yapıları daha iyi başarımlar sağlamıştır.
Kaynakça
- T. Rekioua, F. Meibody Tabar, and R. le Doeuff, A new approach for the field-oriented control of brushless, synchronous, permanent magnet machines, in 1990 Fourth International Conference on Power Electronics and Variable-Speed Drives (Conf. Publ. No. 324), pp. 46–50 Jul. 1990.
- M. N. Gujjar and P. Kumar, Comparative analysis of field oriented control of BLDC motor using SPWM and SVPWM techniques, in 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), pp. 924–929, May 2017. https://doi.org/ 10.1109 /RTEICT.2017.8256733.
- N. D. Irimia, F. I. Lazar, and M. Luchian, Comparison Between Sinusoidal and Space Vector Modulation Techniques on the Resulting Electromagnetic Torque Ripple Produced by a Three-Phase BLDC Motor under Field-Oriented Control, in 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), pp. 640–645, Apr. 2019. https://doi.org/10.1109/CoDIT.2019.8820718.
- Md. A. Islam, Md. B. Hossen, B. Banik, and B. C. Ghosh, Field oriented space vector pulse width modulation control of permanent magnet brushless DC motor, in 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), pp. 322–327, Dec. 2017. https://doi.org/10.1109/R10-HTC.2017. 8288966.
- M. A. Noroozi, J. S. Moghani, J. Mili Monfared, and H. Givi, An improved direct torque control of brushless DC motors using twelve voltage space vectors, in 2012 3rd Power Electronics and Drive Systems Technology (PEDSTC), pp. 133–138, Feb. 2012. https://doi.org/10. 1109/PEDSTC.2012.6183312.
- R. İnan, B. Aksoy, and O. K. M. Salman, Estimation performance of the novel hybrid estimator based on machine learning and extended Kalman filter proposed for speed-sensorless direct torque control of brushless direct current motor, Eng. Appl. Artif. Intell., 126, p. 107083, Nov. 2023. https://doi.org/10.1016/j. engappai.2023.107083.
- A. A. Kaf, X. Cheng, C. Zhang, A. Almadwami, A. Abdullah, and H. Almadwami, Sensorless Direct Torque Control in Brushless DC Motor Using Sliding Mode Observer, in 2024 4th International Conference on Emerging Smart Technologies and Applications (eSmarTA), pp. 1–8, Aug. 2024. https://doi.org/ 10.1109/eSmarTA62850.2024.10638846.
- B. Saha and B. Singh, Torque Ripple Mitigation in Sensorless PMBLDC Motor Drive With Adaptive Observer for LEV, IEEE Trans. Power Electron., 40, no. 1, pp. 1739–1747, Jan. 2025. https://doi.org/10.1109/TPEL.2024.3457677.
- R. Inan, An Improved Model Predictive Current Control of BLDC Motor With a Novel Adaptive Extended Kalman Filter–Based Back EMF Estimator and a New Commutation Duration Approach for Electrical Vehicle, Int. J. Circuit Theory Appl., 53(2), pp. 1135-1150, 2024. https://doi.org/10.1002/cta.4407.
- P. Ubare, D. Ingole, and D. N., Sonawane, Nonlinear Model Predictive Control of BLDC Motor with State Estimation, IFAC-Pap., 54(6), pp. 107–112, 2021. https://doi.org/10.1016/j.ifacol.2021.08.531.
- J.-C. Gamazo-Real, V. Martínez-Martínez, and J. Gomez-Gil, ANN-based position and speed sensorless estimation for BLDC motors, Measurement, 188, p. 110602, Jan. 2022. https://doi.org/10.1016/j. measurement.2021.110602.
- D. Joshi, D. Deb, and A. K. Giri, MRAS disturbance observer-based sensorless field-oriented backstepping control of BLDC motor drive, Electr. Eng., 106(5), pp. 6681–6701, Oct. 2024. https://doi.org/10.1007/s00202-024-02378-9.
- R. Demir, Speed-sensorless Predictive Current Controlled PMSM Drive With Adaptive Filtering-based MRAS Speed Estimators, Int. J. Control Autom. Syst., 21(8), pp. 2577–2586, Aug. 2023. https://doi.org /10.1007/s12555-022-0698-z.
- E. Zerdali and E. C. Mengüç, Novel Complex-Valued Stator Current-Based MRAS Estimators With Different Adaptation Mechanisms, IEEE Trans. Instrum. Meas., 68(10), pp. 3793–3795, Oct. 2019. https://doi.org/ 10.1109/TIM.2019.2932161.
- R. Demir, R. Yıldız, and M. Barut, Speed-sensorless predictive torque control of the IM based on MRAS, Niğde Ömer Halisdemir Univ. J. Eng. Sci., 12(1), pp. 126–133, 2023. https://doi.org/10.28948/ngumuh. 1208031.
- R. Yıldız, R. Demir, E. Zerdali, and M. Barut, Least mean Kurtosis algorithm-based MRAS estimator for speed-sensorless model predictive control of induction motor, presented at the V. International Turkic World Congress on Science and Engineering, pp. 80–92, Bishkek, Kırgızistan, Jul. 2023.
- B. Widrow and M. E. Hoff, Adaptive switching circuits, IRE, pp. 96–104.
- E. Walach and B. Widrow, The least mean fourth (LMF) adaptive algorithm and its family, IEEE Trans. Inf. Theory, 30(2), pp. 275–283, Mar. 1984. https://doi.org/10.1109/TIT.1984.1056886.
- O. Tanrikulu and A. G. Constantinides, Least-mean kurtosis: A novel higher-order statistics based adaptive filtering algorithm, Electron. Lett., 30(3), pp. 189–190, Feb. 1994. https://doi.org/10.1049/el:19940129.
- S. Haykin, Adaptive Filter Theory, 3rd ed. Upper Saddle River, NJ: Prentice Hall., 1996.
- E. C. Mengüç and N. Acır, An Augmented Complex-Valued Least-Mean Kurtosis Algorithm for the Filtering of Noncircular Signals, IEEE Trans. Signal Process., 66(2), pp. 438–448, Jan. 2018. https://doi.org/ 10.1109/TSP.2017.2768024.
- E. C. Mengüç, N. Acır, and D. P. Mandic, Widely Linear Quaternion-Valued Least-Mean Kurtosis Algorithm, IEEE Trans. Signal Process., 68, pp. 5914–5922, 2020. https://doi.org/10.1109/TSP.2020. 3029959.
Speed sensorless direct torque control of brushless direct current motors with adaptive filter based MRAS
Yıl 2025,
Cilt: 14 Sayı: 2, 1 - 1
Canberk Tuzcu
,
Engin Cemal Mengüç
,
Rıdvan Demir
,
Remzi İnan
Öz
This study introduces model reference adaptive system (MRAS) estimators based on least mean square (LMS), least mean kurtosis (LMK), and least mean fourth (LMF) approaches for estimating the rotor speed required in a permanent magnet brushless direct current motor (SMFDAM) drive. The proposed MRAS estimators directly estimate the rotor speed by minimizing the error term between the measured stator currents, serving as the reference model, and the stator currents generated at the adaptive model’s output. Additionally, since the weight vectors, which encapsulate rotor speed, are updated adaptively at each sampling step in all three estimators, the necessity for a fixed-gain proportional-integral controller commonly employed in conventional MRAS frameworks is removed. The performances of the proposed estimators are assessed through a direct torque control (DTC)-based SMFDAM drive under demanding operating scenarios. Simulation results show that the performances of the proposed estimators are alternative to each other. In particular, while the LMF-based MRAS structure performs slightly better than the other MRAS structures in speed estimation, the LMS and LMK-based MRAS structures provide better performances in 3-phase stator current estimation.
Kaynakça
- T. Rekioua, F. Meibody Tabar, and R. le Doeuff, A new approach for the field-oriented control of brushless, synchronous, permanent magnet machines, in 1990 Fourth International Conference on Power Electronics and Variable-Speed Drives (Conf. Publ. No. 324), pp. 46–50 Jul. 1990.
- M. N. Gujjar and P. Kumar, Comparative analysis of field oriented control of BLDC motor using SPWM and SVPWM techniques, in 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), pp. 924–929, May 2017. https://doi.org/ 10.1109 /RTEICT.2017.8256733.
- N. D. Irimia, F. I. Lazar, and M. Luchian, Comparison Between Sinusoidal and Space Vector Modulation Techniques on the Resulting Electromagnetic Torque Ripple Produced by a Three-Phase BLDC Motor under Field-Oriented Control, in 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), pp. 640–645, Apr. 2019. https://doi.org/10.1109/CoDIT.2019.8820718.
- Md. A. Islam, Md. B. Hossen, B. Banik, and B. C. Ghosh, Field oriented space vector pulse width modulation control of permanent magnet brushless DC motor, in 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), pp. 322–327, Dec. 2017. https://doi.org/10.1109/R10-HTC.2017. 8288966.
- M. A. Noroozi, J. S. Moghani, J. Mili Monfared, and H. Givi, An improved direct torque control of brushless DC motors using twelve voltage space vectors, in 2012 3rd Power Electronics and Drive Systems Technology (PEDSTC), pp. 133–138, Feb. 2012. https://doi.org/10. 1109/PEDSTC.2012.6183312.
- R. İnan, B. Aksoy, and O. K. M. Salman, Estimation performance of the novel hybrid estimator based on machine learning and extended Kalman filter proposed for speed-sensorless direct torque control of brushless direct current motor, Eng. Appl. Artif. Intell., 126, p. 107083, Nov. 2023. https://doi.org/10.1016/j. engappai.2023.107083.
- A. A. Kaf, X. Cheng, C. Zhang, A. Almadwami, A. Abdullah, and H. Almadwami, Sensorless Direct Torque Control in Brushless DC Motor Using Sliding Mode Observer, in 2024 4th International Conference on Emerging Smart Technologies and Applications (eSmarTA), pp. 1–8, Aug. 2024. https://doi.org/ 10.1109/eSmarTA62850.2024.10638846.
- B. Saha and B. Singh, Torque Ripple Mitigation in Sensorless PMBLDC Motor Drive With Adaptive Observer for LEV, IEEE Trans. Power Electron., 40, no. 1, pp. 1739–1747, Jan. 2025. https://doi.org/10.1109/TPEL.2024.3457677.
- R. Inan, An Improved Model Predictive Current Control of BLDC Motor With a Novel Adaptive Extended Kalman Filter–Based Back EMF Estimator and a New Commutation Duration Approach for Electrical Vehicle, Int. J. Circuit Theory Appl., 53(2), pp. 1135-1150, 2024. https://doi.org/10.1002/cta.4407.
- P. Ubare, D. Ingole, and D. N., Sonawane, Nonlinear Model Predictive Control of BLDC Motor with State Estimation, IFAC-Pap., 54(6), pp. 107–112, 2021. https://doi.org/10.1016/j.ifacol.2021.08.531.
- J.-C. Gamazo-Real, V. Martínez-Martínez, and J. Gomez-Gil, ANN-based position and speed sensorless estimation for BLDC motors, Measurement, 188, p. 110602, Jan. 2022. https://doi.org/10.1016/j. measurement.2021.110602.
- D. Joshi, D. Deb, and A. K. Giri, MRAS disturbance observer-based sensorless field-oriented backstepping control of BLDC motor drive, Electr. Eng., 106(5), pp. 6681–6701, Oct. 2024. https://doi.org/10.1007/s00202-024-02378-9.
- R. Demir, Speed-sensorless Predictive Current Controlled PMSM Drive With Adaptive Filtering-based MRAS Speed Estimators, Int. J. Control Autom. Syst., 21(8), pp. 2577–2586, Aug. 2023. https://doi.org /10.1007/s12555-022-0698-z.
- E. Zerdali and E. C. Mengüç, Novel Complex-Valued Stator Current-Based MRAS Estimators With Different Adaptation Mechanisms, IEEE Trans. Instrum. Meas., 68(10), pp. 3793–3795, Oct. 2019. https://doi.org/ 10.1109/TIM.2019.2932161.
- R. Demir, R. Yıldız, and M. Barut, Speed-sensorless predictive torque control of the IM based on MRAS, Niğde Ömer Halisdemir Univ. J. Eng. Sci., 12(1), pp. 126–133, 2023. https://doi.org/10.28948/ngumuh. 1208031.
- R. Yıldız, R. Demir, E. Zerdali, and M. Barut, Least mean Kurtosis algorithm-based MRAS estimator for speed-sensorless model predictive control of induction motor, presented at the V. International Turkic World Congress on Science and Engineering, pp. 80–92, Bishkek, Kırgızistan, Jul. 2023.
- B. Widrow and M. E. Hoff, Adaptive switching circuits, IRE, pp. 96–104.
- E. Walach and B. Widrow, The least mean fourth (LMF) adaptive algorithm and its family, IEEE Trans. Inf. Theory, 30(2), pp. 275–283, Mar. 1984. https://doi.org/10.1109/TIT.1984.1056886.
- O. Tanrikulu and A. G. Constantinides, Least-mean kurtosis: A novel higher-order statistics based adaptive filtering algorithm, Electron. Lett., 30(3), pp. 189–190, Feb. 1994. https://doi.org/10.1049/el:19940129.
- S. Haykin, Adaptive Filter Theory, 3rd ed. Upper Saddle River, NJ: Prentice Hall., 1996.
- E. C. Mengüç and N. Acır, An Augmented Complex-Valued Least-Mean Kurtosis Algorithm for the Filtering of Noncircular Signals, IEEE Trans. Signal Process., 66(2), pp. 438–448, Jan. 2018. https://doi.org/ 10.1109/TSP.2017.2768024.
- E. C. Mengüç, N. Acır, and D. P. Mandic, Widely Linear Quaternion-Valued Least-Mean Kurtosis Algorithm, IEEE Trans. Signal Process., 68, pp. 5914–5922, 2020. https://doi.org/10.1109/TSP.2020. 3029959.