İnceleme Makalesi
BibTex RIS Kaynak Göster

Synthetic Fuels as a Cornerstone of Net-Zero Emissions: A Review of Production Methods and Future Prospects

Yıl 2024, Cilt: 5 Sayı: 2, 113 - 131, 30.03.2025

Öz

Synthetic fuels, produced through the conversion of renewable energy and carbon dioxide (CO₂), have emerged as a promising solution to decarbonize sectors that are difficult to electrify, such as aviation, shipping, and heavy industry. This review article provides a comprehensive analysis of five key synthetic fuel types: synthetic hydrocarbons, methanol, ammonia, synthetic natural gas (SNG), and hydrogen/green hydrogen. Each fuel is evaluated based on its production processes, applications, advantages, and challenges. Synthetic hydrocarbons and SNG offer compatibility with existing infrastructure, while methanol and ammonia provide versatile solutions for transportation and industrial use. Green hydrogen, produced via water electrolysis using renewable energy, stands out as a zero-emission fuel with the potential to decarbonize hard-to-abate sectors. However, high production costs, energy-intensive processes, and infrastructure requirements remain significant barriers to widespread adoption. Technological advancements, economies of scale, and supportive policies are critical to overcoming these challenges. This article highlights the transformative potential of synthetic fuels in achieving a sustainable, low-carbon energy future, emphasizing the need for continued innovation and global collaboration to accelerate their deployment. By integrating synthetic fuels into the global energy system, we can address climate change, enhance energy security, and pave the way for a net-zero emissions future.

Kaynakça

  • [1] Ocak NH, Can A. A review on energy efficiency techniques used in machining for combined generation units. Int J Interact Des Manuf 2024;19:1473–502. https://doi.org/10.1007/s12008-024-01789-z.
  • [2] Hanson E, Nwakile C, Hammed VO. Carbon capture, utilization, and storage (CCUS) technologies: Evaluating the effectiveness of advanced CCUS solutions for reducing CO2 emissions. Results in Surfaces and Interfaces 2025;18:100381. https://doi.org/10.1016/j.rsurfi.2024.100381.
  • [3] Yıldız İ. 1.12 Fossil Fuels. Compr. Energy Syst., Elsevier; 2018, p. 521–67. https://doi.org/10.1016/B978-0-12-809597-3.00111-5.
  • [4] Zhang Y, Li A, Fei Y, Zhang C, Zhu L, Huang Z. Techno-economic assessment of electro-synthetic fuel based on solid oxide electrolysis cell coupled with Fischer–Tropsch strategy. J CO2 Util 2024;86:102905. https://doi.org/10.1016/j.jcou.2024.102905.
  • [5] Gao M, Xu H, Ma M, Gao G, Chen X, Chen J, et al. Global intercountry croplands’ greenhouse gas emissions differences and their potential drivers from economic levels perspective. Ecol Indic 2024;167:112635. https://doi.org/10.1016/j.ecolind.2024.112635.
  • [6] Van de Loosdrecht J, Botes FG, Ciobica IM, Ferreira A, Gibson P, Moodley DJ, et al. Fischer–Tropsch Synthesis: Catalysts and Chemistry. Compr Inorg Chem II (Second Ed From Elem to Appl 2013;7:525–57. https://doi.org/10.1016/B978-0-08-097774-4.00729-4.
  • [7] Willauer HD, Hardy DR. Synthetic fuel development. Elsevier Ltd; 2020. https://doi.org/10.1016/B978-0-08-102886-5.00026-8.
  • [8] Yang Q, Zhang Z, Fan Y, Chu G, Zhang D, Yu J. Advanced exergy analysis and optimization of a CO2 to methanol process based on rigorous modeling and simulation. Fuel 2022;325:124944. https://doi.org/10.1016/j.fuel.2022.124944.
  • [9] Andersson J, Krüger A, Grönkvist S. Methanol as a carrier of hydrogen and carbon in fossil-free production of direct reduced iron. Energy Convers Manag X 2020;7:100051. https://doi.org/10.1016/j.ecmx.2020.100051.
  • [10] Agelidou E, Seliger-Ost H, Henke M, Dreißigacker V, Krummrein T, Kutne P. The Heat-Storing Micro Gas Turbine—Process Analysis and Experimental Investigation of Effects on Combustion. Energies 2022;15:6289. https://doi.org/10.3390/en15176289.
  • [11] Martins F, Felgueiras C, Smitková M. Fossil fuel energy consumption in European countries. Energy Procedia 2018;153:107–11. https://doi.org/10.1016/J.EGYPRO.2018.10.050.
  • [12] Quader MA, Ahmed S, Ghazilla RAR, Ahmed S, Dahari M. A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing. Renew Sustain Energy Rev 2015;50:594–614. https://doi.org/10.1016/j.rser.2015.05.026.
  • [13] De Lucia C. Sustainability assessment of gasification processes for synthetic liquid fuel production: Economic, environmental, and policy issues. © 2015 Woodhead Publishing Limited. All rights reserved.; 2015. https://doi.org/10.1016/B978-0-85709-802-3.00004-7.
  • [14] Onodera H, Delage R, Nakata T. Systematic effects of flexible power-to-X operation in a renewable energy system - A case study from Japan. Energy Convers Manag X 2023;20. https://doi.org/10.1016/j.ecmx.2023.100416.
  • [15] Mahmoudi H, Mahmoudi M, Doustdar O, Jahangiri H, Tsolakis A, Gu S, et al. A review of Fischer Tropsch synthesis process, mechanism, surface chemistry and catalyst formulation. Biofuels Eng 2017;2:11–31. https://doi.org/10.1515/bfuel-2017-0002.
  • [16] Cormos AM, Dinca C, Petrescu L, Andreea Chisalita D, Szima S, Cormos CC. Carbon capture and utilisation technologies applied to energy conversion systems and other energy-intensive industrial applications. Fuel 2018;211:883–90. https://doi.org/10.1016/j.fuel.2017.09.104.
  • [17] Nemmour A, Inayat A, Janajreh I, Ghenai C. Green hydrogen-based E-fuels (E-methane, E-methanol, E-ammonia) to support clean energy transition: A literature review. Int J Hydrogen Energy 2023;48:29011–33. https://doi.org/10.1016/j.ijhydene.2023.03.240.
  • [18] Al-Qahtani A, González-Garay A, Bernardi A, Galán-Martín Á, Pozo C, Dowell N Mac, et al. Electricity grid decarbonisation or green methanol fuel? A life-cycle modelling and analysis of today′s transportation-power nexus. Appl Energy 2020;265:114718. https://doi.org/10.1016/j.apenergy.2020.114718.
  • [19] Huber D, Birkelbach F, Hofmann R. Unlocking the potential of synthetic fuel production : Coupled optimization of heat exchanger network and operating parameters of a 1 MW power-to-liquid plant. Chem Eng Sci 2024;284:119506. https://doi.org/10.1016/j.ces.2023.119506.
  • [20] Arellano-Treviño MA, Kanani N, Jeong-Potter CW, Farrauto RJ. Bimetallic catalysts for CO2 capture and hydrogenation at simulated flue gas conditions. Chem Eng J 2019;375:121953. https://doi.org/10.1016/j.cej.2019.121953.
  • [21] Bai F, Zhao F, Liu M, Liu Z, Hao H, Reiner DM. Assessing the Viability of Renewable Hydrogen, Ammonia, and Methanol in Decarbonizing Heavy-duty Trucks. Appl Energy 2025;383:125293. https://doi.org/10.1016/j.apenergy.2025.125293.
  • [22] Moioli E, Mutschler R, Züttel A. Renewable energy storage via CO2 and H2 conversion to methane and methanol: Assessment for small scale applications. Renew Sustain Energy Rev 2019;107:497–506. https://doi.org/10.1016/j.rser.2019.03.022.
  • [23] Chen J, Zhang L, Park HG, Min JE, Min HK, Kim JR, et al. Valorizing tail gas for superior hydrocarbon output in CO2-based Fischer-Tropsch synthesis. Chem Eng J 2025;503:158531. https://doi.org/10.1016/j.cej.2024.158531.
  • [24] Jalilvand M, Soltani M, Hosseinpour M, Nathwani J. Biomass and Bioenergy Energy and exergy assessment of anaerobic digestion process for ammonia synthesis : Toward a sustainable water-energy-food nexus. Biomass and Bioenergy 2025;197:107792. https://doi.org/10.1016/j.biombioe.2025.107792.
  • [25] Li CS, Frankhouser AD, Kanan MW. Carbonate-catalyzed reverse water-gas shift to produce gas fermentation feedstocks for renewable liquid fuel synthesis. Cell Reports Phys Sci 2022;3:101021. https://doi.org/10.1016/j.xcrp.2022.101021.
  • [26] Rafati M, Wang L, Dayton DC, Schimmel K, Kabadi V, Shahbazi A. Techno-economic analysis of production of Fischer-Tropsch liquids via biomass gasification: The effects of Fischer-Tropsch catalysts and natural gas co-feeding. Energy Convers Manag 2017;133:153–66. https://doi.org/10.1016/j.enconman.2016.11.051.
  • [27] Yukesh Kannah R, Kavitha S, Preethi, Parthiba Karthikeyan O, Kumar G, Dai-Viet NV, et al. Techno-economic assessment of various hydrogen production methods – A review. Bioresour Technol 2021;319:124175. https://doi.org/10.1016/j.biortech.2020.124175.
  • [28] Elhenawy SEM, Khraisheh M, AlMomani F, Walker G. Metal-Organic Frameworks as a Platform for CO2 Capture and Chemical Processes: Adsorption, Membrane Separation, Catalytic-Conversion, and Electrochemical Reduction of CO2. Catalysts 2020;10:1293. https://doi.org/10.3390/catal10111293.
  • [29] Schemme S, Breuer JL, Köller M, Meschede S, Walman F, Samsun RC, et al. H2-based synthetic fuels: A techno-economic comparison of alcohol, ether and hydrocarbon production. Int J Hydrogen Energy 2020;45:5395–414. https://doi.org/10.1016/j.ijhydene.2019.05.028.
  • [30] Dominković DF, Bačeković I, Pedersen AS, Krajačić G. The future of transportation in sustainable energy systems: Opportunities and barriers in a clean energy transition. Renew Sustain Energy Rev 2018;82:1823–38. https://doi.org/10.1016/j.rser.2017.06.117.
  • [31] De Vrieze J, Verbeeck K, Pikaar I, Boere J, Van Wijk A, Rabaey K, et al. The hydrogen gas bio-based economy and the production of renewable building block chemicals, food and energy. N Biotechnol 2020;55:12–8. https://doi.org/10.1016/j.nbt.2019.09.004.
  • [32] Quarton CJ, Samsatli S. The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: Insights from integrated value chain optimisation. Appl Energy 2020;257:113936. https://doi.org/10.1016/j.apenergy.2019.113936.
  • [33] Tozlu A. Techno-economic assessment of a synthetic fuel production facility by hydrogenation of CO2 captured from biogas. Int J Hydrogen Energy 2022;47:3306–15. https://doi.org/10.1016/j.ijhydene.2020.12.066.
  • [34] Liu G, Hagelin-Weaver H, Welt B. A Concise Review of Catalytic Synthesis of Methanol from Synthesis Gas. Waste 2023;1:228–48. https://doi.org/10.3390/waste1010015.
  • [35] Kiss AA, Pragt JJ, Vos HJ, Bargeman G, de Groot MT. Novel efficient process for methanol synthesis by CO2 hydrogenation. Chem Eng J 2016;284:260–9. https://doi.org/10.1016/j.cej.2015.08.101.
  • [36] Deka TJ, Osman AI, Baruah DC, Rooney DW. Methanol fuel production, utilization, and techno-economy: a review. Environ Chem Lett 2022;20:3525–54. https://doi.org/10.1007/s10311-022-01485-y.
  • [37] Bicer Y, Khalid F. Life cycle environmental impact comparison of solid oxide fuel cells fueled by natural gas, hydrogen, ammonia and methanol for combined heat and power generation. Int J Hydrogen Energy 2020;45:3670–85. https://doi.org/10.1016/j.ijhydene.2018.11.122.
  • [38] Rodriguez-Pastor DA, Soltero VM, Chacartegui R. Methanol to dimethyl ether (DME) assessment toward thermochemical energy storage. Chem Eng J 2025;509:161286. https://doi.org/10.1016/j.cej.2025.161286.
  • [39] Luo M, Li Z, Yang Z, Fang Y, Rahman R. CO2 hydrogenation to methanol over Al2O3-supported Co, Mn OR Zn modified CuGa-LDH catalysts. Fuel 2025;392:134895. https://doi.org/10.1016/j.fuel.2025.134895.
  • [40] Chen C, Yang A. Power-to-methanol: The role of process flexibility in the integration of variable renewable energy into chemical production. Energy Convers Manag 2021;228:113673. https://doi.org/10.1016/j.enconman.2020.113673.
  • [41] Kountouris I, Langer L, Bramstoft R, Münster M, Keles D. Power-to-X in energy hubs: A Danish case study of renewable fuel production. Energy Policy 2023;175:113439. https://doi.org/10.1016/j.enpol.2023.113439.
  • [42] Ojelade OA, Zaman SF, Ni BJ. Green ammonia production technologies: A review of practical progress. J Environ Manage 2023;342:118348. https://doi.org/10.1016/j.jenvman.2023.118348.
  • [43] Luberti M, Di Santis C, Santori G. Ammonia/ethanol mixture for adsorption refrigeration. Energies 2020;13. https://doi.org/10.3390/en13040983.
  • [44] Ančić I, Vladimir N, Cho DS. Determining environmental pollution from ships using Index of Energy Efficiency and Environmental Eligibility (I4E). Mar Policy 2018;95:1–7. https://doi.org/10.1016/j.marpol.2018.06.019.
  • [45] Paul A, Holy F, Textor M, Lechner S. High Temperature Sensible Thermal Energy Storage as a Crucial Element of {{Carnot Batteries}}: {{Overall}} Classification and Technical Review Based on Parameters and Key Figures. J Energy Storage 2022;56:106015. https://doi.org/10.1016/j.est.2022.106015.
  • [46] Spatolisano E, Pellegrini LA. Haber-Bosch process intensification: A first step towards small-scale distributed ammonia production. Chem Eng Res Des 2023;195:651–61. https://doi.org/10.1016/j.cherd.2023.06.031.
  • [47] Eriksen JV, Franz SM, Steensberg J, Vejstrup A, Bosack M, Bramstoft R, et al. The future demand of renewable fuels in Germany: Understanding the impact of electrification levels and socio-economic developments. Heliyon 2023;9:e22271. https://doi.org/10.1016/j.heliyon.2023.e22271.
  • [48] Martin J, Neumann A, Ødegård A. Renewable hydrogen and synthetic fuels versus fossil fuels for trucking, shipping and aviation: A holistic cost model. Renew Sustain Energy Rev 2023;186:113637. https://doi.org/10.1016/j.rser.2023.113637.
  • [49] Elishav O, Mosevitzky Lis B, Miller EM, Arent DJ, Valera-Medina A, Grinberg Dana A, et al. Progress and Prospective of Nitrogen-Based Alternative Fuels. Chem Rev 2020;120:5352–436. https://doi.org/10.1021/acs.chemrev.9b00538.
  • [50] Joelsson JM, Gustavsson L. Reductions in greenhouse gas emissions and oil use by DME (di-methyl ether) and FT (Fischer-Tropsch) diesel production in chemical pulp mills. Energy 2012;39:363–74. https://doi.org/10.1016/j.energy.2012.01.001.
  • [51] Ribeiro B, Dur L. e-Fuel production process technologies and trends : A bibliometric-based review 2025;13:3351–68. https://doi.org/10.1016/j.egyr.2025.02.030.
  • [52] Dubey R, Bhimireddi R, Lee Y, Singh L. Catalytic ammonia cracking: Future of material chemistry research for sustainable hydrogen energy economy. Next Energy 2025;7:100227. https://doi.org/10.1016/j.nxener.2024.100227.
  • [53] Mohamed AMO, Economou IG, Bicer Y. Navigating ammonia production routes: Life cycle assessment insights for a sustainable future. Curr Opin Green Sustain Chem 2024;49:100947. https://doi.org/10.1016/j.cogsc.2024.100947.
  • [54] Carels F, Sens L, Kaltschmitt M. Synthetic natural gas as a green hydrogen carrier – Technical, economic and environmental assessment of several supply chain concepts. Energy Convers Manag 2024;321:118940. https://doi.org/10.1016/j.enconman.2024.118940.
  • [55] Cormos CC, Dragan M, Petrescu L, Cormos AM, Dragan S, Bathori AM, et al. Synthetic natural gas (SNG) production by biomass gasification with CO2 capture: Techno-economic and life cycle analysis (LCA). Energy 2024;312:133507. https://doi.org/10.1016/j.energy.2024.133507.
  • [56] Alsunousi M, Kayabasi E. The role of hydrogen in synthetic fuel production strategies. Int J Hydrogen Energy 2024;54:1169–78. https://doi.org/10.1016/j.ijhydene.2023.11.359.
  • [57] Weimann L, Grimm A, Nienhuis J, Gabrielli P, Kramer GJ, Gazzania M. Energy System Design for the Production of Synthetic Carbon-neutral Fuels from Air-captured CO2. Comput Aided Chem Eng 2020;48:1471–6. https://doi.org/10.1016/B978-0-12-823377-1.50246-9.
  • [58] Sami S, Gholizadeh M, Deymi-Dashtebayaz M. A comprehensive 5E analysis of synthetic natural gas production through direct air capture and renewable hydrogen: Based on a specified-scale residential application. Renew Sustain Energy Rev 2025;212:115376. https://doi.org/10.1016/j.rser.2025.115376.
  • [59] Ruggiero R, Coppola A, Urciuolo M, Scala F. Process modeling of the production of synthetic natural gas from biomass-derived syngas: Focus on tar cleaning and fuel synthesis stages. Fuel 2025;393:134900. https://doi.org/10.1016/j.fuel.2025.134900.
  • [60] Fasihi M, Bogdanov D, Breyer C. Long-term hydrocarbon trade options for the Maghreb region and Europe-renewable energy based synthetic fuels for a net zero emissions world. Sustain 2017;9. https://doi.org/10.3390/su9020306.
  • [61] Jalili M, Beyrami J, Ziyaei M, Chitsaz A, Rosen MA. Innovative synthetic natural gas production from biomass and renewable hydrogen: Evaluation and optimization with sustainability perspective. Process Saf Environ Prot 2024;182:139–53. https://doi.org/10.1016/j.psep.2023.11.074.
  • [62] Merkouri LP, Mathew J, Jacob J, Ramirez Reina T, Duyar MS. Switchable catalysis for methanol and synthetic natural gas synthesis from CO2: A techno-economic investigation. J CO2 Util 2024;79. https://doi.org/10.1016/j.jcou.2023.102652.
  • [63] Colelli L, Bassano C, Verdone N, Segneri V, Vilardi G. Power-to-Gas: Process analysis and control strategies for dynamic catalytic methanation system. Energy Convers Manag 2024;305:118257. https://doi.org/10.1016/j.enconman.2024.118257.
  • [64] Kumar A, Tiwari AK, Cearnaigh DU. Comparative analysis of Benchmark and Aeon Blue Technologies for sustainable eFuel production: Integrating Direct Air Capture and Green Hydrogen approaches. Energy Convers Manag 2024;308. https://doi.org/10.1016/j.enconman.2024.118384.
  • [65] Wang F, Wang L, Zhang H, Xia L, Miao H, Yuan J. Design and optimization of hydrogen production by solid oxide electrolyzer with marine engine waste heat recovery and ORC cycle. Energy Convers Manag 2021;229:113775. https://doi.org/10.1016/j.enconman.2020.113775.
  • [66] Akroot A, Namli L, Ozcan H. Compared Thermal Modeling of Anode- and Electrolyte-Supported SOFC-Gas Turbine Hybrid Systems. J Electrochem Energy Convers Storage 2021. https://doi.org/10.1115/1.4046185.
  • [67] Tebibel H. Off grid PV system for hydrogen production using PEM methanol electrolysis and an optimal management strategy. Int J Hydrogen Energy 2017;42:19432–45. https://doi.org/10.1016/j.ijhydene.2017.05.205.
  • [68] Chang Y, Wan F, Yao X, Wang J, Han Y, Li H. Influence of hydrogen production on the CO2 emissions reduction of hydrogen metallurgy transformation in iron and steel industry. Energy Reports 2023;9:3057–71. https://doi.org/10.1016/j.egyr.2023.01.083.
  • [69] Ozcan H, Kayabasi E. Thermodynamic and economic analysis of a synthetic fuel production plant via CO2 hydrogenation using waste heat from an iron-steel facility. Energy Convers Manag 2021;236:114074. https://doi.org/10.1016/j.enconman.2021.114074.
  • [70] Tamburrano P, Romagnuolo L, Frosina E, Caramia G, Distaso E, Sciatti F, et al. Fuels systems and components for future airliners fuelled with liquid hydrogen. J Phys Conf Ser 2022;2385:012041. https://doi.org/10.1088/1742-6596/2385/1/012041.
  • [71] Breyer C, Lopez G, Bogdanov D, Laaksonen P. The role of electricity-based hydrogen in the emerging power-to-X economy. Int J Hydrogen Energy 2023. https://doi.org/10.1016/j.ijhydene.2023.08.170.
  • [72] Tasleem S, Alsharaeh EH. Role of green, yellow, blue, white and gold hydrogen in fuelling the path to net zero and sustainable future- A review. Energy Convers Manag 2025;326:119500. https://doi.org/10.1016/j.enconman.2025.119500.
  • [73] Holling B, Kandziora C, Ritter R. CO2 recovery from industrial hydrogen facilities and steel production to comply with future European Emission regulations. Energy Procedia 2013;37:7221–30. https://doi.org/10.1016/j.egypro.2013.06.660.
  • [74] Jafari M, Armaghan D, Seyed Mahmoudi SM, Chitsaz A. Thermoeconomic analysis of a standalone solar hydrogen system with hybrid energy storage. Int J Hydrogen Energy 2019;44:19614–27. https://doi.org/10.1016/j.ijhydene.2019.05.195.
  • [75] Alsunousi M, Kayabasi E. Techno-economic assessment of a floating photovoltaic power plant assisted methanol production by hydrogenation of CO 2 captured from Zawiya oil refinery. Int J Hydrogen Energy 2024;57:589–600. https://doi.org/10.1016/j.ijhydene.2024.01.055.
  • [76] Ren L, Zhou S, Ou X. The carbon reduction potential of hydrogen in the low carbon transition of the iron and steel industry: The case of China. Renew Sustain Energy Rev 2023;171:113026. https://doi.org/10.1016/j.rser.2022.113026.
  • [77] Hank C, Gelpke S, Schnabl A, White RJ, Full J, Wiebe N, et al. Economics & carbon dioxide avoidance cost of methanol production based on renewable hydrogen and recycled carbon dioxide – power-to-methanol. Sustain Energy Fuels 2018;2:1244–61. https://doi.org/10.1039/C8SE00032H.
  • [78] Cunanan C, Jain M, Nimubona AD, Wu XY. Cost benefit analysis of grid-based electrolytic ammonia production across Canadian provinces. Int J Hydrogen Energy 2025;99:793–807. https://doi.org/10.1016/j.ijhydene.2024.12.230.
  • [79] Li S, Jin H, Gao L, Zhang X, Ji X. Techno-economic performance and cost reduction potential for the substitute/synthetic natural gas and power cogeneration plant with CO 2 capture. Energy Convers Manag 2014;85:875–87. https://doi.org/10.1016/j.enconman.2013.12.071.
  • [80] Schmidt O, Gambhir A, Staffell I, Hawkes A, Nelson J, Few S. Future cost and performance of water electrolysis: An expert elicitation study. Int J Hydrogen Energy 2017;42:30470–92.

Net Sıfır Emisyonun Temel Taşı Olarak Sentetik Yakıtlar: Üretim Yöntemleri ve Gelecek Perspektiflerinin İncelenmesi

Yıl 2024, Cilt: 5 Sayı: 2, 113 - 131, 30.03.2025

Öz

Yenilenebilir enerji ve karbondioksitin (CO₂) dönüştürülmesiyle üretilen sentetik yakıtlar, elektrifikasyonun zor olduğu havacılık, deniz taşımacılığı ve ağır sanayi gibi sektörlerin karbonsuzlaştırılması için umut verici bir çözüm olarak öne çıkmaktadır. Bu derleme makalesi, beş temel sentetik yakıt türünü—sentetik hidrokarbonlar, metanol, amonyak, sentetik doğal gaz (SNG) ve hidrojen/yeşil hidrojen—kapsamlı bir şekilde analiz etmektedir. Her bir yakıt türü, üretim süreçleri, kullanım alanları, avantajları ve karşılaşılan zorluklar açısından değerlendirilmektedir. Sentetik hidrokarbonlar ve SNG, mevcut altyapı ile uyumluluk sağlarken; metanol ve amonyak, ulaşım ve sanayi uygulamaları için çok yönlü çözümler sunmaktadır. Yenilenebilir enerji kullanılarak su elektrolizi yoluyla üretilen yeşil hidrojen, karbon salımı içermeyen bir yakıt olarak, karbonsuzlaştırılması zor sektörler için önemli bir potansiyel taşımaktadır. Ancak, yüksek üretim maliyetleri, enerji yoğun süreçler ve altyapı gereksinimleri, bu yakıtların yaygın benimsenmesinin önündeki temel engeller arasında yer almaktadır. Teknolojik ilerlemeler, ölçek ekonomileri ve destekleyici politikalar, bu zorlukların aşılmasında kritik rol oynamaktadır. Bu makale, sentetik yakıtların sürdürülebilir ve düşük karbonlu bir enerji geleceği sağlama potansiyelini vurgulamakta ve bu yakıtların yaygınlaştırılmasını hızlandırmak için sürekli yenilik ve küresel iş birliğinin gerekliliğine dikkat çekmektedir. Sentetik yakıtların küresel enerji sistemine entegrasyonu, iklim değişikliğiyle mücadele edilmesine, enerji güvenliğinin artırılmasına ve net sıfır emisyon hedeflerine ulaşılmasına katkı sağlayacaktır.

Kaynakça

  • [1] Ocak NH, Can A. A review on energy efficiency techniques used in machining for combined generation units. Int J Interact Des Manuf 2024;19:1473–502. https://doi.org/10.1007/s12008-024-01789-z.
  • [2] Hanson E, Nwakile C, Hammed VO. Carbon capture, utilization, and storage (CCUS) technologies: Evaluating the effectiveness of advanced CCUS solutions for reducing CO2 emissions. Results in Surfaces and Interfaces 2025;18:100381. https://doi.org/10.1016/j.rsurfi.2024.100381.
  • [3] Yıldız İ. 1.12 Fossil Fuels. Compr. Energy Syst., Elsevier; 2018, p. 521–67. https://doi.org/10.1016/B978-0-12-809597-3.00111-5.
  • [4] Zhang Y, Li A, Fei Y, Zhang C, Zhu L, Huang Z. Techno-economic assessment of electro-synthetic fuel based on solid oxide electrolysis cell coupled with Fischer–Tropsch strategy. J CO2 Util 2024;86:102905. https://doi.org/10.1016/j.jcou.2024.102905.
  • [5] Gao M, Xu H, Ma M, Gao G, Chen X, Chen J, et al. Global intercountry croplands’ greenhouse gas emissions differences and their potential drivers from economic levels perspective. Ecol Indic 2024;167:112635. https://doi.org/10.1016/j.ecolind.2024.112635.
  • [6] Van de Loosdrecht J, Botes FG, Ciobica IM, Ferreira A, Gibson P, Moodley DJ, et al. Fischer–Tropsch Synthesis: Catalysts and Chemistry. Compr Inorg Chem II (Second Ed From Elem to Appl 2013;7:525–57. https://doi.org/10.1016/B978-0-08-097774-4.00729-4.
  • [7] Willauer HD, Hardy DR. Synthetic fuel development. Elsevier Ltd; 2020. https://doi.org/10.1016/B978-0-08-102886-5.00026-8.
  • [8] Yang Q, Zhang Z, Fan Y, Chu G, Zhang D, Yu J. Advanced exergy analysis and optimization of a CO2 to methanol process based on rigorous modeling and simulation. Fuel 2022;325:124944. https://doi.org/10.1016/j.fuel.2022.124944.
  • [9] Andersson J, Krüger A, Grönkvist S. Methanol as a carrier of hydrogen and carbon in fossil-free production of direct reduced iron. Energy Convers Manag X 2020;7:100051. https://doi.org/10.1016/j.ecmx.2020.100051.
  • [10] Agelidou E, Seliger-Ost H, Henke M, Dreißigacker V, Krummrein T, Kutne P. The Heat-Storing Micro Gas Turbine—Process Analysis and Experimental Investigation of Effects on Combustion. Energies 2022;15:6289. https://doi.org/10.3390/en15176289.
  • [11] Martins F, Felgueiras C, Smitková M. Fossil fuel energy consumption in European countries. Energy Procedia 2018;153:107–11. https://doi.org/10.1016/J.EGYPRO.2018.10.050.
  • [12] Quader MA, Ahmed S, Ghazilla RAR, Ahmed S, Dahari M. A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing. Renew Sustain Energy Rev 2015;50:594–614. https://doi.org/10.1016/j.rser.2015.05.026.
  • [13] De Lucia C. Sustainability assessment of gasification processes for synthetic liquid fuel production: Economic, environmental, and policy issues. © 2015 Woodhead Publishing Limited. All rights reserved.; 2015. https://doi.org/10.1016/B978-0-85709-802-3.00004-7.
  • [14] Onodera H, Delage R, Nakata T. Systematic effects of flexible power-to-X operation in a renewable energy system - A case study from Japan. Energy Convers Manag X 2023;20. https://doi.org/10.1016/j.ecmx.2023.100416.
  • [15] Mahmoudi H, Mahmoudi M, Doustdar O, Jahangiri H, Tsolakis A, Gu S, et al. A review of Fischer Tropsch synthesis process, mechanism, surface chemistry and catalyst formulation. Biofuels Eng 2017;2:11–31. https://doi.org/10.1515/bfuel-2017-0002.
  • [16] Cormos AM, Dinca C, Petrescu L, Andreea Chisalita D, Szima S, Cormos CC. Carbon capture and utilisation technologies applied to energy conversion systems and other energy-intensive industrial applications. Fuel 2018;211:883–90. https://doi.org/10.1016/j.fuel.2017.09.104.
  • [17] Nemmour A, Inayat A, Janajreh I, Ghenai C. Green hydrogen-based E-fuels (E-methane, E-methanol, E-ammonia) to support clean energy transition: A literature review. Int J Hydrogen Energy 2023;48:29011–33. https://doi.org/10.1016/j.ijhydene.2023.03.240.
  • [18] Al-Qahtani A, González-Garay A, Bernardi A, Galán-Martín Á, Pozo C, Dowell N Mac, et al. Electricity grid decarbonisation or green methanol fuel? A life-cycle modelling and analysis of today′s transportation-power nexus. Appl Energy 2020;265:114718. https://doi.org/10.1016/j.apenergy.2020.114718.
  • [19] Huber D, Birkelbach F, Hofmann R. Unlocking the potential of synthetic fuel production : Coupled optimization of heat exchanger network and operating parameters of a 1 MW power-to-liquid plant. Chem Eng Sci 2024;284:119506. https://doi.org/10.1016/j.ces.2023.119506.
  • [20] Arellano-Treviño MA, Kanani N, Jeong-Potter CW, Farrauto RJ. Bimetallic catalysts for CO2 capture and hydrogenation at simulated flue gas conditions. Chem Eng J 2019;375:121953. https://doi.org/10.1016/j.cej.2019.121953.
  • [21] Bai F, Zhao F, Liu M, Liu Z, Hao H, Reiner DM. Assessing the Viability of Renewable Hydrogen, Ammonia, and Methanol in Decarbonizing Heavy-duty Trucks. Appl Energy 2025;383:125293. https://doi.org/10.1016/j.apenergy.2025.125293.
  • [22] Moioli E, Mutschler R, Züttel A. Renewable energy storage via CO2 and H2 conversion to methane and methanol: Assessment for small scale applications. Renew Sustain Energy Rev 2019;107:497–506. https://doi.org/10.1016/j.rser.2019.03.022.
  • [23] Chen J, Zhang L, Park HG, Min JE, Min HK, Kim JR, et al. Valorizing tail gas for superior hydrocarbon output in CO2-based Fischer-Tropsch synthesis. Chem Eng J 2025;503:158531. https://doi.org/10.1016/j.cej.2024.158531.
  • [24] Jalilvand M, Soltani M, Hosseinpour M, Nathwani J. Biomass and Bioenergy Energy and exergy assessment of anaerobic digestion process for ammonia synthesis : Toward a sustainable water-energy-food nexus. Biomass and Bioenergy 2025;197:107792. https://doi.org/10.1016/j.biombioe.2025.107792.
  • [25] Li CS, Frankhouser AD, Kanan MW. Carbonate-catalyzed reverse water-gas shift to produce gas fermentation feedstocks for renewable liquid fuel synthesis. Cell Reports Phys Sci 2022;3:101021. https://doi.org/10.1016/j.xcrp.2022.101021.
  • [26] Rafati M, Wang L, Dayton DC, Schimmel K, Kabadi V, Shahbazi A. Techno-economic analysis of production of Fischer-Tropsch liquids via biomass gasification: The effects of Fischer-Tropsch catalysts and natural gas co-feeding. Energy Convers Manag 2017;133:153–66. https://doi.org/10.1016/j.enconman.2016.11.051.
  • [27] Yukesh Kannah R, Kavitha S, Preethi, Parthiba Karthikeyan O, Kumar G, Dai-Viet NV, et al. Techno-economic assessment of various hydrogen production methods – A review. Bioresour Technol 2021;319:124175. https://doi.org/10.1016/j.biortech.2020.124175.
  • [28] Elhenawy SEM, Khraisheh M, AlMomani F, Walker G. Metal-Organic Frameworks as a Platform for CO2 Capture and Chemical Processes: Adsorption, Membrane Separation, Catalytic-Conversion, and Electrochemical Reduction of CO2. Catalysts 2020;10:1293. https://doi.org/10.3390/catal10111293.
  • [29] Schemme S, Breuer JL, Köller M, Meschede S, Walman F, Samsun RC, et al. H2-based synthetic fuels: A techno-economic comparison of alcohol, ether and hydrocarbon production. Int J Hydrogen Energy 2020;45:5395–414. https://doi.org/10.1016/j.ijhydene.2019.05.028.
  • [30] Dominković DF, Bačeković I, Pedersen AS, Krajačić G. The future of transportation in sustainable energy systems: Opportunities and barriers in a clean energy transition. Renew Sustain Energy Rev 2018;82:1823–38. https://doi.org/10.1016/j.rser.2017.06.117.
  • [31] De Vrieze J, Verbeeck K, Pikaar I, Boere J, Van Wijk A, Rabaey K, et al. The hydrogen gas bio-based economy and the production of renewable building block chemicals, food and energy. N Biotechnol 2020;55:12–8. https://doi.org/10.1016/j.nbt.2019.09.004.
  • [32] Quarton CJ, Samsatli S. The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: Insights from integrated value chain optimisation. Appl Energy 2020;257:113936. https://doi.org/10.1016/j.apenergy.2019.113936.
  • [33] Tozlu A. Techno-economic assessment of a synthetic fuel production facility by hydrogenation of CO2 captured from biogas. Int J Hydrogen Energy 2022;47:3306–15. https://doi.org/10.1016/j.ijhydene.2020.12.066.
  • [34] Liu G, Hagelin-Weaver H, Welt B. A Concise Review of Catalytic Synthesis of Methanol from Synthesis Gas. Waste 2023;1:228–48. https://doi.org/10.3390/waste1010015.
  • [35] Kiss AA, Pragt JJ, Vos HJ, Bargeman G, de Groot MT. Novel efficient process for methanol synthesis by CO2 hydrogenation. Chem Eng J 2016;284:260–9. https://doi.org/10.1016/j.cej.2015.08.101.
  • [36] Deka TJ, Osman AI, Baruah DC, Rooney DW. Methanol fuel production, utilization, and techno-economy: a review. Environ Chem Lett 2022;20:3525–54. https://doi.org/10.1007/s10311-022-01485-y.
  • [37] Bicer Y, Khalid F. Life cycle environmental impact comparison of solid oxide fuel cells fueled by natural gas, hydrogen, ammonia and methanol for combined heat and power generation. Int J Hydrogen Energy 2020;45:3670–85. https://doi.org/10.1016/j.ijhydene.2018.11.122.
  • [38] Rodriguez-Pastor DA, Soltero VM, Chacartegui R. Methanol to dimethyl ether (DME) assessment toward thermochemical energy storage. Chem Eng J 2025;509:161286. https://doi.org/10.1016/j.cej.2025.161286.
  • [39] Luo M, Li Z, Yang Z, Fang Y, Rahman R. CO2 hydrogenation to methanol over Al2O3-supported Co, Mn OR Zn modified CuGa-LDH catalysts. Fuel 2025;392:134895. https://doi.org/10.1016/j.fuel.2025.134895.
  • [40] Chen C, Yang A. Power-to-methanol: The role of process flexibility in the integration of variable renewable energy into chemical production. Energy Convers Manag 2021;228:113673. https://doi.org/10.1016/j.enconman.2020.113673.
  • [41] Kountouris I, Langer L, Bramstoft R, Münster M, Keles D. Power-to-X in energy hubs: A Danish case study of renewable fuel production. Energy Policy 2023;175:113439. https://doi.org/10.1016/j.enpol.2023.113439.
  • [42] Ojelade OA, Zaman SF, Ni BJ. Green ammonia production technologies: A review of practical progress. J Environ Manage 2023;342:118348. https://doi.org/10.1016/j.jenvman.2023.118348.
  • [43] Luberti M, Di Santis C, Santori G. Ammonia/ethanol mixture for adsorption refrigeration. Energies 2020;13. https://doi.org/10.3390/en13040983.
  • [44] Ančić I, Vladimir N, Cho DS. Determining environmental pollution from ships using Index of Energy Efficiency and Environmental Eligibility (I4E). Mar Policy 2018;95:1–7. https://doi.org/10.1016/j.marpol.2018.06.019.
  • [45] Paul A, Holy F, Textor M, Lechner S. High Temperature Sensible Thermal Energy Storage as a Crucial Element of {{Carnot Batteries}}: {{Overall}} Classification and Technical Review Based on Parameters and Key Figures. J Energy Storage 2022;56:106015. https://doi.org/10.1016/j.est.2022.106015.
  • [46] Spatolisano E, Pellegrini LA. Haber-Bosch process intensification: A first step towards small-scale distributed ammonia production. Chem Eng Res Des 2023;195:651–61. https://doi.org/10.1016/j.cherd.2023.06.031.
  • [47] Eriksen JV, Franz SM, Steensberg J, Vejstrup A, Bosack M, Bramstoft R, et al. The future demand of renewable fuels in Germany: Understanding the impact of electrification levels and socio-economic developments. Heliyon 2023;9:e22271. https://doi.org/10.1016/j.heliyon.2023.e22271.
  • [48] Martin J, Neumann A, Ødegård A. Renewable hydrogen and synthetic fuels versus fossil fuels for trucking, shipping and aviation: A holistic cost model. Renew Sustain Energy Rev 2023;186:113637. https://doi.org/10.1016/j.rser.2023.113637.
  • [49] Elishav O, Mosevitzky Lis B, Miller EM, Arent DJ, Valera-Medina A, Grinberg Dana A, et al. Progress and Prospective of Nitrogen-Based Alternative Fuels. Chem Rev 2020;120:5352–436. https://doi.org/10.1021/acs.chemrev.9b00538.
  • [50] Joelsson JM, Gustavsson L. Reductions in greenhouse gas emissions and oil use by DME (di-methyl ether) and FT (Fischer-Tropsch) diesel production in chemical pulp mills. Energy 2012;39:363–74. https://doi.org/10.1016/j.energy.2012.01.001.
  • [51] Ribeiro B, Dur L. e-Fuel production process technologies and trends : A bibliometric-based review 2025;13:3351–68. https://doi.org/10.1016/j.egyr.2025.02.030.
  • [52] Dubey R, Bhimireddi R, Lee Y, Singh L. Catalytic ammonia cracking: Future of material chemistry research for sustainable hydrogen energy economy. Next Energy 2025;7:100227. https://doi.org/10.1016/j.nxener.2024.100227.
  • [53] Mohamed AMO, Economou IG, Bicer Y. Navigating ammonia production routes: Life cycle assessment insights for a sustainable future. Curr Opin Green Sustain Chem 2024;49:100947. https://doi.org/10.1016/j.cogsc.2024.100947.
  • [54] Carels F, Sens L, Kaltschmitt M. Synthetic natural gas as a green hydrogen carrier – Technical, economic and environmental assessment of several supply chain concepts. Energy Convers Manag 2024;321:118940. https://doi.org/10.1016/j.enconman.2024.118940.
  • [55] Cormos CC, Dragan M, Petrescu L, Cormos AM, Dragan S, Bathori AM, et al. Synthetic natural gas (SNG) production by biomass gasification with CO2 capture: Techno-economic and life cycle analysis (LCA). Energy 2024;312:133507. https://doi.org/10.1016/j.energy.2024.133507.
  • [56] Alsunousi M, Kayabasi E. The role of hydrogen in synthetic fuel production strategies. Int J Hydrogen Energy 2024;54:1169–78. https://doi.org/10.1016/j.ijhydene.2023.11.359.
  • [57] Weimann L, Grimm A, Nienhuis J, Gabrielli P, Kramer GJ, Gazzania M. Energy System Design for the Production of Synthetic Carbon-neutral Fuels from Air-captured CO2. Comput Aided Chem Eng 2020;48:1471–6. https://doi.org/10.1016/B978-0-12-823377-1.50246-9.
  • [58] Sami S, Gholizadeh M, Deymi-Dashtebayaz M. A comprehensive 5E analysis of synthetic natural gas production through direct air capture and renewable hydrogen: Based on a specified-scale residential application. Renew Sustain Energy Rev 2025;212:115376. https://doi.org/10.1016/j.rser.2025.115376.
  • [59] Ruggiero R, Coppola A, Urciuolo M, Scala F. Process modeling of the production of synthetic natural gas from biomass-derived syngas: Focus on tar cleaning and fuel synthesis stages. Fuel 2025;393:134900. https://doi.org/10.1016/j.fuel.2025.134900.
  • [60] Fasihi M, Bogdanov D, Breyer C. Long-term hydrocarbon trade options for the Maghreb region and Europe-renewable energy based synthetic fuels for a net zero emissions world. Sustain 2017;9. https://doi.org/10.3390/su9020306.
  • [61] Jalili M, Beyrami J, Ziyaei M, Chitsaz A, Rosen MA. Innovative synthetic natural gas production from biomass and renewable hydrogen: Evaluation and optimization with sustainability perspective. Process Saf Environ Prot 2024;182:139–53. https://doi.org/10.1016/j.psep.2023.11.074.
  • [62] Merkouri LP, Mathew J, Jacob J, Ramirez Reina T, Duyar MS. Switchable catalysis for methanol and synthetic natural gas synthesis from CO2: A techno-economic investigation. J CO2 Util 2024;79. https://doi.org/10.1016/j.jcou.2023.102652.
  • [63] Colelli L, Bassano C, Verdone N, Segneri V, Vilardi G. Power-to-Gas: Process analysis and control strategies for dynamic catalytic methanation system. Energy Convers Manag 2024;305:118257. https://doi.org/10.1016/j.enconman.2024.118257.
  • [64] Kumar A, Tiwari AK, Cearnaigh DU. Comparative analysis of Benchmark and Aeon Blue Technologies for sustainable eFuel production: Integrating Direct Air Capture and Green Hydrogen approaches. Energy Convers Manag 2024;308. https://doi.org/10.1016/j.enconman.2024.118384.
  • [65] Wang F, Wang L, Zhang H, Xia L, Miao H, Yuan J. Design and optimization of hydrogen production by solid oxide electrolyzer with marine engine waste heat recovery and ORC cycle. Energy Convers Manag 2021;229:113775. https://doi.org/10.1016/j.enconman.2020.113775.
  • [66] Akroot A, Namli L, Ozcan H. Compared Thermal Modeling of Anode- and Electrolyte-Supported SOFC-Gas Turbine Hybrid Systems. J Electrochem Energy Convers Storage 2021. https://doi.org/10.1115/1.4046185.
  • [67] Tebibel H. Off grid PV system for hydrogen production using PEM methanol electrolysis and an optimal management strategy. Int J Hydrogen Energy 2017;42:19432–45. https://doi.org/10.1016/j.ijhydene.2017.05.205.
  • [68] Chang Y, Wan F, Yao X, Wang J, Han Y, Li H. Influence of hydrogen production on the CO2 emissions reduction of hydrogen metallurgy transformation in iron and steel industry. Energy Reports 2023;9:3057–71. https://doi.org/10.1016/j.egyr.2023.01.083.
  • [69] Ozcan H, Kayabasi E. Thermodynamic and economic analysis of a synthetic fuel production plant via CO2 hydrogenation using waste heat from an iron-steel facility. Energy Convers Manag 2021;236:114074. https://doi.org/10.1016/j.enconman.2021.114074.
  • [70] Tamburrano P, Romagnuolo L, Frosina E, Caramia G, Distaso E, Sciatti F, et al. Fuels systems and components for future airliners fuelled with liquid hydrogen. J Phys Conf Ser 2022;2385:012041. https://doi.org/10.1088/1742-6596/2385/1/012041.
  • [71] Breyer C, Lopez G, Bogdanov D, Laaksonen P. The role of electricity-based hydrogen in the emerging power-to-X economy. Int J Hydrogen Energy 2023. https://doi.org/10.1016/j.ijhydene.2023.08.170.
  • [72] Tasleem S, Alsharaeh EH. Role of green, yellow, blue, white and gold hydrogen in fuelling the path to net zero and sustainable future- A review. Energy Convers Manag 2025;326:119500. https://doi.org/10.1016/j.enconman.2025.119500.
  • [73] Holling B, Kandziora C, Ritter R. CO2 recovery from industrial hydrogen facilities and steel production to comply with future European Emission regulations. Energy Procedia 2013;37:7221–30. https://doi.org/10.1016/j.egypro.2013.06.660.
  • [74] Jafari M, Armaghan D, Seyed Mahmoudi SM, Chitsaz A. Thermoeconomic analysis of a standalone solar hydrogen system with hybrid energy storage. Int J Hydrogen Energy 2019;44:19614–27. https://doi.org/10.1016/j.ijhydene.2019.05.195.
  • [75] Alsunousi M, Kayabasi E. Techno-economic assessment of a floating photovoltaic power plant assisted methanol production by hydrogenation of CO 2 captured from Zawiya oil refinery. Int J Hydrogen Energy 2024;57:589–600. https://doi.org/10.1016/j.ijhydene.2024.01.055.
  • [76] Ren L, Zhou S, Ou X. The carbon reduction potential of hydrogen in the low carbon transition of the iron and steel industry: The case of China. Renew Sustain Energy Rev 2023;171:113026. https://doi.org/10.1016/j.rser.2022.113026.
  • [77] Hank C, Gelpke S, Schnabl A, White RJ, Full J, Wiebe N, et al. Economics & carbon dioxide avoidance cost of methanol production based on renewable hydrogen and recycled carbon dioxide – power-to-methanol. Sustain Energy Fuels 2018;2:1244–61. https://doi.org/10.1039/C8SE00032H.
  • [78] Cunanan C, Jain M, Nimubona AD, Wu XY. Cost benefit analysis of grid-based electrolytic ammonia production across Canadian provinces. Int J Hydrogen Energy 2025;99:793–807. https://doi.org/10.1016/j.ijhydene.2024.12.230.
  • [79] Li S, Jin H, Gao L, Zhang X, Ji X. Techno-economic performance and cost reduction potential for the substitute/synthetic natural gas and power cogeneration plant with CO 2 capture. Energy Convers Manag 2014;85:875–87. https://doi.org/10.1016/j.enconman.2013.12.071.
  • [80] Schmidt O, Gambhir A, Staffell I, Hawkes A, Nelson J, Few S. Future cost and performance of water electrolysis: An expert elicitation study. Int J Hydrogen Energy 2017;42:30470–92.
Toplam 80 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yenilenebilir Enerji Sistemleri, Enerji Üretimi, Dönüşüm ve Depolama (Kimyasal ve Elektiksel hariç)
Bölüm İnceleme Makaleleri
Yazarlar

Akın Doğan

Gürkan Yüksel

Abdullah Uğur 0000-0002-3495-529X

Mehmet Boy 0000-0003-2471-8001

Erhan Kayabaşı 0000-0002-3603-6211

Recep Demirsöz 0000-0003-0674-4572

Yayımlanma Tarihi 30 Mart 2025
Gönderilme Tarihi 27 Mart 2025
Kabul Tarihi 29 Mart 2025
Yayımlandığı Sayı Yıl 2024 Cilt: 5 Sayı: 2

Kaynak Göster

APA Doğan, A., Yüksel, G., Uğur, A., Boy, M., vd. (2025). Synthetic Fuels as a Cornerstone of Net-Zero Emissions: A Review of Production Methods and Future Prospects. DCE Doğa Bilimleri Dergisi, 5(2), 113-131.

DÇE Doğa Bilimleri Dergisi, Karabük Üniversitesi Demir Çelik Enstitüsü tarafından yayımlanan uluslararası hakemli ve ücretsiz bir dergidir. Dergimiz, doğa bilimleri alanında özgün araştırmaların paylaşılmasını teşvik eder ve bilimsel gelişmeleri uluslararası bilim camiasıyla buluşturur.

Tüm hakları saklıdır © 2024 DÇE Doğa Bilimleri Dergisi.

Promoting innovative research and contributing to scientific progress in Natural Sciences.