Yıl 2016,
Cilt: 4 Sayı: 4, 259 - 265, 31.12.2016
Aysun Aytac
,
Betul Atay
Kaynakça
- Aytaç A., Turacı T., The average lower independence number on graph operations, Bulletin of Society of Mathematicians Banja Luka, 16, pp.11-20, 2009.
- Aytaç A., Turacı T., Vertex Vulnerability parameter of Gear Graphs, The International Journal of Foundations of Computer Science, 22, no. 5, 1187-1195, 2011.
- Aytaç A., Turacı T., The average lower independence number of total graphs , Bull. Int. Math. Virtual Inst. 2, no. 1, 17-27, 2012.
- Barefoot, C. A., Entringer, R., Swart, H., Vulnerability in graphs-a comparative survey. J. Combin. Math. Combin. Comput. 1 , 13-22, 1987.
- Blidia M., Chellali M. and Maffray F., On Average Lower Independence and Domination Numbers In Graphs, Discrete Math., 295, p. 1-11, 2005.
- Bondy J. A. and Murty U. S. R., Graph theory with applications, American Elsevier Publishing Co., Inc., New York, 1976.
- Haviland J., Independent domination in regular graphs, Discrte Math.,143, 275-280, 1995.
- Henning A. Michael, Trees with equal average domination and independent domination numbers, Ars Combinatoria, 71, pp. 305-318, 2004.
- Sun L., Wang J. : An upper Bound for the Independent Domination Number, J. of Comb. Theorry series B, 76, 240-246, 1999.
- Zhongzhu, Liu, Energy, Laplacian energy and Zagreb index of line graph, middle graph and total graph, Int. J. Contemp. Math. Sci. 5 , no. 17-20, 895?900, 2010.
Average lower independence number in splitting graphs
Yıl 2016,
Cilt: 4 Sayı: 4, 259 - 265, 31.12.2016
Aysun Aytac
,
Betul Atay
Öz
![]()
Kaynakça
- Aytaç A., Turacı T., The average lower independence number on graph operations, Bulletin of Society of Mathematicians Banja Luka, 16, pp.11-20, 2009.
- Aytaç A., Turacı T., Vertex Vulnerability parameter of Gear Graphs, The International Journal of Foundations of Computer Science, 22, no. 5, 1187-1195, 2011.
- Aytaç A., Turacı T., The average lower independence number of total graphs , Bull. Int. Math. Virtual Inst. 2, no. 1, 17-27, 2012.
- Barefoot, C. A., Entringer, R., Swart, H., Vulnerability in graphs-a comparative survey. J. Combin. Math. Combin. Comput. 1 , 13-22, 1987.
- Blidia M., Chellali M. and Maffray F., On Average Lower Independence and Domination Numbers In Graphs, Discrete Math., 295, p. 1-11, 2005.
- Bondy J. A. and Murty U. S. R., Graph theory with applications, American Elsevier Publishing Co., Inc., New York, 1976.
- Haviland J., Independent domination in regular graphs, Discrte Math.,143, 275-280, 1995.
- Henning A. Michael, Trees with equal average domination and independent domination numbers, Ars Combinatoria, 71, pp. 305-318, 2004.
- Sun L., Wang J. : An upper Bound for the Independent Domination Number, J. of Comb. Theorry series B, 76, 240-246, 1999.
- Zhongzhu, Liu, Energy, Laplacian energy and Zagreb index of line graph, middle graph and total graph, Int. J. Contemp. Math. Sci. 5 , no. 17-20, 895?900, 2010.
Toplam 10 adet kaynakça vardır.