Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2017, Cilt: 5 Sayı: 1, 196 - 203, 01.01.2017

Öz

Kaynakça

  • J.C. Cox, J.E. Ingersoll and S.A. Ross, A Theory of the Term Structure of Interest Rates, Econometrica, 53, 385-407, 1985.
  • S. Dimas, K. Andriopoulos, D. Tsoubelis and P.G.l. Leach, Complete Specification of Some Partial Differential Equations That Arise in Financial Mathematics, J. Nonlinear Math. Phys., 73-92, 2009.
  • R.K. Gazizov and N.H. Ibragimov, Lie Symmetry Analysis of Differential Equations in Finance, Nonlinear Dynam. 17(4), 387-407, 1998.
  • J. Goard, New solutions to the bond-pricing equation via Lie’s Classical Method, Math. Comput. Model., 32, 299-313, 2000.
  • T. S. Y. Ho and S.-B. Lee, Term Structure Movements and Pricing of Interest Rate Claims, Journal of Finance, 41, 1011-1029, 1986.
  • S. Lie, On integration of a Class of linear partial differential equations by means of definite integrals Archiv for Mathematik ıg Naturvidenskab, VI(3) 328-368, 1881 [in German]. Reprinted in S.Lie, Gesammelte Abhadlundgen, 3 papers, XXXV.
  • F.M. Mahomed, K.S. Mahomed, R. Naz and E. Momoniat, Invariant Approaches to Equations of Finance, Math. Comput. Appl., 18(3), 244-250, 2013.
  • F.M. Mahomed, Complete Invariant Characterization of Scalar Linear (1+1) Parabolic Equations, J. Nonlinear Math. Phys., 15, 112-123, 2008.
  • R. Merton, Option Pricing when Underlying Stock Returns are Discontinuous, J. Financial Economics, 3, 125-144, 1976.
  • G.N. Milstein, Approximate Integration of Stochastic Differential Equations, Theor. Prob. Appl. 19: 557-562, 1974.
  • P.E. Kloeden, E. Platen, and H. Schurz, Numerical Solution of SDE Through Computer Experiments, Springer, Berlin, 2003.
  • C.A. Pooe, F.M. Mahomed and C. Wafo Soh, Fundamental solutions for zero-coupon bond pricing models, Nonlinear Dynam., 36, 69-76, 2004.
  • W. Sinkala, P.G.L. Leach and J. G. O’Hara, Zero-coupon Bond Prices in Vasicek and CIR Models, Math. Meth. Appl. Sci., 31, 665-678, 2008.

Fundamental solution of bond pricing in the Ho-Lee stochastic interest rate model under the invariant criteria

Yıl 2017, Cilt: 5 Sayı: 1, 196 - 203, 01.01.2017

Öz

We study the fundamental solution of bond-pricing in the Ho-Lee stochastic interest rate model under the invariant criteria. We obtain transformations between Ho-Lee model with the corresponding linear (1+1) partial differential equation and the first Lie canonical form which is identical to the classical heat equation. These transformations help us to generate the fundamental solution for the Ho-Lee model with respect to the fundamental solution of the classical heat equation sense. Moreover, as a financial application of the Ho-Lee model, we choose the drift term from power functions and perform simulations via Milstein method. Furthermore, we obtain important results for the parameter calibration of the corresponding drift term by using the simulation results.

Kaynakça

  • J.C. Cox, J.E. Ingersoll and S.A. Ross, A Theory of the Term Structure of Interest Rates, Econometrica, 53, 385-407, 1985.
  • S. Dimas, K. Andriopoulos, D. Tsoubelis and P.G.l. Leach, Complete Specification of Some Partial Differential Equations That Arise in Financial Mathematics, J. Nonlinear Math. Phys., 73-92, 2009.
  • R.K. Gazizov and N.H. Ibragimov, Lie Symmetry Analysis of Differential Equations in Finance, Nonlinear Dynam. 17(4), 387-407, 1998.
  • J. Goard, New solutions to the bond-pricing equation via Lie’s Classical Method, Math. Comput. Model., 32, 299-313, 2000.
  • T. S. Y. Ho and S.-B. Lee, Term Structure Movements and Pricing of Interest Rate Claims, Journal of Finance, 41, 1011-1029, 1986.
  • S. Lie, On integration of a Class of linear partial differential equations by means of definite integrals Archiv for Mathematik ıg Naturvidenskab, VI(3) 328-368, 1881 [in German]. Reprinted in S.Lie, Gesammelte Abhadlundgen, 3 papers, XXXV.
  • F.M. Mahomed, K.S. Mahomed, R. Naz and E. Momoniat, Invariant Approaches to Equations of Finance, Math. Comput. Appl., 18(3), 244-250, 2013.
  • F.M. Mahomed, Complete Invariant Characterization of Scalar Linear (1+1) Parabolic Equations, J. Nonlinear Math. Phys., 15, 112-123, 2008.
  • R. Merton, Option Pricing when Underlying Stock Returns are Discontinuous, J. Financial Economics, 3, 125-144, 1976.
  • G.N. Milstein, Approximate Integration of Stochastic Differential Equations, Theor. Prob. Appl. 19: 557-562, 1974.
  • P.E. Kloeden, E. Platen, and H. Schurz, Numerical Solution of SDE Through Computer Experiments, Springer, Berlin, 2003.
  • C.A. Pooe, F.M. Mahomed and C. Wafo Soh, Fundamental solutions for zero-coupon bond pricing models, Nonlinear Dynam., 36, 69-76, 2004.
  • W. Sinkala, P.G.L. Leach and J. G. O’Hara, Zero-coupon Bond Prices in Vasicek and CIR Models, Math. Meth. Appl. Sci., 31, 665-678, 2008.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Burhaneddin Izgi

Ahmet Bakkaloglu

Yayımlanma Tarihi 1 Ocak 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 5 Sayı: 1

Kaynak Göster

APA Izgi, B., & Bakkaloglu, A. (2017). Fundamental solution of bond pricing in the Ho-Lee stochastic interest rate model under the invariant criteria. New Trends in Mathematical Sciences, 5(1), 196-203.
AMA Izgi B, Bakkaloglu A. Fundamental solution of bond pricing in the Ho-Lee stochastic interest rate model under the invariant criteria. New Trends in Mathematical Sciences. Ocak 2017;5(1):196-203.
Chicago Izgi, Burhaneddin, ve Ahmet Bakkaloglu. “Fundamental Solution of Bond Pricing in the Ho-Lee Stochastic Interest Rate Model under the Invariant Criteria”. New Trends in Mathematical Sciences 5, sy. 1 (Ocak 2017): 196-203.
EndNote Izgi B, Bakkaloglu A (01 Ocak 2017) Fundamental solution of bond pricing in the Ho-Lee stochastic interest rate model under the invariant criteria. New Trends in Mathematical Sciences 5 1 196–203.
IEEE B. Izgi ve A. Bakkaloglu, “Fundamental solution of bond pricing in the Ho-Lee stochastic interest rate model under the invariant criteria”, New Trends in Mathematical Sciences, c. 5, sy. 1, ss. 196–203, 2017.
ISNAD Izgi, Burhaneddin - Bakkaloglu, Ahmet. “Fundamental Solution of Bond Pricing in the Ho-Lee Stochastic Interest Rate Model under the Invariant Criteria”. New Trends in Mathematical Sciences 5/1 (Ocak 2017), 196-203.
JAMA Izgi B, Bakkaloglu A. Fundamental solution of bond pricing in the Ho-Lee stochastic interest rate model under the invariant criteria. New Trends in Mathematical Sciences. 2017;5:196–203.
MLA Izgi, Burhaneddin ve Ahmet Bakkaloglu. “Fundamental Solution of Bond Pricing in the Ho-Lee Stochastic Interest Rate Model under the Invariant Criteria”. New Trends in Mathematical Sciences, c. 5, sy. 1, 2017, ss. 196-03.
Vancouver Izgi B, Bakkaloglu A. Fundamental solution of bond pricing in the Ho-Lee stochastic interest rate model under the invariant criteria. New Trends in Mathematical Sciences. 2017;5(1):196-203.