Araştırma Makalesi
BibTex RIS Kaynak Göster

Ingtegral equations with delaying arguments for semi-Markovian processes

Yıl 2017, Cilt: 5 Sayı: 3, 162 - 167, 01.07.2017

Öz

In this paper, the Laplace transform of the distribution of the duration of a particular semi-Markovian random walk period is obtained in the form of the difference equation.

Kaynakça

  • Borovkov, A. A. (1976). Stochastic Processes in Queueing Theory, Springer Verlag, New York.
  • Busarov, V. A. (2004). On asymptotic behaviour of random wanderings in random medium with delaying screen, Vest. Mos. Gos. Univ., 1(5), 61-63.
  • Feller, W. (1968). An Introduction to Probability Theory and Its Applications, Vol. I, Wiley, New York.
  • Khaniev, T.A., Unver, I. (1997). The study of the level zero crossing time of a semi-Markovian random walk with delaying screen, Turkish J. Mathematics, 2(1), 257–268.
  • Lotov, V. I. (1991a). On random walks in a band. Probability Theory and its Application, 36(1), 160-165.
  • Lotov, V. I. (1991b). On the asymptotic of distributions in two-sided boundary problems for random walks defined on a markov chain, Sib. Adv. Math., 1(2), 26-51.
  • Nasirova, . I. (1984). Processes of Semi-Markov Random Walk, ELM, Baku, 165p.
  • Nasirova,. I., Ibayev, E. A., Aliyeva, T.A. (2005). The Laplace transformation of the distribution of the first moment reaching the positive delaying screen with the semi-Markovian process, Proc. Int. Conf. On Modern Problems and New Trends in Probability Theory, Chernivtsi, Ukraine, 19-26.
  • Nasirova, I., Omarova, K. K. (2007). Distribution of the lower boundary functional of the step process of semi-Markov random walk with delaying screen at zero, Automatic Control and Computer Sciences, 59(7), 1010-1018.
  • Omarova, K. K., Bakhshiev, Sh. B. (2010). The Laplace transform for the distribution of the lower bound functional in a semi- Markov walk process with a delay screen at zero, Automatic Control and Computer Sciences, 44(4), 246–252.
  • Unver, I., Tundzh, Ya. S., Ibaev, E. (2014). Laplace–Stieltjes transform of distribution of the first moment of crossing the level a(a > 0) by a semi-Markovian random walk with positive drift and negative jmps, Automatic Control and Computer Sciences, 48(3), 144–149.
Yıl 2017, Cilt: 5 Sayı: 3, 162 - 167, 01.07.2017

Öz

Kaynakça

  • Borovkov, A. A. (1976). Stochastic Processes in Queueing Theory, Springer Verlag, New York.
  • Busarov, V. A. (2004). On asymptotic behaviour of random wanderings in random medium with delaying screen, Vest. Mos. Gos. Univ., 1(5), 61-63.
  • Feller, W. (1968). An Introduction to Probability Theory and Its Applications, Vol. I, Wiley, New York.
  • Khaniev, T.A., Unver, I. (1997). The study of the level zero crossing time of a semi-Markovian random walk with delaying screen, Turkish J. Mathematics, 2(1), 257–268.
  • Lotov, V. I. (1991a). On random walks in a band. Probability Theory and its Application, 36(1), 160-165.
  • Lotov, V. I. (1991b). On the asymptotic of distributions in two-sided boundary problems for random walks defined on a markov chain, Sib. Adv. Math., 1(2), 26-51.
  • Nasirova, . I. (1984). Processes of Semi-Markov Random Walk, ELM, Baku, 165p.
  • Nasirova,. I., Ibayev, E. A., Aliyeva, T.A. (2005). The Laplace transformation of the distribution of the first moment reaching the positive delaying screen with the semi-Markovian process, Proc. Int. Conf. On Modern Problems and New Trends in Probability Theory, Chernivtsi, Ukraine, 19-26.
  • Nasirova, I., Omarova, K. K. (2007). Distribution of the lower boundary functional of the step process of semi-Markov random walk with delaying screen at zero, Automatic Control and Computer Sciences, 59(7), 1010-1018.
  • Omarova, K. K., Bakhshiev, Sh. B. (2010). The Laplace transform for the distribution of the lower bound functional in a semi- Markov walk process with a delay screen at zero, Automatic Control and Computer Sciences, 44(4), 246–252.
  • Unver, I., Tundzh, Ya. S., Ibaev, E. (2014). Laplace–Stieltjes transform of distribution of the first moment of crossing the level a(a > 0) by a semi-Markovian random walk with positive drift and negative jmps, Automatic Control and Computer Sciences, 48(3), 144–149.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Selahattin Maden

Ulviyya Y. Karimova Bu kişi benim

Tamilla İ. Nasirova Bu kişi benim

Yayımlanma Tarihi 1 Temmuz 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 5 Sayı: 3

Kaynak Göster

APA Maden, S., Karimova, U. Y., & Nasirova, T. İ. (2017). Ingtegral equations with delaying arguments for semi-Markovian processes. New Trends in Mathematical Sciences, 5(3), 162-167.
AMA Maden S, Karimova UY, Nasirova Tİ. Ingtegral equations with delaying arguments for semi-Markovian processes. New Trends in Mathematical Sciences. Temmuz 2017;5(3):162-167.
Chicago Maden, Selahattin, Ulviyya Y. Karimova, ve Tamilla İ. Nasirova. “Ingtegral Equations With Delaying Arguments for Semi-Markovian Processes”. New Trends in Mathematical Sciences 5, sy. 3 (Temmuz 2017): 162-67.
EndNote Maden S, Karimova UY, Nasirova Tİ (01 Temmuz 2017) Ingtegral equations with delaying arguments for semi-Markovian processes. New Trends in Mathematical Sciences 5 3 162–167.
IEEE S. Maden, U. Y. Karimova, ve T. İ. Nasirova, “Ingtegral equations with delaying arguments for semi-Markovian processes”, New Trends in Mathematical Sciences, c. 5, sy. 3, ss. 162–167, 2017.
ISNAD Maden, Selahattin vd. “Ingtegral Equations With Delaying Arguments for Semi-Markovian Processes”. New Trends in Mathematical Sciences 5/3 (Temmuz 2017), 162-167.
JAMA Maden S, Karimova UY, Nasirova Tİ. Ingtegral equations with delaying arguments for semi-Markovian processes. New Trends in Mathematical Sciences. 2017;5:162–167.
MLA Maden, Selahattin vd. “Ingtegral Equations With Delaying Arguments for Semi-Markovian Processes”. New Trends in Mathematical Sciences, c. 5, sy. 3, 2017, ss. 162-7.
Vancouver Maden S, Karimova UY, Nasirova Tİ. Ingtegral equations with delaying arguments for semi-Markovian processes. New Trends in Mathematical Sciences. 2017;5(3):162-7.