Araştırma Makalesi
BibTex RIS Kaynak Göster

On characterization of boundedness of superposition operators on the Maddox space C_r0 (p) of double sequences

Yıl 2017, Cilt: 5 Sayı: 4, 80 - 88, 01.10.2017

Öz


Kaynakça

  • Apostol T., M., Mathematical Analysis, Pearson Education Asia Limited and Chine Machine Press, 1974.
  • Başar F., Sever Y., The Space of Double Sequences, Math. J. Okayama Univ., 51 (2009), 149-157.
  • Başar F., Summability Theory and Its Applications, Bentham Science Publisher, e-books, Monographs, İstanbul (2002)
  • Chew T. S., Lee P., Y., Orthoganally Additive Functionals on Sequence Spaces, SEA Bull. Math., 9 (1985), 81-85.
  • Dedagich F., Zabreiko P. P., Operator Superpositions in the Space l_p, Sibirskii Matematicheskii Zhurnal, 28 (1987), 86-98.
  • Herawaty E., The Locally Boundedness Criteria for Superposition Operators on l_Φ (L), Applied Mathematical Science, 7 (2013), 727-733.
  • Moricz, F., Extension Of The Spaces c and c_0 From Single To Double Sequences, Acta Math. Hung., 57 (1–2) (1991), 129–136.
  • Kolk,E., Raidjoe, A., The Continuity Of Superposition Operators On Some Sequence Spaces Defined By Moduli, Czechoslovak Mathematical Journal, 57 (2007), 777-792.
  • Limaye B.V., Zelstser M., On The Pringsheim Convergence Of Double Series, Proc. Eston. Aca. Sci., 58,2 (2009), 108-121.
  • Petranuarat S., Kemprasit Y., Superposition Operators On l_p And c_0 Into l_q (1≤p,q<∞), Southeast Asian Bulletion of Mathematics, 21 (1997), 139-147.
  • Pluciennik, R. ,Continuity Of Superposition Operators On w_0 And W_0, Comment. Math. Univ. Carolinae 31(1990), 529-542.
  • Pringsheim A., Zur Theorie de Zweifach Unendlichen Zahlenfolgen, Math. Ann., 53 (1900), 289-321.
  • Sağır B., Güngör N., Continuity Of Superposition Operators On The Double Sequence SpacesnL_p, Filomat, 29:9 (2015), 2107-2118.
  • Sağır B., Güngör N., Locally Boundedness And Continuity Of Superposition Operators On The Double Sequence Spaces C_r0, J. Computational Analysis And Applications, Vol 19, 2 (2015), 365-377.
  • Sağır B., Güngör N., Continuity Of Superposition Operators On The Double Sequence Spaces Of Maddox C_r0 (p), Romanian Journal of Mathematics and Computer Science, Vol 5, 1 (2015), 35-45.
  • Sama-ae, A., Boundedness Of Superposition Operators On The Sequence Spaces Of Maddoxâ, Master Thesis, Chiang Mai University, 1997
  • Sama-ae, A., Boundedness And Continuity Of Superposition Operator On E_r (p) and F_r (p), Songklanakarin J. Sci. Technol., 24 (2002), 452-466.
  • Streit, R. F., The Summation Of Convergent Double Series, Texas Tech University (1972).
Yıl 2017, Cilt: 5 Sayı: 4, 80 - 88, 01.10.2017

Öz

Kaynakça

  • Apostol T., M., Mathematical Analysis, Pearson Education Asia Limited and Chine Machine Press, 1974.
  • Başar F., Sever Y., The Space of Double Sequences, Math. J. Okayama Univ., 51 (2009), 149-157.
  • Başar F., Summability Theory and Its Applications, Bentham Science Publisher, e-books, Monographs, İstanbul (2002)
  • Chew T. S., Lee P., Y., Orthoganally Additive Functionals on Sequence Spaces, SEA Bull. Math., 9 (1985), 81-85.
  • Dedagich F., Zabreiko P. P., Operator Superpositions in the Space l_p, Sibirskii Matematicheskii Zhurnal, 28 (1987), 86-98.
  • Herawaty E., The Locally Boundedness Criteria for Superposition Operators on l_Φ (L), Applied Mathematical Science, 7 (2013), 727-733.
  • Moricz, F., Extension Of The Spaces c and c_0 From Single To Double Sequences, Acta Math. Hung., 57 (1–2) (1991), 129–136.
  • Kolk,E., Raidjoe, A., The Continuity Of Superposition Operators On Some Sequence Spaces Defined By Moduli, Czechoslovak Mathematical Journal, 57 (2007), 777-792.
  • Limaye B.V., Zelstser M., On The Pringsheim Convergence Of Double Series, Proc. Eston. Aca. Sci., 58,2 (2009), 108-121.
  • Petranuarat S., Kemprasit Y., Superposition Operators On l_p And c_0 Into l_q (1≤p,q<∞), Southeast Asian Bulletion of Mathematics, 21 (1997), 139-147.
  • Pluciennik, R. ,Continuity Of Superposition Operators On w_0 And W_0, Comment. Math. Univ. Carolinae 31(1990), 529-542.
  • Pringsheim A., Zur Theorie de Zweifach Unendlichen Zahlenfolgen, Math. Ann., 53 (1900), 289-321.
  • Sağır B., Güngör N., Continuity Of Superposition Operators On The Double Sequence SpacesnL_p, Filomat, 29:9 (2015), 2107-2118.
  • Sağır B., Güngör N., Locally Boundedness And Continuity Of Superposition Operators On The Double Sequence Spaces C_r0, J. Computational Analysis And Applications, Vol 19, 2 (2015), 365-377.
  • Sağır B., Güngör N., Continuity Of Superposition Operators On The Double Sequence Spaces Of Maddox C_r0 (p), Romanian Journal of Mathematics and Computer Science, Vol 5, 1 (2015), 35-45.
  • Sama-ae, A., Boundedness Of Superposition Operators On The Sequence Spaces Of Maddoxâ, Master Thesis, Chiang Mai University, 1997
  • Sama-ae, A., Boundedness And Continuity Of Superposition Operator On E_r (p) and F_r (p), Songklanakarin J. Sci. Technol., 24 (2002), 452-466.
  • Streit, R. F., The Summation Of Convergent Double Series, Texas Tech University (1972).
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Oguz Ogur

Yayımlanma Tarihi 1 Ekim 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 5 Sayı: 4

Kaynak Göster

APA Ogur, O. (2017). On characterization of boundedness of superposition operators on the Maddox space C_r0 (p) of double sequences. New Trends in Mathematical Sciences, 5(4), 80-88.
AMA Ogur O. On characterization of boundedness of superposition operators on the Maddox space C_r0 (p) of double sequences. New Trends in Mathematical Sciences. Ekim 2017;5(4):80-88.
Chicago Ogur, Oguz. “On Characterization of Boundedness of Superposition Operators on the Maddox Space C_r0 (p) of Double Sequences”. New Trends in Mathematical Sciences 5, sy. 4 (Ekim 2017): 80-88.
EndNote Ogur O (01 Ekim 2017) On characterization of boundedness of superposition operators on the Maddox space C_r0 (p) of double sequences. New Trends in Mathematical Sciences 5 4 80–88.
IEEE O. Ogur, “On characterization of boundedness of superposition operators on the Maddox space C_r0 (p) of double sequences”, New Trends in Mathematical Sciences, c. 5, sy. 4, ss. 80–88, 2017.
ISNAD Ogur, Oguz. “On Characterization of Boundedness of Superposition Operators on the Maddox Space C_r0 (p) of Double Sequences”. New Trends in Mathematical Sciences 5/4 (Ekim 2017), 80-88.
JAMA Ogur O. On characterization of boundedness of superposition operators on the Maddox space C_r0 (p) of double sequences. New Trends in Mathematical Sciences. 2017;5:80–88.
MLA Ogur, Oguz. “On Characterization of Boundedness of Superposition Operators on the Maddox Space C_r0 (p) of Double Sequences”. New Trends in Mathematical Sciences, c. 5, sy. 4, 2017, ss. 80-88.
Vancouver Ogur O. On characterization of boundedness of superposition operators on the Maddox space C_r0 (p) of double sequences. New Trends in Mathematical Sciences. 2017;5(4):80-8.