BibTex RIS Kaynak Göster

A NOTE ON THE GROWTH OF POLYNOMIALS

Yıl 2016, Cilt: 11 Sayı: 2, 10 - 16, 11.04.2016

Öz

Let   z    be a complex variable, p a complex polynomial,and let M(p,R)=maxIp(z)I on IzI=R , M(p,1)=maxIp(z)I on IzI=1 .In this work,we investigate some new inequalities between M(p,R) and M(p^n,1)as well as between M(p^n ,R) and M(p,1) where  n>2 or n=2 is a natural number.

Kaynakça

  • Aziz, A., (1987). Growty of Polynomials Whose Zeros are within or Outside a Circle, Bul. Austral. Math. Soc. Vol.35,
  • -256.
  • Aziz, A. and Dawood, M., (1988). Inequalities for a Polynomial and Its Derivative, J. Approx. Theory, 53, 155-162.
  • Aziz, A. and Mohammad, O.G., (1981). Growth of Polynomials With
  • Zeros Outside A Circle, Proc. Amer. Math. Soc. 81, 549-553.
  • Çelik, A., (2013). Some Inequalities for Polynomial Functions, Physical Sciences (ISSN 1308-7304), Volume:8, Number:2, 32-47. DOI:10.12739/NWSA.2013.8.2.3A0064.
  • Desphande, J.V., (1986). Complex Analysis (Tata McGraw- Hill
  • Publishing Company, New Delhi.
  • Rassias, M.Th., (1986). A New Inequality for Complex-Valued Polynomial Functions, Proc. Amer. Math. Soc. 9, 296-298
  • Ankeny, N.C. and Rivlin, T.J., (1955). “On Theorem of S. Bernstein”, Pacific J. Math. 5, 849-852.
  • Jain, V.K., (1998), Certain Interesting Implications of T.J. Rivlin’s Result On Maximum Modulus of A Polynomial, Glasnic
  • Matematicki, Vol. 33, 33-36.
  • Jain, V.K., (1999). On Polynomials Having Zeros In Closed
  • Exterior or Closed Interior of a Circle, Indian J. Pure and
  • Appl. Math., 153-159.

POLİNOMLARIN BÜYÜTÜLMESİ ÜZERİNE BAZI NOTLAR

Yıl 2016, Cilt: 11 Sayı: 2, 10 - 16, 11.04.2016

Öz

zbir kompleks değişken,pbir kompleks polinom ve n2bir doğal

Kaynakça

  • Aziz, A., (1987). Growty of Polynomials Whose Zeros are within or Outside a Circle, Bul. Austral. Math. Soc. Vol.35,
  • -256.
  • Aziz, A. and Dawood, M., (1988). Inequalities for a Polynomial and Its Derivative, J. Approx. Theory, 53, 155-162.
  • Aziz, A. and Mohammad, O.G., (1981). Growth of Polynomials With
  • Zeros Outside A Circle, Proc. Amer. Math. Soc. 81, 549-553.
  • Çelik, A., (2013). Some Inequalities for Polynomial Functions, Physical Sciences (ISSN 1308-7304), Volume:8, Number:2, 32-47. DOI:10.12739/NWSA.2013.8.2.3A0064.
  • Desphande, J.V., (1986). Complex Analysis (Tata McGraw- Hill
  • Publishing Company, New Delhi.
  • Rassias, M.Th., (1986). A New Inequality for Complex-Valued Polynomial Functions, Proc. Amer. Math. Soc. 9, 296-298
  • Ankeny, N.C. and Rivlin, T.J., (1955). “On Theorem of S. Bernstein”, Pacific J. Math. 5, 849-852.
  • Jain, V.K., (1998), Certain Interesting Implications of T.J. Rivlin’s Result On Maximum Modulus of A Polynomial, Glasnic
  • Matematicki, Vol. 33, 33-36.
  • Jain, V.K., (1999). On Polynomials Having Zeros In Closed
  • Exterior or Closed Interior of a Circle, Indian J. Pure and
  • Appl. Math., 153-159.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Matematik
Yazarlar

Adem Çelik

Yayımlanma Tarihi 11 Nisan 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 11 Sayı: 2

Kaynak Göster

APA Çelik, A. (2016). A NOTE ON THE GROWTH OF POLYNOMIALS. Physical Sciences, 11(2), 10-16.
AMA Çelik A. A NOTE ON THE GROWTH OF POLYNOMIALS. Physical Sciences. Nisan 2016;11(2):10-16.
Chicago Çelik, Adem. “A NOTE ON THE GROWTH OF POLYNOMIALS”. Physical Sciences 11, sy. 2 (Nisan 2016): 10-16.
EndNote Çelik A (01 Nisan 2016) A NOTE ON THE GROWTH OF POLYNOMIALS. Physical Sciences 11 2 10–16.
IEEE A. Çelik, “A NOTE ON THE GROWTH OF POLYNOMIALS”, Physical Sciences, c. 11, sy. 2, ss. 10–16, 2016.
ISNAD Çelik, Adem. “A NOTE ON THE GROWTH OF POLYNOMIALS”. Physical Sciences 11/2 (Nisan 2016), 10-16.
JAMA Çelik A. A NOTE ON THE GROWTH OF POLYNOMIALS. Physical Sciences. 2016;11:10–16.
MLA Çelik, Adem. “A NOTE ON THE GROWTH OF POLYNOMIALS”. Physical Sciences, c. 11, sy. 2, 2016, ss. 10-16.
Vancouver Çelik A. A NOTE ON THE GROWTH OF POLYNOMIALS. Physical Sciences. 2016;11(2):10-6.