Araştırma Makalesi
BibTex RIS Kaynak Göster

SİNTERLENMİŞ W-VC-C KOMPOZİTLERİN MİKROYAPISAL KARAKTERİZASYONU VE 1 M H2SO4 SULU ÇÖZELTİSİ İÇERİSİNDEKİ ELEKTROKİMYASAL DAVRANIŞLARI

Yıl 2017, Cilt: 12 Sayı: 1, 9 - 15, 05.01.2017

Öz

Bu çalışmada alaşımlama süresinin, tungsten (W)
matrisli kompozitin mikroyapısal ve korozyon özelikleri üzerine olan etkisi
incelenmiştir. Harmanlanan W-2wt.%VC-1wt.%C tozların mekanik alaşımlama işlemi
farklı alaşımlama süreleri  (1s, 3s, 6s, 12s and 24s) için, inert Argon
atmosferinde yüksek enerjili öğütücü (SpexMill) kullanılarak yapılmıştır.
Sinterlenen kompozitlerin karakterizasyon çalışmaları, taramalı elektron
mikroskobu (SEM) ve X-ışınları difraktometresi (XRD) kullanılarak yapılmıştır.
Korozyon testleri; değişik alaşımlama sürelerinin kompozitlerin korozyon
direncini belirlemek için, 1M H
2SO4 sulu çözelti içerisinde yapılmıştır.

Kaynakça

  • 1. Tugrul AB, Demir E, Yilmaz O, Sonmez S, Ovecoglu ML, Buyuk B. , (2016). An Investigation on the Mass Attenuation Coefficients of W-VC-C and W-VC-TiC-C Composites for Gamma Radioisotopes. Acta Phys Pol A. 129(4):724-7.
  • 2. Coşkun S, Genç A, Öveçoǧlu ML. , (2013). Synthesis of W-3 wt% Mn-2 wt% VC composites by high energy milling and sintering, Metals and Materials Int. 533-41.
  • 3. Miao S, Xie ZM, Zhang T, Wang XP, Fang QF, Liu CS., (2016). Mechanical properties and thermal stability of rolled W-0.5 wt% TiC alloys. Mat Sci Eng a-Struct. 671:87-95.
  • 4. Veleva L, Schaeublin R, Battabyal M, Plociski T, Baluc N. , (2015). Investigation of microstructure and mechanical properties of W–Y and W–Y2O3 materials fabricated by powder metallurgy method. International Journal of Refractory Metals and Hard Materials 50:210-6.
  • 5. Choi K, Hwang NM. (2000). Effect of VC addition on microstructural evolution of WC–Co alloy: mechanism of grain growth inhibition. Powder Metallurgy 43(2):168-72.
  • 6. Luyckx S, Osborne C, Cornish L., (2013). Whitefield D. Fine grained WC–VC–Co hardmetal. Powder metallurgy.
  • 7. Lin C, Kny E, Yuan G, Djuricic B. , (2004). Microstructure and properties of ultrafine WC–0.6VC–10Co hardmetals densified by pressure-assisted critical liquid phase sintering. Journal of Alloys and Compounds. 383(1–2):98-102.
  • 8. Suryanarayana C, Al-Aqeeli N., (2013). Mechanically alloyed nanocomposites. Progress in Materials Science. 58(4):383-502.
  • 9. Jiang Y, Yang JF, Xie ZM, Gao R, Fang QF. , (2014). Corrosion resistance of W-Cr-C coatings fabricated by spark plasma sintering method. Surf Coat Tech. 254:202-6.
  • 10. Jiang Y, Yang JF, Fang QF., (2015). Effect of chromium content on microstructure and corrosion behavior of W-Cr-C coatings prepared on tungsten substrate. Front Mater Sci. 9(1):77-84.
  • 11. Park SA, Kim JG, Yoon JB., (2014). Effect of W, Mo, and Ti on the Corrosion Behavior of Low-Alloy Steel in Sulfuric Acid. Corrosion. 70(2):196-205.
  • 12. Ren FZ, Zhu WW, Chu KJ, Zhao CC., (2016). Tribological and corrosion behaviors of bulk Cu-W nanocomposites fabricated by mechanical alloying and warm pressing. Journal of Alloys and Compounds. 676:164-72.
  • 13. Liu XY, Xiang Z, Niu JC, Xia KD, Yang Y, Yan B., (2015). The Corrosion Behaviors of Amorphous, Nanocrystalline and Crystalline Ni-W Alloys Coating. Int J Electrochem Sc. 10(11):9042-8.
  • 14. Kuznetsov VV, Pavlov LN, Vinokurov EG, Filatova EA, Kudryavtsev VN., (2015). Corrosion resistance of Cr-C-W alloys produced by electrodeposition. J Solid State Electr. 19(9):2545-53.
  • 15. Habibi M, Javadi S, Ghoranneviss M., (2014). Investigation on the structural properties and corrosion inhibition of W coatings on stainless steel AISI 304 using PF device. Surf Coat Tech. 254:112-20.

MICROSTRUCTURAL CHARACTERIZATIONS OF SINTERED W-VC-C COMPOSITES AND THEIR ELECTROCHEMICAL BEHAVIOURS IN 1 M H2SO4 AQUEOUS SOLUTIONS

Yıl 2017, Cilt: 12 Sayı: 1, 9 - 15, 05.01.2017

Öz

The effects of alloying
duration on the microstructural
and corrosion properties of Tungsten (W) matrix composites were investigated
in this study. As blended W-2VC-1C (wt.%) powders were mechanically alloyed
using a high energy ball mill at different milling times (1, 3, 6, 12 and 24 h)
under inert Argon. Characterization of the sintered composites carried out
using a scanning electron microscope (SEM) and X-ray diffractometer (XRD). Corrosion
tests were performed in aqueous 1 M H2SO4 solutions to
determine the effects of different alloying duration on the corrosion
resistance of the composites. 

Kaynakça

  • 1. Tugrul AB, Demir E, Yilmaz O, Sonmez S, Ovecoglu ML, Buyuk B. , (2016). An Investigation on the Mass Attenuation Coefficients of W-VC-C and W-VC-TiC-C Composites for Gamma Radioisotopes. Acta Phys Pol A. 129(4):724-7.
  • 2. Coşkun S, Genç A, Öveçoǧlu ML. , (2013). Synthesis of W-3 wt% Mn-2 wt% VC composites by high energy milling and sintering, Metals and Materials Int. 533-41.
  • 3. Miao S, Xie ZM, Zhang T, Wang XP, Fang QF, Liu CS., (2016). Mechanical properties and thermal stability of rolled W-0.5 wt% TiC alloys. Mat Sci Eng a-Struct. 671:87-95.
  • 4. Veleva L, Schaeublin R, Battabyal M, Plociski T, Baluc N. , (2015). Investigation of microstructure and mechanical properties of W–Y and W–Y2O3 materials fabricated by powder metallurgy method. International Journal of Refractory Metals and Hard Materials 50:210-6.
  • 5. Choi K, Hwang NM. (2000). Effect of VC addition on microstructural evolution of WC–Co alloy: mechanism of grain growth inhibition. Powder Metallurgy 43(2):168-72.
  • 6. Luyckx S, Osborne C, Cornish L., (2013). Whitefield D. Fine grained WC–VC–Co hardmetal. Powder metallurgy.
  • 7. Lin C, Kny E, Yuan G, Djuricic B. , (2004). Microstructure and properties of ultrafine WC–0.6VC–10Co hardmetals densified by pressure-assisted critical liquid phase sintering. Journal of Alloys and Compounds. 383(1–2):98-102.
  • 8. Suryanarayana C, Al-Aqeeli N., (2013). Mechanically alloyed nanocomposites. Progress in Materials Science. 58(4):383-502.
  • 9. Jiang Y, Yang JF, Xie ZM, Gao R, Fang QF. , (2014). Corrosion resistance of W-Cr-C coatings fabricated by spark plasma sintering method. Surf Coat Tech. 254:202-6.
  • 10. Jiang Y, Yang JF, Fang QF., (2015). Effect of chromium content on microstructure and corrosion behavior of W-Cr-C coatings prepared on tungsten substrate. Front Mater Sci. 9(1):77-84.
  • 11. Park SA, Kim JG, Yoon JB., (2014). Effect of W, Mo, and Ti on the Corrosion Behavior of Low-Alloy Steel in Sulfuric Acid. Corrosion. 70(2):196-205.
  • 12. Ren FZ, Zhu WW, Chu KJ, Zhao CC., (2016). Tribological and corrosion behaviors of bulk Cu-W nanocomposites fabricated by mechanical alloying and warm pressing. Journal of Alloys and Compounds. 676:164-72.
  • 13. Liu XY, Xiang Z, Niu JC, Xia KD, Yang Y, Yan B., (2015). The Corrosion Behaviors of Amorphous, Nanocrystalline and Crystalline Ni-W Alloys Coating. Int J Electrochem Sc. 10(11):9042-8.
  • 14. Kuznetsov VV, Pavlov LN, Vinokurov EG, Filatova EA, Kudryavtsev VN., (2015). Corrosion resistance of Cr-C-W alloys produced by electrodeposition. J Solid State Electr. 19(9):2545-53.
  • 15. Habibi M, Javadi S, Ghoranneviss M., (2014). Investigation on the structural properties and corrosion inhibition of W coatings on stainless steel AISI 304 using PF device. Surf Coat Tech. 254:112-20.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Makaleler
Yazarlar

Sultan Sönmez

Burak Dikici

Mustafa Lütfi Öveçoğlu

Yayımlanma Tarihi 5 Ocak 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 12 Sayı: 1

Kaynak Göster

APA Sönmez, S., Dikici, B., & Öveçoğlu, M. L. (2017). SİNTERLENMİŞ W-VC-C KOMPOZİTLERİN MİKROYAPISAL KARAKTERİZASYONU VE 1 M H2SO4 SULU ÇÖZELTİSİ İÇERİSİNDEKİ ELEKTROKİMYASAL DAVRANIŞLARI. Technological Applied Sciences, 12(1), 9-15. https://doi.org/10.12739/NWSA.2017.12.1.2A0107
AMA Sönmez S, Dikici B, Öveçoğlu ML. SİNTERLENMİŞ W-VC-C KOMPOZİTLERİN MİKROYAPISAL KARAKTERİZASYONU VE 1 M H2SO4 SULU ÇÖZELTİSİ İÇERİSİNDEKİ ELEKTROKİMYASAL DAVRANIŞLARI. NWSA. Ocak 2017;12(1):9-15. doi:10.12739/NWSA.2017.12.1.2A0107
Chicago Sönmez, Sultan, Burak Dikici, ve Mustafa Lütfi Öveçoğlu. “SİNTERLENMİŞ W-VC-C KOMPOZİTLERİN MİKROYAPISAL KARAKTERİZASYONU VE 1 M H2SO4 SULU ÇÖZELTİSİ İÇERİSİNDEKİ ELEKTROKİMYASAL DAVRANIŞLARI”. Technological Applied Sciences 12, sy. 1 (Ocak 2017): 9-15. https://doi.org/10.12739/NWSA.2017.12.1.2A0107.
EndNote Sönmez S, Dikici B, Öveçoğlu ML (01 Ocak 2017) SİNTERLENMİŞ W-VC-C KOMPOZİTLERİN MİKROYAPISAL KARAKTERİZASYONU VE 1 M H2SO4 SULU ÇÖZELTİSİ İÇERİSİNDEKİ ELEKTROKİMYASAL DAVRANIŞLARI. Technological Applied Sciences 12 1 9–15.
IEEE S. Sönmez, B. Dikici, ve M. L. Öveçoğlu, “SİNTERLENMİŞ W-VC-C KOMPOZİTLERİN MİKROYAPISAL KARAKTERİZASYONU VE 1 M H2SO4 SULU ÇÖZELTİSİ İÇERİSİNDEKİ ELEKTROKİMYASAL DAVRANIŞLARI”, NWSA, c. 12, sy. 1, ss. 9–15, 2017, doi: 10.12739/NWSA.2017.12.1.2A0107.
ISNAD Sönmez, Sultan vd. “SİNTERLENMİŞ W-VC-C KOMPOZİTLERİN MİKROYAPISAL KARAKTERİZASYONU VE 1 M H2SO4 SULU ÇÖZELTİSİ İÇERİSİNDEKİ ELEKTROKİMYASAL DAVRANIŞLARI”. Technological Applied Sciences 12/1 (Ocak 2017), 9-15. https://doi.org/10.12739/NWSA.2017.12.1.2A0107.
JAMA Sönmez S, Dikici B, Öveçoğlu ML. SİNTERLENMİŞ W-VC-C KOMPOZİTLERİN MİKROYAPISAL KARAKTERİZASYONU VE 1 M H2SO4 SULU ÇÖZELTİSİ İÇERİSİNDEKİ ELEKTROKİMYASAL DAVRANIŞLARI. NWSA. 2017;12:9–15.
MLA Sönmez, Sultan vd. “SİNTERLENMİŞ W-VC-C KOMPOZİTLERİN MİKROYAPISAL KARAKTERİZASYONU VE 1 M H2SO4 SULU ÇÖZELTİSİ İÇERİSİNDEKİ ELEKTROKİMYASAL DAVRANIŞLARI”. Technological Applied Sciences, c. 12, sy. 1, 2017, ss. 9-15, doi:10.12739/NWSA.2017.12.1.2A0107.
Vancouver Sönmez S, Dikici B, Öveçoğlu ML. SİNTERLENMİŞ W-VC-C KOMPOZİTLERİN MİKROYAPISAL KARAKTERİZASYONU VE 1 M H2SO4 SULU ÇÖZELTİSİ İÇERİSİNDEKİ ELEKTROKİMYASAL DAVRANIŞLARI. NWSA. 2017;12(1):9-15.