Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2017, Cilt: 12 Sayı: 4, 170 - 177, 20.10.2017

Öz


Kaynakça

  • 1. Kodama, S., Ishida, Y., Furusako, S., Saito, M., Miyazaki, Y., and Nose, T., (2013). Arc Welding Technology for Automotive Steel Sheets, Nippon Steel Technical Report. Volume 103, pp:83-90.
  • 2. Larsson, J.K., Lundgren, J., Asbjörnsson, E., and Andersson, H., (2009). Extensive introduction of ultra high strength steels sets new standards for welding in the body shop, Welding in the World, Volume 53, Issue 5, pp:4–14.
  • 3. Sakiyama, T., Murayama, G., Naito, Y., Saita, K., Miyazaki, Y., Oikawa, H., and Nose, T., (2013). Dissimilar Metal Joining Technologies for Steel Sheet and Aluminum Alloy Sheet in Auto Body, Nippon Steel Technical Report, Volume 103, pp:91-98.
  • 4. Davis, J.R., (1999). Corrosion of Aluminum and Aluminum Alloys. ASM International.
  • 5. Casalino, G., Campanelli, S., and Ludovico, A.D., (2012). Hybrid Welding Of AA5754-H111 Alloy Using A Fiber Laser, Advanced Materials Research, Volume 628, pp:193-198.
  • 6. Messler, R.W., Bell, J., and Craigue, O., (2003). Laser Beam Weld Bonding of AA5754 for Automobile Structures, Welding Journal, pp:151-159.
  • 7. Leo, P., Renna, G., Casalino, G., and Olabi, A.G., (2015). Effect of power distribution on the weld quality during hybrid laser welding of an Al–Mg alloy, Optics & Laser Technology, Volume 73, pp:118–126.
  • 8. Punkari, A., Weckman, D.C., and Kerr, H.W., (2003). Effects of magnesium content on dual beam Nd:YAG laser welding of Al–Mg alloys, Science and Technology of Welding and Joining, Volume 8, Issue 4, pp:269-281.
  • 9. Davies, G., (2003). Materials for Automobile Bodies. Butterworth-Heinemann, Oxford.
  • 10. Frostevarg, J., Kaplan, A.F.H., and Lamas, J., (2014). Comparison of CMT with other arc modes for laser-arc hybrid welding of steel, Welding in the World, Volume 58, Issue 5, pp:649–660.
  • 11. Dutra, J.C., Silva, R.H.G., Savi, B.M., Marques, C., and Alarcon, O.E., (2015). Metallurgical characterization of the 5083H116 aluminum alloy welded with the cold metal transfer process and two different wire-electrodes (5183 and 5087), Welding in the World, Volume 59, Issue 6, pp:797–807.
  • 12. Yu, Y., Wang, C., Hu, X., Wang J., and Yu, S., (2010). Porosity in fiber laser formation of 5A06 aluminum alloy, Journal of Mechanical Science and Technology, Volume 24, Issue 5, pp:1077-1082.
  • 13. Casalino, G., Mortello, M., Leo, P., Benyounis, K.Y., and Olabi, A. G., (2014). Study on arc and laser powers in the hybrid welding of AA5754 Al-alloy, Materials & Design, Volume 61, 2014, pp:191–198.
  • 14. Halim, H., Wilkinson, D.S., and Niewczas, M., (2007). The Portevin–Le Chatelier (PLC) effect and shear band formation in an AA5754 alloy, Acta Materialia, Volume 55, pp:4151–4160.
  • 15. Mindivan, F., Kaya, H., Özer, M., Uçar, M., and Samur, R., (2015). Investigation of Corrosion Behavior of the AA5754 Aluminum Alloy Joined Using Friction Stir Welding Method, Celal Bayar University Journal of Science, Volume 11, Issue 3, pp:413-422.
  • 16. Leo, P., D'Ostuni, S., and Casalino, G., (2016). Hybrid Welding of AA5754 Annealed Alloy: Role of Post Weld Heat Treatment on Microstructure and Mechanical Properties, Materials & Design, Volume 90, pp:777-786.
  • 17. Lloyd, D.J., Evans, D., Pelow, C., Nolan, P., and Jain, M., (2002). Bending in aluminium alloys AA 6111 and AA 5754 using the cantilever bend test, Materials science and technology, Volume 18, Issue 6, pp:621-628.
  • 18. Sarkar, J., Kutty, T.R.G., Conlon, K.T., Wilkinson, D.S., Embury, J.D., and Lloyd, D.J., (2001). Tensile and bending properties of AA5754 aluminum alloys, Materials Science and Engineering: A, Volume 316, Issue 1–2, pp:52–59.

MECHANICAL PROPERTIES OF AA5754 SHEETS WELDED BY COLD METAL TRANSFER METHOD

Yıl 2017, Cilt: 12 Sayı: 4, 170 - 177, 20.10.2017

Öz

Cold
Metal Transfer (CMT) is a modified gas metal arc welding method. This method is
different from conventional gas metal arc welding methods. In this process the
heat input and the formation of spatter are reduced with the control of the
wire movement and arc. So, CMT welding became indispensable in the welding of
thin sheets. The importance of lightweight structures in vehicles is increasing
day by day, so the use of thin sheet aluminum alloys such as AA5754 is becoming
increasingly widespread. In present study, 2mm thick AA5754 sheets were joined
with cold metal transfer welding using ER5356 (AlMg5) filler wire. The effect
of heat input on the weld quality was investigated. Microstructural
examinations were executed by optical microscope and SEM. Mechanical properties
of joints were determined by tensile and bending tests. It was found that
increasing heat input did not have a significant effect on tensile strength of
AA5754-AA5754 joints, while it corrupted the bending strength.   

Kaynakça

  • 1. Kodama, S., Ishida, Y., Furusako, S., Saito, M., Miyazaki, Y., and Nose, T., (2013). Arc Welding Technology for Automotive Steel Sheets, Nippon Steel Technical Report. Volume 103, pp:83-90.
  • 2. Larsson, J.K., Lundgren, J., Asbjörnsson, E., and Andersson, H., (2009). Extensive introduction of ultra high strength steels sets new standards for welding in the body shop, Welding in the World, Volume 53, Issue 5, pp:4–14.
  • 3. Sakiyama, T., Murayama, G., Naito, Y., Saita, K., Miyazaki, Y., Oikawa, H., and Nose, T., (2013). Dissimilar Metal Joining Technologies for Steel Sheet and Aluminum Alloy Sheet in Auto Body, Nippon Steel Technical Report, Volume 103, pp:91-98.
  • 4. Davis, J.R., (1999). Corrosion of Aluminum and Aluminum Alloys. ASM International.
  • 5. Casalino, G., Campanelli, S., and Ludovico, A.D., (2012). Hybrid Welding Of AA5754-H111 Alloy Using A Fiber Laser, Advanced Materials Research, Volume 628, pp:193-198.
  • 6. Messler, R.W., Bell, J., and Craigue, O., (2003). Laser Beam Weld Bonding of AA5754 for Automobile Structures, Welding Journal, pp:151-159.
  • 7. Leo, P., Renna, G., Casalino, G., and Olabi, A.G., (2015). Effect of power distribution on the weld quality during hybrid laser welding of an Al–Mg alloy, Optics & Laser Technology, Volume 73, pp:118–126.
  • 8. Punkari, A., Weckman, D.C., and Kerr, H.W., (2003). Effects of magnesium content on dual beam Nd:YAG laser welding of Al–Mg alloys, Science and Technology of Welding and Joining, Volume 8, Issue 4, pp:269-281.
  • 9. Davies, G., (2003). Materials for Automobile Bodies. Butterworth-Heinemann, Oxford.
  • 10. Frostevarg, J., Kaplan, A.F.H., and Lamas, J., (2014). Comparison of CMT with other arc modes for laser-arc hybrid welding of steel, Welding in the World, Volume 58, Issue 5, pp:649–660.
  • 11. Dutra, J.C., Silva, R.H.G., Savi, B.M., Marques, C., and Alarcon, O.E., (2015). Metallurgical characterization of the 5083H116 aluminum alloy welded with the cold metal transfer process and two different wire-electrodes (5183 and 5087), Welding in the World, Volume 59, Issue 6, pp:797–807.
  • 12. Yu, Y., Wang, C., Hu, X., Wang J., and Yu, S., (2010). Porosity in fiber laser formation of 5A06 aluminum alloy, Journal of Mechanical Science and Technology, Volume 24, Issue 5, pp:1077-1082.
  • 13. Casalino, G., Mortello, M., Leo, P., Benyounis, K.Y., and Olabi, A. G., (2014). Study on arc and laser powers in the hybrid welding of AA5754 Al-alloy, Materials & Design, Volume 61, 2014, pp:191–198.
  • 14. Halim, H., Wilkinson, D.S., and Niewczas, M., (2007). The Portevin–Le Chatelier (PLC) effect and shear band formation in an AA5754 alloy, Acta Materialia, Volume 55, pp:4151–4160.
  • 15. Mindivan, F., Kaya, H., Özer, M., Uçar, M., and Samur, R., (2015). Investigation of Corrosion Behavior of the AA5754 Aluminum Alloy Joined Using Friction Stir Welding Method, Celal Bayar University Journal of Science, Volume 11, Issue 3, pp:413-422.
  • 16. Leo, P., D'Ostuni, S., and Casalino, G., (2016). Hybrid Welding of AA5754 Annealed Alloy: Role of Post Weld Heat Treatment on Microstructure and Mechanical Properties, Materials & Design, Volume 90, pp:777-786.
  • 17. Lloyd, D.J., Evans, D., Pelow, C., Nolan, P., and Jain, M., (2002). Bending in aluminium alloys AA 6111 and AA 5754 using the cantilever bend test, Materials science and technology, Volume 18, Issue 6, pp:621-628.
  • 18. Sarkar, J., Kutty, T.R.G., Conlon, K.T., Wilkinson, D.S., Embury, J.D., and Lloyd, D.J., (2001). Tensile and bending properties of AA5754 aluminum alloys, Materials Science and Engineering: A, Volume 316, Issue 1–2, pp:52–59.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hülya Durmuş

Nilay Çömez

Yayımlanma Tarihi 20 Ekim 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 12 Sayı: 4

Kaynak Göster

APA Durmuş, H., & Çömez, N. (2017). MECHANICAL PROPERTIES OF AA5754 SHEETS WELDED BY COLD METAL TRANSFER METHOD. Technological Applied Sciences, 12(4), 170-177.
AMA Durmuş H, Çömez N. MECHANICAL PROPERTIES OF AA5754 SHEETS WELDED BY COLD METAL TRANSFER METHOD. NWSA. Ekim 2017;12(4):170-177.
Chicago Durmuş, Hülya, ve Nilay Çömez. “MECHANICAL PROPERTIES OF AA5754 SHEETS WELDED BY COLD METAL TRANSFER METHOD”. Technological Applied Sciences 12, sy. 4 (Ekim 2017): 170-77.
EndNote Durmuş H, Çömez N (01 Ekim 2017) MECHANICAL PROPERTIES OF AA5754 SHEETS WELDED BY COLD METAL TRANSFER METHOD. Technological Applied Sciences 12 4 170–177.
IEEE H. Durmuş ve N. Çömez, “MECHANICAL PROPERTIES OF AA5754 SHEETS WELDED BY COLD METAL TRANSFER METHOD”, NWSA, c. 12, sy. 4, ss. 170–177, 2017.
ISNAD Durmuş, Hülya - Çömez, Nilay. “MECHANICAL PROPERTIES OF AA5754 SHEETS WELDED BY COLD METAL TRANSFER METHOD”. Technological Applied Sciences 12/4 (Ekim 2017), 170-177.
JAMA Durmuş H, Çömez N. MECHANICAL PROPERTIES OF AA5754 SHEETS WELDED BY COLD METAL TRANSFER METHOD. NWSA. 2017;12:170–177.
MLA Durmuş, Hülya ve Nilay Çömez. “MECHANICAL PROPERTIES OF AA5754 SHEETS WELDED BY COLD METAL TRANSFER METHOD”. Technological Applied Sciences, c. 12, sy. 4, 2017, ss. 170-7.
Vancouver Durmuş H, Çömez N. MECHANICAL PROPERTIES OF AA5754 SHEETS WELDED BY COLD METAL TRANSFER METHOD. NWSA. 2017;12(4):170-7.