Araştırma Makalesi
BibTex RIS Kaynak Göster

Ahşap malzemede aktif anti-bakteriyel özelliklerin defne ve kekik ekstraktları ile artırılması

Yıl 2022, , 207 - 211, 17.09.2022
https://doi.org/10.17568/ogmoad.1089123

Öz

Ahşap ürünler gün geçtikçe hayatımıza daha çok girmekle birlikte temas edilen ahşap yüzeylerin hijyenik olarak güvenli olup olmadığı ile ilgili bazı soru işaretlerini de beraberinde getirmektedir. Ahşap malzemenin pasif ve aktif olmak üzere iki farklı anti-bakteriyel özelliğinden bahsedilebilir. Burada, pasif anti-bakteriyel özellik ahşabın doğası gereği olan porozif yapısı ve higroskopisiteden kaynaklanmaktadır. Ancak, ahşabın aktif anti-bakteriyel özelliği ise odun içeriğinde bulunan ekstraktif maddeler ile ilişkilidir. Bu çalışmanın amacı, hijyenik açıdan hassas alanlarda kullanılmak üzere defne (Laurus nobilis) ve kekik (Origanum onites) ekstraktları ile muamele edilmiş odunların anti-bakteriyel özelliklerinin direk difüzyon yöntemi ile incelenmesidir. Deneyleri gerçekleştirmek için 10 farklı bakteri suşu kullanılmıştır. Deneylerde kullanılan ahşap diskler aktif anti-bakteriyel özellikleri düşük kavak (Populus tremula) ağacından hazırlandıktan sonra otoklav ile sterilize edilmiştir. Bakteri suşları 0,5 McFarland’da hazırlanarak sürüntü sürme yöntemiyle Mueller-Hinton agar petri kaplarına aşılanmıştır. Daha sonra odun diskleri doğrudan aşılanmış agar üzerine yerleştirilmiştir. 37 °C’de 24 saat inkübasyondan sonra, disklerin etrafındaki agar üzerindeki inhibisyon bölgesi mm olarak not edilmiştir. Elde edilen sonuçlara göre, kavak odununa uygulanan kekik ekstraktlarının bakteriyel büyümeyi azalttığı tespit edilmiştir. Böylece, anti-bakteriyel özelliği düşük olan ağaç türlerinin kekik ekstraktları ile muamele edilerek hijyenik açıdan hassas alanlarda kullanımının olumlu sonuçlar vereceği tespit edilmiştir.

Destekleyen Kurum

KAROK2021

Kaynakça

  • Ak, N. O., Cliver, D. O., and Kaspar, C. W. 1994. Cutting boards of plastic and wood contaminated experimentally with bacteria. Journal of Food Protection 57(1): 16-22.
  • Al-Huqail, A. A., Behiry, S. I., Salem, M. Z., Ali, H. M., Siddiqui, M. H., & Salem, A. Z. 2019. Antifungal, antibacterial, and antioxidant activities of Acacia saligna (Labill.) HL Wendl. flower extract: HPLC analysis of phenolic and flavonoid compounds. Molecules 24(4): 700.
  • Chen, J. C., Munir, M. T., Aviat, F., Lepelletier, D., Le Pape, P., Dubreil, L., ... & Pailhoriès, H. 2020. Survival of bacterial strains on wood (Quercus petraea) compared to polycarbonate, aluminum and stainless steel. Antibiotics 9(11): 804.
  • Johnston, W. H., Karchesy, J. J., Constantine, G. H., and Graig, A. M. 2001. Antimicrobial activity of some Pacific northwest woods against anaerobic bacteria and yeast, Phytotherapy Research 15: 586-588.
  • Kavian-Jahromi, N., Schagerl, L., Dürschmied, B., Enzinger, S., Schnabl, C., Schnabel, T., and Petutschnigg, A. 2015. Comparison of the antibacterial effects of sapwood and heartwood of the larch tree focusing on the use in hygiene sensitive areas, European Journal of Wood and Wood Products 73(6): 841-844. DOI: 10.1007/s00107-015-0935-8
  • Laireiter, C. M., Schnabel, T., Köck, A., Stalzer, P., Petutschnigg, A., Oostingh, G. J., & Hell, M. 2014. Active anti-microbial effects of larch and pine wood on four bacterial strains. BioResources 9(1): 273-281.
  • Milling, A., Kehr, R., Wulf, A., and Smalla, K. 2005a. Survival of bacteria on wood and plastic particles: Dependence on wood species and environmental conditions, Holzforschung 59(1): 72-81. DOI: 10.1515/HF.2005.012
  • Milling, A., Smalla, K., Kehr, R., and Wulf, A. 2005b. The use of wood in practice–A hygienic risk? Holz Roh Werkst 63(6): 463-472. DOI: 10.1007/s00107-005-0064-x
  • Munir, M. T., Aviat, F., Pailhories, H., Eveillard, M., Irle, M., Federighi, M., & Belloncle, C. 2019b. Direct screening method to assess antimicrobial behavior of untreated wood. European Journal of Wood and Wood Products 77(2): 319-322.
  • Munir, M. T., Pailhoriès, H., Aviat, F., Lepelletier, D., Pape, P. L., Dubreil, L., ... & Belloncle, C. 2021. Hygienic Perspectives of Wood in Healthcare Buildings. Hygiene 1(1): 12-23.
  • Munir, M. T., Pailhories, H., Eveillard, M., Aviat, F., Lepelletier, D., Belloncle, C., & Federighi, M. 2019a. Antimicrobial characteristics of untreated wood: Towards a hygienic environment. Health 11(02): 152-170.
  • Özkan, O. E., Zengin, G., Akça, M., Baloğlu, M. C., Olgun, Ç., Altuner, E. M., ... & Vurdu, H. 2015. DNA protection, antioxidant, antibacterial and enzyme inhibition activities of heartwood and sapwood extracts from juniper and olive woods. RSC advances 5(89): 72950-72958.
  • Schönwälder, A., Kehr, R., Wulf, A. and Smalla, K. 2002. Wooden Boards Affecting the Survival of Bacteria? Holz als Roh-und Werkstoff 60: 249-257.
  • Tomičić, R., Tomičić, Z., Thaler, N., Humar, M., & Raspor, P. 2020. Factors influencing adhesion of bacteria Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and yeast Pichia membranifaciens to wooden surfaces. Wood Science and Technology 54(6): 1663-1676.
  • Vainio-Kaila, T., Kyyhkynen, A., Viitaniemi, P., and Siitonen, A. 2011. Pine heartwood and glass surfaces: Easy method to test the fate of bacterial contamination, European Journal of Wood and Wood Products 69(3): 391-395. DOI: 10.1007/s00107-010-0453-7
  • Vainio-Kaila, T., Rautkari, L., Nordström, K., Närhi, M., Natri, O., and Kairi, M. 2013. Effect of extractives and thermal modification on antibacterial properties of Scots pine and Norway spruce, International Wood Products Journal 4(4): 248-252.
  • Välimaa, A. L., Honkalampi-Hämäläinen, U., Pietarinen, S., Willför, S., Holmbom, B., and von Wright, A. 2007. Antimicrobial and cytotoxic knotwood extracts and related pure compounds and their effects on food-associated microorganisms, International Journal of Food Microbiology 115: 235-243.

Increasing the active anti-bacterial properties of wood material with laurel and thyme extracts

Yıl 2022, , 207 - 211, 17.09.2022
https://doi.org/10.17568/ogmoad.1089123

Öz

Wooden products come into our lives more and more day by day, but they also bring some question marks about whether the wooden surfaces that are in contact with are hygienically safe. Two different anti-bacterial properties of wood material, passive and active, can be mentioned. The passive antibacterial property is due to the inherent porosity and hygroscopicity of the wood. However, the active anti-bacterial property of wood is related to the extractive substances in the wood. The aim of this study is to investigate the antibacterial properties of woods treated with laurel (Laurus nobilis) and thyme (Origanum onites) extracts for use in hygienically sensitive areas by direct diffusion method. Ten different bacterial strains were used to perform the experiments. The wooden discs used in the experiments were sterilized by autoclave after they were prepared from poplar (Populus tremula) wood with low active anti-bacterial properties. Bacterial strains prepared with 0.5 McFarland concentration were inoculated on Mueller-Hinton agar Petri dishes by swabbing method. The wood discs were then placed directly on the inoculated agar surface. After 24 hours of incubation at 37 °C, the zone of inhibition on the agar around the discs was measured in mm. As a result, it was determined that thyme extracts applied to poplar wood reduced bacterial growth. Thus, it has been determined that the use of wood species with low antibacterial properties by treating them with thyme extracts will give positive results in hygienically sensitive areas.

Kaynakça

  • Ak, N. O., Cliver, D. O., and Kaspar, C. W. 1994. Cutting boards of plastic and wood contaminated experimentally with bacteria. Journal of Food Protection 57(1): 16-22.
  • Al-Huqail, A. A., Behiry, S. I., Salem, M. Z., Ali, H. M., Siddiqui, M. H., & Salem, A. Z. 2019. Antifungal, antibacterial, and antioxidant activities of Acacia saligna (Labill.) HL Wendl. flower extract: HPLC analysis of phenolic and flavonoid compounds. Molecules 24(4): 700.
  • Chen, J. C., Munir, M. T., Aviat, F., Lepelletier, D., Le Pape, P., Dubreil, L., ... & Pailhoriès, H. 2020. Survival of bacterial strains on wood (Quercus petraea) compared to polycarbonate, aluminum and stainless steel. Antibiotics 9(11): 804.
  • Johnston, W. H., Karchesy, J. J., Constantine, G. H., and Graig, A. M. 2001. Antimicrobial activity of some Pacific northwest woods against anaerobic bacteria and yeast, Phytotherapy Research 15: 586-588.
  • Kavian-Jahromi, N., Schagerl, L., Dürschmied, B., Enzinger, S., Schnabl, C., Schnabel, T., and Petutschnigg, A. 2015. Comparison of the antibacterial effects of sapwood and heartwood of the larch tree focusing on the use in hygiene sensitive areas, European Journal of Wood and Wood Products 73(6): 841-844. DOI: 10.1007/s00107-015-0935-8
  • Laireiter, C. M., Schnabel, T., Köck, A., Stalzer, P., Petutschnigg, A., Oostingh, G. J., & Hell, M. 2014. Active anti-microbial effects of larch and pine wood on four bacterial strains. BioResources 9(1): 273-281.
  • Milling, A., Kehr, R., Wulf, A., and Smalla, K. 2005a. Survival of bacteria on wood and plastic particles: Dependence on wood species and environmental conditions, Holzforschung 59(1): 72-81. DOI: 10.1515/HF.2005.012
  • Milling, A., Smalla, K., Kehr, R., and Wulf, A. 2005b. The use of wood in practice–A hygienic risk? Holz Roh Werkst 63(6): 463-472. DOI: 10.1007/s00107-005-0064-x
  • Munir, M. T., Aviat, F., Pailhories, H., Eveillard, M., Irle, M., Federighi, M., & Belloncle, C. 2019b. Direct screening method to assess antimicrobial behavior of untreated wood. European Journal of Wood and Wood Products 77(2): 319-322.
  • Munir, M. T., Pailhoriès, H., Aviat, F., Lepelletier, D., Pape, P. L., Dubreil, L., ... & Belloncle, C. 2021. Hygienic Perspectives of Wood in Healthcare Buildings. Hygiene 1(1): 12-23.
  • Munir, M. T., Pailhories, H., Eveillard, M., Aviat, F., Lepelletier, D., Belloncle, C., & Federighi, M. 2019a. Antimicrobial characteristics of untreated wood: Towards a hygienic environment. Health 11(02): 152-170.
  • Özkan, O. E., Zengin, G., Akça, M., Baloğlu, M. C., Olgun, Ç., Altuner, E. M., ... & Vurdu, H. 2015. DNA protection, antioxidant, antibacterial and enzyme inhibition activities of heartwood and sapwood extracts from juniper and olive woods. RSC advances 5(89): 72950-72958.
  • Schönwälder, A., Kehr, R., Wulf, A. and Smalla, K. 2002. Wooden Boards Affecting the Survival of Bacteria? Holz als Roh-und Werkstoff 60: 249-257.
  • Tomičić, R., Tomičić, Z., Thaler, N., Humar, M., & Raspor, P. 2020. Factors influencing adhesion of bacteria Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and yeast Pichia membranifaciens to wooden surfaces. Wood Science and Technology 54(6): 1663-1676.
  • Vainio-Kaila, T., Kyyhkynen, A., Viitaniemi, P., and Siitonen, A. 2011. Pine heartwood and glass surfaces: Easy method to test the fate of bacterial contamination, European Journal of Wood and Wood Products 69(3): 391-395. DOI: 10.1007/s00107-010-0453-7
  • Vainio-Kaila, T., Rautkari, L., Nordström, K., Närhi, M., Natri, O., and Kairi, M. 2013. Effect of extractives and thermal modification on antibacterial properties of Scots pine and Norway spruce, International Wood Products Journal 4(4): 248-252.
  • Välimaa, A. L., Honkalampi-Hämäläinen, U., Pietarinen, S., Willför, S., Holmbom, B., and von Wright, A. 2007. Antimicrobial and cytotoxic knotwood extracts and related pure compounds and their effects on food-associated microorganisms, International Journal of Food Microbiology 115: 235-243.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Orman Endüstri Mühendisliği
Bölüm Orman Ürünleri
Yazarlar

Osman Emre Özkan 0000-0003-4011-8815

Yayımlanma Tarihi 17 Eylül 2022
Gönderilme Tarihi 16 Mart 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Özkan, O. E. (2022). Ahşap malzemede aktif anti-bakteriyel özelliklerin defne ve kekik ekstraktları ile artırılması. Ormancılık Araştırma Dergisi, 9(Özel Sayı), 207-211. https://doi.org/10.17568/ogmoad.1089123