Araştırma Makalesi
BibTex RIS Kaynak Göster

CFD MODELLING OF THE DUST AND AIR VELOCITY BEHAVIOUR AT AN UNDERGROUND COAL MINE ROADWAY

Yıl 2024, , 1290 - 1296, 12.08.2024
https://doi.org/10.31796/ogummf.1406438

Öz

Dust pollution for ventilation systems is a big problem for mine workers in underground coal mines. The respirable dust concentration is important to the physical and spiritual health of miners. It is hazardous up to 2 mg/m3in the air in underground coal galleries. In the present work, the airflow velocity and dust concentration values were measured at Çay 1-Kartiye roadway in Kozlu, Zonguldak. The goal of this research is modelling to the dust concentration and airflow velocity values by the computational fluid dynamics (CFD) method. An airflow and dust fluid and solid model was done using the Eularian-Granular multiphase method with the k-epsilon two-equation model. The results showed that dust concentration values were too low and fixed. The error percentage of airflow velocity values changed between 5% and 17%. Thus, this roadway is safe for coal dust explorations.

Kaynakça

  • Can, E., Kuşçu, Ş., and Mekik, C. (2012). Determination of Underground Mining Induced Displacements Using GPS Observations in Zonguldak-Kozlu Hard Coal Basin, Int. Jou. of Coal Geology, 89, 62-69.
  • Candra, K.J., Pulung, S.A. and Sadashiv, M.A. (2014). Dust Dispersion and Management in Underground Mining Faces, Int. Jou. of Mining Science and Tech. 24, 39-44.
  • Erol, I., Aydın, H., Didiari, V. and Ural, S. (2013). Pneumoconiosis and Quartz Content of Respirable Dusts in the Coal Mines in Zonguldak, Turkey, Int. Jou. of Coal Geology, 116-117, 26-35.
  • Geng, F., Luo, G., Zhou, F., Zhao, P., Ma, L., Chai, H. and Zhang, T. (2017). Numerical Investigation of Dust Dispersion in a Coal Roadway with Hybrid Ventilation System, Powder Technology, 313; 260-271.
  • Geng, F., Luo, G., Wang, Y., Peng, Z., Hu, S., Zhang, T. and Chai, H. (2018). Dust Dispersion in a Coal Roadway Driven by A Hybrid Ventilation System: A Numerical Study Fan, Process Safety and Environmental Protection, 113, 388-400.
  • Ghaffari, M., Hoffman, A.C., Skjold, T., Eckhoff, R.K., and Wingerden, K.V. (2019). A Brief Review on the Effect of Particle Size on the Laminar Burning Velocity of Flammable Dust: Application in a CFD tool for Industrial Applications, Jou. of Loss Prev. in the Process Induatries, 62, 103929.
  • Guo, X, and Zhang, Q, (2014). Analytical Solution, Experimental Data and CFD Simulation for Longitudinal Tunnel Fire Ventilation, Tunelling and Underground Space Technology, 307-313.
  • Hu, S, Liao, Q., Feng, G, Huang, Y., Shao, H., Gao, Y. and Hu, F. (2020). Influences of Ventilation Velocity on Dust Dispersion in Coal Roadways, Powder Technology, 360, 683-694.
  • Hurtado, J.P. and Acuna, E.I. (2015). CFD analysis of 58 Adit Main Fans Parallel Installation for the 2015-2019 Underground Developments of the New Level Mine Project, Applied Thermal Eng., 90, 1109-1118.
  • Prostanski, D. (2015). Experimental Study of Coal Dust Deposition in Mine Workings with the Use of Empirical Models, Journal of Sustainable Mining, 14, 108-114.
  • Ren, T., Wang, Z. and Cooper, G. (2014). CFD Modeling of Ventilation and Dust Flow Behaviour Above an Underground Bin and the Design of an Innovative Dust Mitigation System, Tunelling and Underground Space Technology, 41; 241-254.
  • Sasmito A.P., Birgersson E., Ly H.C. and Mujumdar A.S. (2013). Some Approaches to Improve Ventilation system in Underground Coal Mines Environment-A Computattional Fluid Dynamic Study, Tunelling and Underground Space Technology, 34, 82-95.
  • Stovern, M., Felix, O., Csavina, J., Rine, K., Russell, M.R., Jones, R.M., King, M., Betterton, E.A. and Saez, A.E, (2014). Simulation of Windblown Dust Transport from a Mine Tailings Impoundment using a Computational Fluid Dynamics Model, Aeolian Research, 14, 75-83.
  • Torano, J., Torno, S., Menendez, M. and Gent, M. (2011). Auxiliary Ventilation in Mining Roadways Driven with Roadheaders: Validated CFD Modeling of Dust Behaviour, Tunelling and Underground Space Technology, 226, 201-210.
  • Torno, S., Torano, J., Ulecia, M. and Allende, C., (2013). Conventional and Numerical Models of Blasting Gas Behaviour in Auxiliary Ventilation of Mining Headings, Tunelling and Underground Space Technology, 34, 73-81.
  • Wang, Z., Li, S., Ren, T., Wu, J., Lin, H. and Shuang, H. (2019). Respirable Dust Pollution Characteristics within an Underground Heading Face Driven with Continuous Miner e A CFD Modelling Approach, Journal of Cleaner Production, 217, 267-283.
  • Wang, Y., Luo, G., Geng, F., Li, Y. and Li, Y. (2015). Numerical Study on Dust Movement and Dust Distribution for Hybrid Ventilation System in a Laneway of Coal Mine, Journal of Loss Prevention in the Process Industries, 36: p. 146-157.
  • Wang, Z. and Ren, T. (2013). Investigation of Airflow and Respirable Dust Flow Behaviour Above an Underground Bin, Powder Technology, 250, 103-114.
  • Xia, Y., Yuan, D., Hu, C., Wu, C. and Han, J. (2016). Numerical Simulation of Ventilation and Dust Suppression System for Open-type TBM Tunneling Work Area, Tunelling and Underground Space Technology, 56, 70-78.
  • Xu, G., Luxbacher, K.D., Ragab, S. and Schafrik, S. (2013). Development of a Remote Analysis Method for Underground Ventilation Systems Using Tracer Gas and CFD in a Simplified Laboratory Apparatus, Tunelling and Underground Space Technology, 33,1-11.
  • Xu, G., Jong, E.C., Luxbacher, K.D., Ragab, S.A., and Karnis, M.E. (2015). Remote Characterization of Ventilation Systems using Tracer Gas and CFD in an Underground Mine, Safety Science, 74, 140-149.
  • Yu, H., Cheng, W., Wu, L., Wang, H. and Xie, Y. (2017). Mechanicsms of Dust Diffuse Pollution Under Forced-Exhaust Ventilation in Fully-Mechanized Excavation Faces by CFD-DEM, Powder Technology, 317; 31-47.
  • Zhang, Q., Zhou, G., Qian, X., Yuan, M., Sun, Y. and Wang, D. (2018). Diffuse Pollution Characteristics of Respirable Dust in Fully-Mechanized Mining Face under Various Velocities Based on CFD Investigation, Journal of Cleaner Production, 184, 239-250.
  • Zhou, G., Zhang, Q., Bai, R., Fan, Y, and Wang, G. (2017). The Diffusion Behaviour Law of Respirable Dust at Fully Mechanized Caving Face in Coal Mine: CFD Numerical Simulation and Engineering Application, Process Safety and Environmental Protection, 106, 117-128.

BİR YERALTI KÖMÜR MADENİ GALERİSİNDE TOZ VE HAVA HIZI DAVRANIŞININ CFD İLE MODELLENMESİ

Yıl 2024, , 1290 - 1296, 12.08.2024
https://doi.org/10.31796/ogummf.1406438

Öz

Havalandırma sistemlerinde toz kirliliği, yeraltı kömür madenlerinde maden çalışanları için büyük bir problemdir. Solunabilir toz konsantrasyonu, madencilerin fiziksel ve ruhsal sağlığı için önemlidir. Bu değer, yeraltı kömür madenlerindeki havada 2 mg/m3 üzerinde tehlikelidir. Bu çalışmada, hava hızı ve toz konsantrasyon değerleri Kozlu (Zonguldak) Çay-1 Kartiye galerisinde ölçülmüştür. Bu çalışmanın amacı, hesaplamalı akışkanlar metodu (CFD) ile toz konsantrasyonu ile hava hızını modellemektir. Bir hava akış-toz çift sıvı-katı modeli, k-epsilon iki-denklem modeli ile Eularian-Granular çoklu faz metodu kullanılarak yapılmıştır. Sonuçlara göre; toz konsantrasyon değerleri çok düşük ve sabittir. Hava hız değerlerinin hata yüzdesi % 5 ile % 17 arasında değişmiştir. Bu sonuçlara göre, bu galerinin kömür tozu patlamaları açısından emniyetli olduğu söylenebilir.

Kaynakça

  • Can, E., Kuşçu, Ş., and Mekik, C. (2012). Determination of Underground Mining Induced Displacements Using GPS Observations in Zonguldak-Kozlu Hard Coal Basin, Int. Jou. of Coal Geology, 89, 62-69.
  • Candra, K.J., Pulung, S.A. and Sadashiv, M.A. (2014). Dust Dispersion and Management in Underground Mining Faces, Int. Jou. of Mining Science and Tech. 24, 39-44.
  • Erol, I., Aydın, H., Didiari, V. and Ural, S. (2013). Pneumoconiosis and Quartz Content of Respirable Dusts in the Coal Mines in Zonguldak, Turkey, Int. Jou. of Coal Geology, 116-117, 26-35.
  • Geng, F., Luo, G., Zhou, F., Zhao, P., Ma, L., Chai, H. and Zhang, T. (2017). Numerical Investigation of Dust Dispersion in a Coal Roadway with Hybrid Ventilation System, Powder Technology, 313; 260-271.
  • Geng, F., Luo, G., Wang, Y., Peng, Z., Hu, S., Zhang, T. and Chai, H. (2018). Dust Dispersion in a Coal Roadway Driven by A Hybrid Ventilation System: A Numerical Study Fan, Process Safety and Environmental Protection, 113, 388-400.
  • Ghaffari, M., Hoffman, A.C., Skjold, T., Eckhoff, R.K., and Wingerden, K.V. (2019). A Brief Review on the Effect of Particle Size on the Laminar Burning Velocity of Flammable Dust: Application in a CFD tool for Industrial Applications, Jou. of Loss Prev. in the Process Induatries, 62, 103929.
  • Guo, X, and Zhang, Q, (2014). Analytical Solution, Experimental Data and CFD Simulation for Longitudinal Tunnel Fire Ventilation, Tunelling and Underground Space Technology, 307-313.
  • Hu, S, Liao, Q., Feng, G, Huang, Y., Shao, H., Gao, Y. and Hu, F. (2020). Influences of Ventilation Velocity on Dust Dispersion in Coal Roadways, Powder Technology, 360, 683-694.
  • Hurtado, J.P. and Acuna, E.I. (2015). CFD analysis of 58 Adit Main Fans Parallel Installation for the 2015-2019 Underground Developments of the New Level Mine Project, Applied Thermal Eng., 90, 1109-1118.
  • Prostanski, D. (2015). Experimental Study of Coal Dust Deposition in Mine Workings with the Use of Empirical Models, Journal of Sustainable Mining, 14, 108-114.
  • Ren, T., Wang, Z. and Cooper, G. (2014). CFD Modeling of Ventilation and Dust Flow Behaviour Above an Underground Bin and the Design of an Innovative Dust Mitigation System, Tunelling and Underground Space Technology, 41; 241-254.
  • Sasmito A.P., Birgersson E., Ly H.C. and Mujumdar A.S. (2013). Some Approaches to Improve Ventilation system in Underground Coal Mines Environment-A Computattional Fluid Dynamic Study, Tunelling and Underground Space Technology, 34, 82-95.
  • Stovern, M., Felix, O., Csavina, J., Rine, K., Russell, M.R., Jones, R.M., King, M., Betterton, E.A. and Saez, A.E, (2014). Simulation of Windblown Dust Transport from a Mine Tailings Impoundment using a Computational Fluid Dynamics Model, Aeolian Research, 14, 75-83.
  • Torano, J., Torno, S., Menendez, M. and Gent, M. (2011). Auxiliary Ventilation in Mining Roadways Driven with Roadheaders: Validated CFD Modeling of Dust Behaviour, Tunelling and Underground Space Technology, 226, 201-210.
  • Torno, S., Torano, J., Ulecia, M. and Allende, C., (2013). Conventional and Numerical Models of Blasting Gas Behaviour in Auxiliary Ventilation of Mining Headings, Tunelling and Underground Space Technology, 34, 73-81.
  • Wang, Z., Li, S., Ren, T., Wu, J., Lin, H. and Shuang, H. (2019). Respirable Dust Pollution Characteristics within an Underground Heading Face Driven with Continuous Miner e A CFD Modelling Approach, Journal of Cleaner Production, 217, 267-283.
  • Wang, Y., Luo, G., Geng, F., Li, Y. and Li, Y. (2015). Numerical Study on Dust Movement and Dust Distribution for Hybrid Ventilation System in a Laneway of Coal Mine, Journal of Loss Prevention in the Process Industries, 36: p. 146-157.
  • Wang, Z. and Ren, T. (2013). Investigation of Airflow and Respirable Dust Flow Behaviour Above an Underground Bin, Powder Technology, 250, 103-114.
  • Xia, Y., Yuan, D., Hu, C., Wu, C. and Han, J. (2016). Numerical Simulation of Ventilation and Dust Suppression System for Open-type TBM Tunneling Work Area, Tunelling and Underground Space Technology, 56, 70-78.
  • Xu, G., Luxbacher, K.D., Ragab, S. and Schafrik, S. (2013). Development of a Remote Analysis Method for Underground Ventilation Systems Using Tracer Gas and CFD in a Simplified Laboratory Apparatus, Tunelling and Underground Space Technology, 33,1-11.
  • Xu, G., Jong, E.C., Luxbacher, K.D., Ragab, S.A., and Karnis, M.E. (2015). Remote Characterization of Ventilation Systems using Tracer Gas and CFD in an Underground Mine, Safety Science, 74, 140-149.
  • Yu, H., Cheng, W., Wu, L., Wang, H. and Xie, Y. (2017). Mechanicsms of Dust Diffuse Pollution Under Forced-Exhaust Ventilation in Fully-Mechanized Excavation Faces by CFD-DEM, Powder Technology, 317; 31-47.
  • Zhang, Q., Zhou, G., Qian, X., Yuan, M., Sun, Y. and Wang, D. (2018). Diffuse Pollution Characteristics of Respirable Dust in Fully-Mechanized Mining Face under Various Velocities Based on CFD Investigation, Journal of Cleaner Production, 184, 239-250.
  • Zhou, G., Zhang, Q., Bai, R., Fan, Y, and Wang, G. (2017). The Diffusion Behaviour Law of Respirable Dust at Fully Mechanized Caving Face in Coal Mine: CFD Numerical Simulation and Engineering Application, Process Safety and Environmental Protection, 106, 117-128.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kömür, Yeraltı kaya Mühendislik Yapılarında Havalandırma
Bölüm Araştırma Makaleleri
Yazarlar

Gülnaz Daloğlu 0000-0002-8646-7087

Erken Görünüm Tarihi 6 Ağustos 2024
Yayımlanma Tarihi 12 Ağustos 2024
Gönderilme Tarihi 18 Aralık 2023
Kabul Tarihi 14 Haziran 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Daloğlu, G. (2024). CFD MODELLING OF THE DUST AND AIR VELOCITY BEHAVIOUR AT AN UNDERGROUND COAL MINE ROADWAY. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 32(2), 1290-1296. https://doi.org/10.31796/ogummf.1406438
AMA Daloğlu G. CFD MODELLING OF THE DUST AND AIR VELOCITY BEHAVIOUR AT AN UNDERGROUND COAL MINE ROADWAY. ESOGÜ Müh Mim Fak Derg. Ağustos 2024;32(2):1290-1296. doi:10.31796/ogummf.1406438
Chicago Daloğlu, Gülnaz. “CFD MODELLING OF THE DUST AND AIR VELOCITY BEHAVIOUR AT AN UNDERGROUND COAL MINE ROADWAY”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 32, sy. 2 (Ağustos 2024): 1290-96. https://doi.org/10.31796/ogummf.1406438.
EndNote Daloğlu G (01 Ağustos 2024) CFD MODELLING OF THE DUST AND AIR VELOCITY BEHAVIOUR AT AN UNDERGROUND COAL MINE ROADWAY. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 32 2 1290–1296.
IEEE G. Daloğlu, “CFD MODELLING OF THE DUST AND AIR VELOCITY BEHAVIOUR AT AN UNDERGROUND COAL MINE ROADWAY”, ESOGÜ Müh Mim Fak Derg, c. 32, sy. 2, ss. 1290–1296, 2024, doi: 10.31796/ogummf.1406438.
ISNAD Daloğlu, Gülnaz. “CFD MODELLING OF THE DUST AND AIR VELOCITY BEHAVIOUR AT AN UNDERGROUND COAL MINE ROADWAY”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 32/2 (Ağustos 2024), 1290-1296. https://doi.org/10.31796/ogummf.1406438.
JAMA Daloğlu G. CFD MODELLING OF THE DUST AND AIR VELOCITY BEHAVIOUR AT AN UNDERGROUND COAL MINE ROADWAY. ESOGÜ Müh Mim Fak Derg. 2024;32:1290–1296.
MLA Daloğlu, Gülnaz. “CFD MODELLING OF THE DUST AND AIR VELOCITY BEHAVIOUR AT AN UNDERGROUND COAL MINE ROADWAY”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, c. 32, sy. 2, 2024, ss. 1290-6, doi:10.31796/ogummf.1406438.
Vancouver Daloğlu G. CFD MODELLING OF THE DUST AND AIR VELOCITY BEHAVIOUR AT AN UNDERGROUND COAL MINE ROADWAY. ESOGÜ Müh Mim Fak Derg. 2024;32(2):1290-6.

20873 13565 13566 15461 13568  14913