Araştırma Makalesi
BibTex RIS Kaynak Göster

INVESTIGATION OF THE EFFECT OF SLIDING SPEED AND LOAD ON DRY SLIDING FRICTION AND WEAR PROPERTIES OF MULTI WALLED CARBON NANOTUBE FILLED PP NANOCOMPOSITES

Yıl 2020, , 143 - 154, 31.08.2020
https://doi.org/10.31796/ogummf.717466

Öz

In this study, tribological properties of multi walled carbon nanotube (MWCNT) filled polypropylene (PP) composites were investigated. without using a compatibilizer. For this purpose, 0.1, 0.2, 0.3, 1 and 2% by weight MWCNT was added to the PP polymer. After PP/ MWCNT granules were obtained in twin screw extruder, wear samples were obtained by injection molding technique. The wear and friction behavior of MWCNT filled PP composites were performed in pin-on-disc system, under dry environment conditions at 0.8, 1.2 and 1.6 m/s sliding speed and 10, 20, 30 and 40N load. The highest coefficient of friction is for pure PP under dry sliding conditions with a value of 0.769 at 1.6m/s sliding speed and under 40N load. The lowest coefficient of friction is 0.393 for 2MWCNT composite under dry sliding conditions at 0.80 m/s sliding speed and 10N load. The wear rate of PP polymer decreased with MWCNT. This reduction was achieved in the ratio of 18%, 31%, 50%, 94% and 233% for the 0.1MWCNT, 0.2MWCNT, 0.3MWCNT, 1MWCNT and 2MWCNT nanocomposites, respectively.

Kaynakça

  • Chawla, R. (2018). Sliding Tribological Behavior of Carbon Nanotube/Natural Rubber Composites. Tribology in Industry, 40(2), 263-273. http://www.tribology.rs/journals/2018/2018-2/2018-2-10.html
  • Chen, W.X., Li, F., Han, G., Xia, J.B., Wang, L.Y., Tu, J.P., Xu, Z.D. (2003). Tribological behavior of carbon-nanotube-filled PTFE composites. Tribology Letters, 15(3),275-278. https://link.springer.com/article/10.1023/A:1024869305259
  • Cornwell, C.F., Wille, L.T. (1997). Elastic properties of single-walled carbon nanotubes in compression. Solid State Communications, 101, 555-558. https://www.sciencedirect.com/science/article/abs/pii/S0038109896007429
  • Du, J.H. Bai, J., Cheng, H.M. (2007). The present status and key problems of carbon nanotube based polymer composites. eXPRESS Polymer Letters, 1(5), 253-273. https://www.researchgate.net/publication/244756191_The_present_status_and_key_problems_of_carbon_nanotube_based_polymer_composites
  • Guofang, G., Yang, H., Fu, X. (2004). Tribological properties of kaolin filled UHMWPE composites in unlubricated sliding, Wear, 256(1-2), 88–94. DOI: 10.1016/S0043-1648(03)00394-6
  • Jian, L., Liqiang, Q.Z. (2010). The Research on the Mechanical and Tribological Properties of Carbon Fiber and Carbon Nanotube-Filled PEEK Composite. Polymer Composıtes, 31(8), 1315-1320. https://onlinelibrary.wiley.com/doi/abs/10.1002/pc.20916
  • Jin, Z.X., Pramoda, K.P., Xu, G.Q., Goh, S.H. (2001). Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites. Chemical Physics Letters, 337,43-47. https://www.sciencedirect.com/science/article/abs/pii/S0009261401001865
  • Irena, B., Rumiana, K., Manuel Monleon, P., Ana, V.L., Strashimir, D. (2016). Thermal, mechanical and viscoelastic properties ofcompatibilized polypropylene/multi-walled carbon nanotubenanocomposites. Journal of Elastomers and Plastics,48(7),576-99. https://journals.sagepub.com/doi/abs/10.1177/0095244315613617
  • Kang, C.H., Yoon, K.H., Park, Y.B., et al. (2010). Properties of polypropylene composites containing aluminium/multi-walled carbon nanotubes. Composites Part A: Applied Science and Manufacturing,41,919-926. https://www.sciencedirect.com/science/article/pii/S1359835X10000990
  • Kim, P., Shi, L., Majumdar, A., McEuen P.L. (2001). Thermal transport measurements of individual multiwalled nanotubes. Physical Review Letters, 87(21),215502-4. https://www.ncbi.nlm.nih.gov/pubmed/11736348
  • Lijima, S. (1991). Heical microtubules of graphitic carbon. Nature, 354, 56-58. https://www.nature.com/articles/354056a0
  • Minhaeng, C. (2008). The Flexural and Tribological Behavior of Multi-Walled Carbon Nanotube–Reinforced Polyphenylene Sulfide Composites. Materials Transactions, 49(12), 2801-2807. https://www.jstage.jst.go.jp/article/matertrans/49/12/49_MRA2008262/_article/-char/en
  • Mertens, A.J., Senthilvelan, S. (2016). Mechanical and tribological properties of carbon nanotube reinforced polypropylene composites. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of materials: Design and applications, 232(8),1-12. https://journals.sagepub.com/doi/10.1177/1464420716642620
  • Pan, Y., Li, L., Chan, S.H., et al. (2010). Correlation between dispersion state and electrical conductivity of MWCNTs/PP composites prepared by melt blending. Composites Part A: Applied Science and Manufacturing, 41, 419-426. https://www.sciencedirect.com/science/article/pii/S1359835X09003820
  • Po-Hsiang, W., Sushanta, G., Prabhakar, G., Nikhil, V., Satish, K. (2016). Polypropylene nanocomposites with polymer coated multiwall carbon nanotubes. Polymer, 100, 244-258. https://www.sciencedirect.com/science/article/abs/pii/S003238611630636X
  • Prashanthe, K., Soulestin, J., Lacrampe, M.F., et al. (2008). Multiwalled carbon nanotube filled polypropylene nanocomposites based on masterbatch route: Improvement of dispersion and mechanical properties through PP-g-MA addition. Express Polymer Letters, 2, 735-745. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.452.4565&rep=rep1&type=pdf
  • Sandler, J., Broza, G., Nolte, M., et al. (2007). Crystallization of carbon nanotube and nanofiber polypropylene composites. Journal of Macromolecular Science, Part: B, B42, 479-488. https://www.tandfonline.com/doi/abs/10.1081/MB-120021576
  • Xu, X.J., Thwe, M.M., Shearwood, C., Liao, K. (2002). Mechanical properties and interfacial characteristics of carbon-nanotube-reinforced epoxy thin films. Applied Physics Letters, 81, 2833-2835. https://www.researchgate.net/publication/235001084_Mechanical_Properties_and_Interfacial_Characteristics_of_carbon_nanotube-reinforced_epoxy_thin_films
  • Yakobson, B.I., Brabec, C.J., Bernholc, J. (1996). Nanomechanics of carbon tubes: instabilities beyond linear response. Physical Review Letters, 76, 2511-2514. https://www.ncbi.nlm.nih.gov/pubmed/10060718
  • Yang, Z., Dong, B., Huang, Y., et al. (2005). A study on carbon nanotubes reinforced poly (methyl methacrylate) nanocomposites. Materials Letters, 59(7),2128-2132. https://www.sciencedirect.com/science/article/abs/pii/S0167577X05001977
  • Yang, Z., Dong, B., Huang, Y., et al. (2005). Enhanced wear resistance and micro-hardness of polystyrene nanocomposites by carbon nanotubes. Materials Chemistry and Physics, 94, 109-113. https://www.sciencedirect.com/science/article/abs/pii/S0254058405002695
  • Yang, B.X., Shi, J.H., Pramoda, K.P., et al. (2008). Enhancement of the mechanical properties of polypropylene using polypropylene-grafted multiwalled carbon nanotubes. Composites Science and Technology, 68, 2490-2497. https://www.sciencedirect.com/science/article/abs/pii/S0266353808001826
  • Yuanhao, Y., Jingfu, S., Gai, Z., and Qingjun, D. (2020). Effect of rare earth oxide on the mechanical and tribological properties of polyimide nanocomposites. Industrial Lubrication and Tribology.72(3),433-437. https://www.emerald.com/insight/content/doi/10.1108/ILT-08-2019-0315/full/html?skipTracking=true
  • Zaikov, G.E., Rakhimkulov, A.D., Lomakin, S.M., et al. (2010). Thermal degradation and combustion behaviour of polypropylene/MWCNT composites. Molecular Crystals and Liquid Crystals, 523, 106-119. https://www.tandfonline.com/doi/abs/10.1080/15421401003726543?journalCode=gmcl20

ÇOK DUVARLI KARBON NANOTÜP KATKILI POLİPROPİLEN NANOKOMPOZİTLERİN KURU SÜRTÜNME VE AŞINMA ÖZELLİKLERİ ÜZERİNE YÜK VE KAYMA HIZININ ETKİLERİNİN İNCELENMESİ

Yıl 2020, , 143 - 154, 31.08.2020
https://doi.org/10.31796/ogummf.717466

Öz

Bu çalışmada, uyumlaştırıcı kullanılmadan çok duvarlı karbon nanotüp (ÇDKNT) katkılı Polipropilen (PP) kompozitlerinin tribolojik özellikleri incelenmiştir. Bu amaçla, PP polimerine ağırlıkça %0.1, 0.2, 0.3, 1 ve 2 oranlarında çok duvarlı karbon nanotüp ilave edilmiştir. PP/ÇDKNT granülleri çift vidalı ekstruderde elde edildikten sonra aşınma numuneleri enjeksiyon kalıplama tekniği ile üretilmiştir. Farklı oranlarda ÇDKNT katkılı PP kompozitlerin aşınma ve sürtünme davranışları pim-disk sisteminde ve kuru ortam şartları altında 0.8, 1.2m/s, ve 1.6m/s kayma hızı ve 10, 20, 30 ve 40N yük altında gerçekleştirilmiştir. Uygulanan yük ve kayma hızı aralığında en yüksek sürtünme katsayısı 1.6m/s kayma hızı ve 40N yük altında 0.769 değeri ile katkısız PP polimerinde elde edilirken en düşük sürtünme katsayısı 0.8m/s kayma hızında ve 10N yük altında 2ÇDKNT polimerinde 0.393 değeri ile elde edilmiştir. PP polimerine ilave edilen ÇDKNT ve artan ÇDKNT miktarına bağlı olarak aşınma direncinin arttığı belirlenmiştir. Bu artış 0.1ÇDKNT, 0.2ÇDKNT, 0.3ÇDKNT, 1ÇDKNT ve 2ÇDKNT polimerleri için sırasıyla %18, %31, %50, %94 ve %233 oranlarında elde edilmiştir.

Kaynakça

  • Chawla, R. (2018). Sliding Tribological Behavior of Carbon Nanotube/Natural Rubber Composites. Tribology in Industry, 40(2), 263-273. http://www.tribology.rs/journals/2018/2018-2/2018-2-10.html
  • Chen, W.X., Li, F., Han, G., Xia, J.B., Wang, L.Y., Tu, J.P., Xu, Z.D. (2003). Tribological behavior of carbon-nanotube-filled PTFE composites. Tribology Letters, 15(3),275-278. https://link.springer.com/article/10.1023/A:1024869305259
  • Cornwell, C.F., Wille, L.T. (1997). Elastic properties of single-walled carbon nanotubes in compression. Solid State Communications, 101, 555-558. https://www.sciencedirect.com/science/article/abs/pii/S0038109896007429
  • Du, J.H. Bai, J., Cheng, H.M. (2007). The present status and key problems of carbon nanotube based polymer composites. eXPRESS Polymer Letters, 1(5), 253-273. https://www.researchgate.net/publication/244756191_The_present_status_and_key_problems_of_carbon_nanotube_based_polymer_composites
  • Guofang, G., Yang, H., Fu, X. (2004). Tribological properties of kaolin filled UHMWPE composites in unlubricated sliding, Wear, 256(1-2), 88–94. DOI: 10.1016/S0043-1648(03)00394-6
  • Jian, L., Liqiang, Q.Z. (2010). The Research on the Mechanical and Tribological Properties of Carbon Fiber and Carbon Nanotube-Filled PEEK Composite. Polymer Composıtes, 31(8), 1315-1320. https://onlinelibrary.wiley.com/doi/abs/10.1002/pc.20916
  • Jin, Z.X., Pramoda, K.P., Xu, G.Q., Goh, S.H. (2001). Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites. Chemical Physics Letters, 337,43-47. https://www.sciencedirect.com/science/article/abs/pii/S0009261401001865
  • Irena, B., Rumiana, K., Manuel Monleon, P., Ana, V.L., Strashimir, D. (2016). Thermal, mechanical and viscoelastic properties ofcompatibilized polypropylene/multi-walled carbon nanotubenanocomposites. Journal of Elastomers and Plastics,48(7),576-99. https://journals.sagepub.com/doi/abs/10.1177/0095244315613617
  • Kang, C.H., Yoon, K.H., Park, Y.B., et al. (2010). Properties of polypropylene composites containing aluminium/multi-walled carbon nanotubes. Composites Part A: Applied Science and Manufacturing,41,919-926. https://www.sciencedirect.com/science/article/pii/S1359835X10000990
  • Kim, P., Shi, L., Majumdar, A., McEuen P.L. (2001). Thermal transport measurements of individual multiwalled nanotubes. Physical Review Letters, 87(21),215502-4. https://www.ncbi.nlm.nih.gov/pubmed/11736348
  • Lijima, S. (1991). Heical microtubules of graphitic carbon. Nature, 354, 56-58. https://www.nature.com/articles/354056a0
  • Minhaeng, C. (2008). The Flexural and Tribological Behavior of Multi-Walled Carbon Nanotube–Reinforced Polyphenylene Sulfide Composites. Materials Transactions, 49(12), 2801-2807. https://www.jstage.jst.go.jp/article/matertrans/49/12/49_MRA2008262/_article/-char/en
  • Mertens, A.J., Senthilvelan, S. (2016). Mechanical and tribological properties of carbon nanotube reinforced polypropylene composites. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of materials: Design and applications, 232(8),1-12. https://journals.sagepub.com/doi/10.1177/1464420716642620
  • Pan, Y., Li, L., Chan, S.H., et al. (2010). Correlation between dispersion state and electrical conductivity of MWCNTs/PP composites prepared by melt blending. Composites Part A: Applied Science and Manufacturing, 41, 419-426. https://www.sciencedirect.com/science/article/pii/S1359835X09003820
  • Po-Hsiang, W., Sushanta, G., Prabhakar, G., Nikhil, V., Satish, K. (2016). Polypropylene nanocomposites with polymer coated multiwall carbon nanotubes. Polymer, 100, 244-258. https://www.sciencedirect.com/science/article/abs/pii/S003238611630636X
  • Prashanthe, K., Soulestin, J., Lacrampe, M.F., et al. (2008). Multiwalled carbon nanotube filled polypropylene nanocomposites based on masterbatch route: Improvement of dispersion and mechanical properties through PP-g-MA addition. Express Polymer Letters, 2, 735-745. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.452.4565&rep=rep1&type=pdf
  • Sandler, J., Broza, G., Nolte, M., et al. (2007). Crystallization of carbon nanotube and nanofiber polypropylene composites. Journal of Macromolecular Science, Part: B, B42, 479-488. https://www.tandfonline.com/doi/abs/10.1081/MB-120021576
  • Xu, X.J., Thwe, M.M., Shearwood, C., Liao, K. (2002). Mechanical properties and interfacial characteristics of carbon-nanotube-reinforced epoxy thin films. Applied Physics Letters, 81, 2833-2835. https://www.researchgate.net/publication/235001084_Mechanical_Properties_and_Interfacial_Characteristics_of_carbon_nanotube-reinforced_epoxy_thin_films
  • Yakobson, B.I., Brabec, C.J., Bernholc, J. (1996). Nanomechanics of carbon tubes: instabilities beyond linear response. Physical Review Letters, 76, 2511-2514. https://www.ncbi.nlm.nih.gov/pubmed/10060718
  • Yang, Z., Dong, B., Huang, Y., et al. (2005). A study on carbon nanotubes reinforced poly (methyl methacrylate) nanocomposites. Materials Letters, 59(7),2128-2132. https://www.sciencedirect.com/science/article/abs/pii/S0167577X05001977
  • Yang, Z., Dong, B., Huang, Y., et al. (2005). Enhanced wear resistance and micro-hardness of polystyrene nanocomposites by carbon nanotubes. Materials Chemistry and Physics, 94, 109-113. https://www.sciencedirect.com/science/article/abs/pii/S0254058405002695
  • Yang, B.X., Shi, J.H., Pramoda, K.P., et al. (2008). Enhancement of the mechanical properties of polypropylene using polypropylene-grafted multiwalled carbon nanotubes. Composites Science and Technology, 68, 2490-2497. https://www.sciencedirect.com/science/article/abs/pii/S0266353808001826
  • Yuanhao, Y., Jingfu, S., Gai, Z., and Qingjun, D. (2020). Effect of rare earth oxide on the mechanical and tribological properties of polyimide nanocomposites. Industrial Lubrication and Tribology.72(3),433-437. https://www.emerald.com/insight/content/doi/10.1108/ILT-08-2019-0315/full/html?skipTracking=true
  • Zaikov, G.E., Rakhimkulov, A.D., Lomakin, S.M., et al. (2010). Thermal degradation and combustion behaviour of polypropylene/MWCNT composites. Molecular Crystals and Liquid Crystals, 523, 106-119. https://www.tandfonline.com/doi/abs/10.1080/15421401003726543?journalCode=gmcl20
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Üretim Teknolojileri
Bölüm Araştırma Makaleleri
Yazarlar

Salih Yetgin 0000-0002-6068-9204

Yayımlanma Tarihi 31 Ağustos 2020
Kabul Tarihi 1 Haziran 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Yetgin, S. (2020). ÇOK DUVARLI KARBON NANOTÜP KATKILI POLİPROPİLEN NANOKOMPOZİTLERİN KURU SÜRTÜNME VE AŞINMA ÖZELLİKLERİ ÜZERİNE YÜK VE KAYMA HIZININ ETKİLERİNİN İNCELENMESİ. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 28(2), 143-154. https://doi.org/10.31796/ogummf.717466
AMA Yetgin S. ÇOK DUVARLI KARBON NANOTÜP KATKILI POLİPROPİLEN NANOKOMPOZİTLERİN KURU SÜRTÜNME VE AŞINMA ÖZELLİKLERİ ÜZERİNE YÜK VE KAYMA HIZININ ETKİLERİNİN İNCELENMESİ. ESOGÜ Müh Mim Fak Derg. Ağustos 2020;28(2):143-154. doi:10.31796/ogummf.717466
Chicago Yetgin, Salih. “ÇOK DUVARLI KARBON NANOTÜP KATKILI POLİPROPİLEN NANOKOMPOZİTLERİN KURU SÜRTÜNME VE AŞINMA ÖZELLİKLERİ ÜZERİNE YÜK VE KAYMA HIZININ ETKİLERİNİN İNCELENMESİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 28, sy. 2 (Ağustos 2020): 143-54. https://doi.org/10.31796/ogummf.717466.
EndNote Yetgin S (01 Ağustos 2020) ÇOK DUVARLI KARBON NANOTÜP KATKILI POLİPROPİLEN NANOKOMPOZİTLERİN KURU SÜRTÜNME VE AŞINMA ÖZELLİKLERİ ÜZERİNE YÜK VE KAYMA HIZININ ETKİLERİNİN İNCELENMESİ. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 28 2 143–154.
IEEE S. Yetgin, “ÇOK DUVARLI KARBON NANOTÜP KATKILI POLİPROPİLEN NANOKOMPOZİTLERİN KURU SÜRTÜNME VE AŞINMA ÖZELLİKLERİ ÜZERİNE YÜK VE KAYMA HIZININ ETKİLERİNİN İNCELENMESİ”, ESOGÜ Müh Mim Fak Derg, c. 28, sy. 2, ss. 143–154, 2020, doi: 10.31796/ogummf.717466.
ISNAD Yetgin, Salih. “ÇOK DUVARLI KARBON NANOTÜP KATKILI POLİPROPİLEN NANOKOMPOZİTLERİN KURU SÜRTÜNME VE AŞINMA ÖZELLİKLERİ ÜZERİNE YÜK VE KAYMA HIZININ ETKİLERİNİN İNCELENMESİ”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 28/2 (Ağustos 2020), 143-154. https://doi.org/10.31796/ogummf.717466.
JAMA Yetgin S. ÇOK DUVARLI KARBON NANOTÜP KATKILI POLİPROPİLEN NANOKOMPOZİTLERİN KURU SÜRTÜNME VE AŞINMA ÖZELLİKLERİ ÜZERİNE YÜK VE KAYMA HIZININ ETKİLERİNİN İNCELENMESİ. ESOGÜ Müh Mim Fak Derg. 2020;28:143–154.
MLA Yetgin, Salih. “ÇOK DUVARLI KARBON NANOTÜP KATKILI POLİPROPİLEN NANOKOMPOZİTLERİN KURU SÜRTÜNME VE AŞINMA ÖZELLİKLERİ ÜZERİNE YÜK VE KAYMA HIZININ ETKİLERİNİN İNCELENMESİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, c. 28, sy. 2, 2020, ss. 143-54, doi:10.31796/ogummf.717466.
Vancouver Yetgin S. ÇOK DUVARLI KARBON NANOTÜP KATKILI POLİPROPİLEN NANOKOMPOZİTLERİN KURU SÜRTÜNME VE AŞINMA ÖZELLİKLERİ ÜZERİNE YÜK VE KAYMA HIZININ ETKİLERİNİN İNCELENMESİ. ESOGÜ Müh Mim Fak Derg. 2020;28(2):143-54.

20873 13565 13566 15461 13568  14913