Araştırma Makalesi
BibTex RIS Kaynak Göster

USING IRON-CONTAINING METAL OXIDE AS CATALYST FOR HETEROGENEOUS FENTON PROCESS IN TEXTILE INDUSTRY WASTEWATER

Yıl 2021, , 110 - 117, 30.04.2021
https://doi.org/10.31796/ogummf.881906

Öz

Kaynakça

  • Ayas, N., Asci, Y. & Yurdakul, M. (2016). Using of Fe/ZnO2 catalyst to remove direct Orange 26 from water by Fenton oxidation at wide pH values. Fresenius Environmental Bulletin, 25, 3272-3279.
  • Buthiyappan, A., Aziz A.R.A. & Daud, W.M.A.W. (2016). Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents. Reviews in Chemical Engineering, 32(1), 1-47. doi: https://doi.org/10.1515/revce-2015-0034
  • Buthiyappan, A. & Raman, A.A.A. (2019). Energy intensified integrated advanced oxidation technology for the treatment of recalcitrant industrial wastewater. Journal of Cleaner Production, 206, 1025-1040. doi: https://doi.org/10.1016/j.jclepro.2018.09.234
  • Chen, Y. (2006). Study on the kinetics of removal of microcystin-LR by Fenton reagent. Safety and Environmental Engineering, 13(4), 50-58.
  • Devi, L.G., Kumar, S.G., Reddy, K. M. & Munikrishnappa, C. (2009). Photo degradation of Methyl Orange an azo dye by Advanced Fenton Process using zero valent metallic iron: Influence of various reaction parameters and its degradation mechanism. Journal of Hazardous Materials, 164, 459-467. doi: https://doi.org/10.1016/j.jhazmat.2008.08.017
  • Domingues, E., Assunçao, N., Gomes, J., Lopes, D.V., Frade, J.R., Quina, M.J., Quinta- Ferreira, R.M. & Martins, R.C. (2019). Catalytic efficiency of red mud for the degradation of olive mill wastewater through heterogeneous Fenton’s process. Water, 11, 1183. doi: https://doi.org/10.3390/w11061183
  • Feng, F., Xu, Z., Li, X., You, W. & Zhen, Y. (2010). Advanced treatment of dyeing wastewater towards reuse by the combined Fenton oxidation and membrane bioreactor process. Journal of Environmental Sciences, 22(11), 1657-1665. doi: https://doi.org/10.1016/S1001-0742(09)60303-X
  • Gan, P.P. & Li S.F.Y. (2013). Efficient removal of Rhodamine B using a rice hull-based silica supported iron catalyst by Fenton-like process. Chemical Engineering Journal, 229, 351-363. doi: https://doi.org/10.1016/j.cej.2013.06.020
  • Ghasemi, H., Aghabarari, B., Alizadeh, M., Khanlarkhani, A. & Abu-Zahra, N. (2020). High efficiency decolorization of wastewater by Fenton catalyst: Magnetic iron-copper hybrid oxides. Journal of Water Process Engineering, 37, 101540. doi: https://doi.org/10.1016/j.jwpe.2020.101540
  • Göde, J.N., Souza, D.H., Trevisan, V. & Skoronski, E. (2019). Application of the Fenton and Fenton-like Processes in the Landfill Leachate Tertiary Treatment. Journal of Environmental Chemical Engineering, 7(5), 103352. doi: https://doi.org/10.1016/j.jece.2019.103352
  • Guo, S., Zhang, G. & Wang, J. (2014). Photo-Fenton degradation of rhodamine B using Fe2O3-Kaolin as heterogeneous catalyst: Characterization, process optimization and mechanism. Journal of Colloid and Interface Science, 433, 1-8. doi: https://doi.org/10.1016/j.jcis.2014.07.017
  • Idel-aouad, R., Valiente, M., Yaacoubi, A., Tanouti, B. & Mesas, M.L. (2011). Rapid decolourization and mineralization of the azo dye C.I. Acid Red 14 by heterogeneous Fenton reaction. Journal of Hazardous Materials, 186, 745-750. doi: https://doi.org/10.1016/j.jhazmat.2010.11.056
  • Kantar, C., Oral, O., Urken, O. & Oz, N.A. (2019). Role of complexing agents on oxidative degradation of chlorophenolic compounds by pyrite-Fenton process: Batch and column experiments. Journal of Hazardous Materials, 373, 160-167. doi: https://doi.org/10.1016/j.jhazmat.2019.03.065
  • Kaya, S. & Asci, Y. (2019). Application of heterogeneous Fenton processes using Fe(III)/MnO2 and Fe(III)/SnO2 catalysts in the treatment of sunflower oil industrial wastewater. Desalination and Water Treatment, 171, 302-313. doi: https://doi.org/10.5004/dwt.2019.24797
  • Khataee, A., Gholami, P. & Vahid, B. (2017). Catalytic performance of hematite nanostructures prepared by N2 glow discharge plasma in heterogeneous Fenton-like process for acid red 17 degradation. Journal of Industrial and Engineering Chemistry, 50, 86-95. doi: https://doi.org/10.1016/j.jiec.2017.01.035
  • Kwan, W.P. & Voelker, B.M. (2003). Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environmental Science & Technology, 37, 1150-1158. doi: https://doi.org/10.1021/es020874g
  • Lin, H., Ma, X., Zhao, L. & Dong, Y. (2014). Kinetics and products of PCB28 degradation through a goethite-catalyzed Fenton-like reaction. Chemosphere, 101, 15-20. doi: https://doi.org/10.1016/j.chemosphere.2013.11.063
  • Malakootian, M., Jafari, M.H., Moosavi, S. & Daneshpazhoh, M. (2013). Performance evaluation of Fenton process to remove chromium, COD and turbidity from electroplating industry wastewater. Water and Wastewater, 24, 2-10.
  • Mokhbi, Y., Korichi, M. & Akchiche, Z. (2019). Combined photocatalytic and Fenton oxidation for oily wastewater treatment. Applied Water Science, 9(35), 2-9. doi: https://doi.org/10.1007/s13201-019-0916-x
  • Naseem, Z., Bhatti, H. N., Iqbal, M., Noreen, S. & Zahid, M. (2019). Fenton and photo-fenton oxidation for the remediation of textile effluents: An experimental study. Textiles and Clothing, 9, 235-251. doi: https://doi.org/10.1002/9781119526599.ch9
  • Nidheesh, P.V., Gandhimathi, R. & Ramesh, S.T. (2013). Degradation of dyes from aqueous solution by Fenton processes: a review. Environmental Science and Pollution Research, 20, 2099-2132. doi: https://doi.org/10.1007/s11356-012-1385-z
  • Qiao, R.P., Li, N., Qi, X.H., Wang, Q.S. & Zhuang, Y.Y. (2005). Degradation of microcystin-RR by UV radiation in the presence of hydrogenperoxide. Toxicon, 45, 745-752. doi: https://doi.org/10.1016/j.toxicon.2005.01.012
  • Rehman, F., Sayed, M., Khan, J.A., Shah, L.A., Shah, N.S., Khan H.M. & Khattak, R. (2018). Degradation of Crystal Violet Dye by Fenton and Photo-Fenton Oxidation Processes. Zeitschrift für Physikalische Chemie, 232, 1771-1786. doi: https://doi.org/10.1515/zpch-2017-1099
  • Ribeiro, R.S., Silva, A.M.T., Figueiredo, J.L., Faria, J.L. & Gomes, H.T. (2016). Catalytic wet peroxide oxidation: a route towards the application of hybrid magnetic carbon nanocomposites for the degradation of organic pollutants. A review. Applied Catalysis B: Environmental, 187, 428-460. doi: https://doi.org/10.1016/j.apcatb.2016.01.033
  • Ruales-Lonfat, C., Barona, J.F., Sienkiewicz, A., Bensimon, M., Vélez-Colmenares, J., Benítez, N. & Pulgarín, C. (2015). Iron oxides semiconductors are efficients for solar water disinfection: A comparison with photo-Fenton processes at neutral pH. Applied Catalysis B: Environmental, 166-167, 497-508. doi: https://doi.org/10.1016/j.apcatb.2014.12.007
  • Sani, S., Dashti, A. F. & Adnan R. (2020). Applications of Fenton oxidation processes for decontamination of palm oil mill effluent: A review. Arabian Journal of Chemistry, 13, 7302-7323. doi: https://doi.org/10.1016/j.arabjc.2020.08.009
  • Setifia, N., Debbache, N., Sehili, T. & Halimi, O. (2019). Heterogeneous Fenton-like oxidation of naproxen using synthesized goethite-montmorillonite nanocomposite. Journal of Photochemistry & Photobiology A: Chemistry, 370, 67-74. doi: https://doi.org/10.1016/j.jphotochem.2018.10.033
  • Soltani, R.D.C., Khataee, A.R., Safari, M. & Joo, S.W. (2013). Preparation of bio-silica/chitosan nanocomposite for adsorption of a textile dye in aqueous solutions. International Biodeterioration & Biodegradation, 85, 383-391. doi: https://doi.org/10.1016/j.ibiod.2013.09.004
  • Ukpaka, C.P. (2018). Model prediction on the characteristics of dipole atoms: The concept of Schrodinger’s equation. Chemistry International, 4, 146-153. doi: https://doi.org/10.31221/osf.io/a249h
  • Verma, A.K., Dash, R.R. & Bhunia, P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93(1), 154-168. doi: https://doi.org/10.1016/j.jenvman.2011.09.012
  • Wang, N., Zheng, T., Zhang, G. & Wang, P. (2016). A review on Fenton-like processes for organic wastewater treatment. Journal of Environmental Chemical Engineering, 4, 762-787. doi: https://doi.org/10.1016/j.jece.2015.12.016
  • Xia, Q., Jiang, Z., Wang, J. & Yao, Z. (2017). A facile preparation of hierarchical dendriticzero-valent iron for Fenton-like degradation of phenol. Catalysis Communications, 100, 57-61. doi: https://doi.org/10.1016/j.catcom.2017.06.017
  • Zhang, X., Wang, L., Liu, C., Ding, Y., Zhang, S., Zeng, Y. & Luo, S. (2016). A bamboo-inspired hierarchical nanoarchitecture of Ag/CuO/TiO2 nanotube array for highly photocatalytic degradation of 2,4-dinitrophenol. Journal of Hazardous Materials, 313, 244-252. doi: https://doi.org/10.1016/j.jhazmat.2016.03.094

TEKSTİL ENDÜSTRİSİ ATIKSUYUNDA HETEROJEN FENTON PROSESİ İÇİN KATALİZÖR OLARAK DEMİR İÇEREN METAL OKSİT KULLANIMI

Yıl 2021, , 110 - 117, 30.04.2021
https://doi.org/10.31796/ogummf.881906

Öz

The unconscious use of surface and ground waters and the rapid pollution of water, which is the main source of life for all living creatures as a result of drought due to global warming, pose a serious problem. The rapidly increasing world population and the need for clean water have brought up a global water crisis. The textile industry is one of the largest producers of wastewater in the world. Textile industry wastewater contains high amounts of non-biodegradable organic compounds, high concentrations of dyestuffs, salt, detergent and soap. Therefore, it is of great importance to remove organic pollutants in this wastewater. Since traditional methods are insufficient to remove organic compounds in wastewater, advanced treatment methods are required. Advanced oxidation processes (AOPs) are one of the alternative treatment methods preferred in recent years. In this study, color removal from textile industry wastewater was researched by the heterogeneous Fenton process, which is an advanced oxidation process. The parameters such as catalyst dosage, pH, hydrogen peroxide concentration, temperature, reaction time and mixing speed that effect heterogeneous Fenton processes were investigated. Under optimum experimental conditions, the color removal efficiency was achieved as 87%.

Kaynakça

  • Ayas, N., Asci, Y. & Yurdakul, M. (2016). Using of Fe/ZnO2 catalyst to remove direct Orange 26 from water by Fenton oxidation at wide pH values. Fresenius Environmental Bulletin, 25, 3272-3279.
  • Buthiyappan, A., Aziz A.R.A. & Daud, W.M.A.W. (2016). Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents. Reviews in Chemical Engineering, 32(1), 1-47. doi: https://doi.org/10.1515/revce-2015-0034
  • Buthiyappan, A. & Raman, A.A.A. (2019). Energy intensified integrated advanced oxidation technology for the treatment of recalcitrant industrial wastewater. Journal of Cleaner Production, 206, 1025-1040. doi: https://doi.org/10.1016/j.jclepro.2018.09.234
  • Chen, Y. (2006). Study on the kinetics of removal of microcystin-LR by Fenton reagent. Safety and Environmental Engineering, 13(4), 50-58.
  • Devi, L.G., Kumar, S.G., Reddy, K. M. & Munikrishnappa, C. (2009). Photo degradation of Methyl Orange an azo dye by Advanced Fenton Process using zero valent metallic iron: Influence of various reaction parameters and its degradation mechanism. Journal of Hazardous Materials, 164, 459-467. doi: https://doi.org/10.1016/j.jhazmat.2008.08.017
  • Domingues, E., Assunçao, N., Gomes, J., Lopes, D.V., Frade, J.R., Quina, M.J., Quinta- Ferreira, R.M. & Martins, R.C. (2019). Catalytic efficiency of red mud for the degradation of olive mill wastewater through heterogeneous Fenton’s process. Water, 11, 1183. doi: https://doi.org/10.3390/w11061183
  • Feng, F., Xu, Z., Li, X., You, W. & Zhen, Y. (2010). Advanced treatment of dyeing wastewater towards reuse by the combined Fenton oxidation and membrane bioreactor process. Journal of Environmental Sciences, 22(11), 1657-1665. doi: https://doi.org/10.1016/S1001-0742(09)60303-X
  • Gan, P.P. & Li S.F.Y. (2013). Efficient removal of Rhodamine B using a rice hull-based silica supported iron catalyst by Fenton-like process. Chemical Engineering Journal, 229, 351-363. doi: https://doi.org/10.1016/j.cej.2013.06.020
  • Ghasemi, H., Aghabarari, B., Alizadeh, M., Khanlarkhani, A. & Abu-Zahra, N. (2020). High efficiency decolorization of wastewater by Fenton catalyst: Magnetic iron-copper hybrid oxides. Journal of Water Process Engineering, 37, 101540. doi: https://doi.org/10.1016/j.jwpe.2020.101540
  • Göde, J.N., Souza, D.H., Trevisan, V. & Skoronski, E. (2019). Application of the Fenton and Fenton-like Processes in the Landfill Leachate Tertiary Treatment. Journal of Environmental Chemical Engineering, 7(5), 103352. doi: https://doi.org/10.1016/j.jece.2019.103352
  • Guo, S., Zhang, G. & Wang, J. (2014). Photo-Fenton degradation of rhodamine B using Fe2O3-Kaolin as heterogeneous catalyst: Characterization, process optimization and mechanism. Journal of Colloid and Interface Science, 433, 1-8. doi: https://doi.org/10.1016/j.jcis.2014.07.017
  • Idel-aouad, R., Valiente, M., Yaacoubi, A., Tanouti, B. & Mesas, M.L. (2011). Rapid decolourization and mineralization of the azo dye C.I. Acid Red 14 by heterogeneous Fenton reaction. Journal of Hazardous Materials, 186, 745-750. doi: https://doi.org/10.1016/j.jhazmat.2010.11.056
  • Kantar, C., Oral, O., Urken, O. & Oz, N.A. (2019). Role of complexing agents on oxidative degradation of chlorophenolic compounds by pyrite-Fenton process: Batch and column experiments. Journal of Hazardous Materials, 373, 160-167. doi: https://doi.org/10.1016/j.jhazmat.2019.03.065
  • Kaya, S. & Asci, Y. (2019). Application of heterogeneous Fenton processes using Fe(III)/MnO2 and Fe(III)/SnO2 catalysts in the treatment of sunflower oil industrial wastewater. Desalination and Water Treatment, 171, 302-313. doi: https://doi.org/10.5004/dwt.2019.24797
  • Khataee, A., Gholami, P. & Vahid, B. (2017). Catalytic performance of hematite nanostructures prepared by N2 glow discharge plasma in heterogeneous Fenton-like process for acid red 17 degradation. Journal of Industrial and Engineering Chemistry, 50, 86-95. doi: https://doi.org/10.1016/j.jiec.2017.01.035
  • Kwan, W.P. & Voelker, B.M. (2003). Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environmental Science & Technology, 37, 1150-1158. doi: https://doi.org/10.1021/es020874g
  • Lin, H., Ma, X., Zhao, L. & Dong, Y. (2014). Kinetics and products of PCB28 degradation through a goethite-catalyzed Fenton-like reaction. Chemosphere, 101, 15-20. doi: https://doi.org/10.1016/j.chemosphere.2013.11.063
  • Malakootian, M., Jafari, M.H., Moosavi, S. & Daneshpazhoh, M. (2013). Performance evaluation of Fenton process to remove chromium, COD and turbidity from electroplating industry wastewater. Water and Wastewater, 24, 2-10.
  • Mokhbi, Y., Korichi, M. & Akchiche, Z. (2019). Combined photocatalytic and Fenton oxidation for oily wastewater treatment. Applied Water Science, 9(35), 2-9. doi: https://doi.org/10.1007/s13201-019-0916-x
  • Naseem, Z., Bhatti, H. N., Iqbal, M., Noreen, S. & Zahid, M. (2019). Fenton and photo-fenton oxidation for the remediation of textile effluents: An experimental study. Textiles and Clothing, 9, 235-251. doi: https://doi.org/10.1002/9781119526599.ch9
  • Nidheesh, P.V., Gandhimathi, R. & Ramesh, S.T. (2013). Degradation of dyes from aqueous solution by Fenton processes: a review. Environmental Science and Pollution Research, 20, 2099-2132. doi: https://doi.org/10.1007/s11356-012-1385-z
  • Qiao, R.P., Li, N., Qi, X.H., Wang, Q.S. & Zhuang, Y.Y. (2005). Degradation of microcystin-RR by UV radiation in the presence of hydrogenperoxide. Toxicon, 45, 745-752. doi: https://doi.org/10.1016/j.toxicon.2005.01.012
  • Rehman, F., Sayed, M., Khan, J.A., Shah, L.A., Shah, N.S., Khan H.M. & Khattak, R. (2018). Degradation of Crystal Violet Dye by Fenton and Photo-Fenton Oxidation Processes. Zeitschrift für Physikalische Chemie, 232, 1771-1786. doi: https://doi.org/10.1515/zpch-2017-1099
  • Ribeiro, R.S., Silva, A.M.T., Figueiredo, J.L., Faria, J.L. & Gomes, H.T. (2016). Catalytic wet peroxide oxidation: a route towards the application of hybrid magnetic carbon nanocomposites for the degradation of organic pollutants. A review. Applied Catalysis B: Environmental, 187, 428-460. doi: https://doi.org/10.1016/j.apcatb.2016.01.033
  • Ruales-Lonfat, C., Barona, J.F., Sienkiewicz, A., Bensimon, M., Vélez-Colmenares, J., Benítez, N. & Pulgarín, C. (2015). Iron oxides semiconductors are efficients for solar water disinfection: A comparison with photo-Fenton processes at neutral pH. Applied Catalysis B: Environmental, 166-167, 497-508. doi: https://doi.org/10.1016/j.apcatb.2014.12.007
  • Sani, S., Dashti, A. F. & Adnan R. (2020). Applications of Fenton oxidation processes for decontamination of palm oil mill effluent: A review. Arabian Journal of Chemistry, 13, 7302-7323. doi: https://doi.org/10.1016/j.arabjc.2020.08.009
  • Setifia, N., Debbache, N., Sehili, T. & Halimi, O. (2019). Heterogeneous Fenton-like oxidation of naproxen using synthesized goethite-montmorillonite nanocomposite. Journal of Photochemistry & Photobiology A: Chemistry, 370, 67-74. doi: https://doi.org/10.1016/j.jphotochem.2018.10.033
  • Soltani, R.D.C., Khataee, A.R., Safari, M. & Joo, S.W. (2013). Preparation of bio-silica/chitosan nanocomposite for adsorption of a textile dye in aqueous solutions. International Biodeterioration & Biodegradation, 85, 383-391. doi: https://doi.org/10.1016/j.ibiod.2013.09.004
  • Ukpaka, C.P. (2018). Model prediction on the characteristics of dipole atoms: The concept of Schrodinger’s equation. Chemistry International, 4, 146-153. doi: https://doi.org/10.31221/osf.io/a249h
  • Verma, A.K., Dash, R.R. & Bhunia, P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93(1), 154-168. doi: https://doi.org/10.1016/j.jenvman.2011.09.012
  • Wang, N., Zheng, T., Zhang, G. & Wang, P. (2016). A review on Fenton-like processes for organic wastewater treatment. Journal of Environmental Chemical Engineering, 4, 762-787. doi: https://doi.org/10.1016/j.jece.2015.12.016
  • Xia, Q., Jiang, Z., Wang, J. & Yao, Z. (2017). A facile preparation of hierarchical dendriticzero-valent iron for Fenton-like degradation of phenol. Catalysis Communications, 100, 57-61. doi: https://doi.org/10.1016/j.catcom.2017.06.017
  • Zhang, X., Wang, L., Liu, C., Ding, Y., Zhang, S., Zeng, Y. & Luo, S. (2016). A bamboo-inspired hierarchical nanoarchitecture of Ag/CuO/TiO2 nanotube array for highly photocatalytic degradation of 2,4-dinitrophenol. Journal of Hazardous Materials, 313, 244-252. doi: https://doi.org/10.1016/j.jhazmat.2016.03.094
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Merve Durgut Bu kişi benim 0000-0003-3556-6461

Şefika Kaya 0000-0001-8277-4365

Yeliz Aşçı 0000-0001-5618-058X

Yayımlanma Tarihi 30 Nisan 2021
Kabul Tarihi 23 Mart 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Durgut, M., Kaya, Ş., & Aşçı, Y. (2021). TEKSTİL ENDÜSTRİSİ ATIKSUYUNDA HETEROJEN FENTON PROSESİ İÇİN KATALİZÖR OLARAK DEMİR İÇEREN METAL OKSİT KULLANIMI. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 29(1), 110-117. https://doi.org/10.31796/ogummf.881906
AMA Durgut M, Kaya Ş, Aşçı Y. TEKSTİL ENDÜSTRİSİ ATIKSUYUNDA HETEROJEN FENTON PROSESİ İÇİN KATALİZÖR OLARAK DEMİR İÇEREN METAL OKSİT KULLANIMI. ESOGÜ Müh Mim Fak Derg. Nisan 2021;29(1):110-117. doi:10.31796/ogummf.881906
Chicago Durgut, Merve, Şefika Kaya, ve Yeliz Aşçı. “TEKSTİL ENDÜSTRİSİ ATIKSUYUNDA HETEROJEN FENTON PROSESİ İÇİN KATALİZÖR OLARAK DEMİR İÇEREN METAL OKSİT KULLANIMI”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 29, sy. 1 (Nisan 2021): 110-17. https://doi.org/10.31796/ogummf.881906.
EndNote Durgut M, Kaya Ş, Aşçı Y (01 Nisan 2021) TEKSTİL ENDÜSTRİSİ ATIKSUYUNDA HETEROJEN FENTON PROSESİ İÇİN KATALİZÖR OLARAK DEMİR İÇEREN METAL OKSİT KULLANIMI. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 29 1 110–117.
IEEE M. Durgut, Ş. Kaya, ve Y. Aşçı, “TEKSTİL ENDÜSTRİSİ ATIKSUYUNDA HETEROJEN FENTON PROSESİ İÇİN KATALİZÖR OLARAK DEMİR İÇEREN METAL OKSİT KULLANIMI”, ESOGÜ Müh Mim Fak Derg, c. 29, sy. 1, ss. 110–117, 2021, doi: 10.31796/ogummf.881906.
ISNAD Durgut, Merve vd. “TEKSTİL ENDÜSTRİSİ ATIKSUYUNDA HETEROJEN FENTON PROSESİ İÇİN KATALİZÖR OLARAK DEMİR İÇEREN METAL OKSİT KULLANIMI”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 29/1 (Nisan 2021), 110-117. https://doi.org/10.31796/ogummf.881906.
JAMA Durgut M, Kaya Ş, Aşçı Y. TEKSTİL ENDÜSTRİSİ ATIKSUYUNDA HETEROJEN FENTON PROSESİ İÇİN KATALİZÖR OLARAK DEMİR İÇEREN METAL OKSİT KULLANIMI. ESOGÜ Müh Mim Fak Derg. 2021;29:110–117.
MLA Durgut, Merve vd. “TEKSTİL ENDÜSTRİSİ ATIKSUYUNDA HETEROJEN FENTON PROSESİ İÇİN KATALİZÖR OLARAK DEMİR İÇEREN METAL OKSİT KULLANIMI”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, c. 29, sy. 1, 2021, ss. 110-7, doi:10.31796/ogummf.881906.
Vancouver Durgut M, Kaya Ş, Aşçı Y. TEKSTİL ENDÜSTRİSİ ATIKSUYUNDA HETEROJEN FENTON PROSESİ İÇİN KATALİZÖR OLARAK DEMİR İÇEREN METAL OKSİT KULLANIMI. ESOGÜ Müh Mim Fak Derg. 2021;29(1):110-7.

20873 13565 13566 15461 13568  14913