Araştırma Makalesi
BibTex RIS Kaynak Göster

DEPOSITION AND CHARACTERIZATION OF ZNO THIN FILMS ON CARBON SUBSTRATE PRODUCED FROM BIOMASS

Yıl 2021, , 431 - 439, 31.12.2021
https://doi.org/10.31796/ogummf.957064

Öz

In this study, zinc oxide (ZnO) nano-particles that is used in many application areas with high thermal and chemical stability, biocompatible, cheap and non-toxic properties; was deposited onto the porous carbon on bio-char produced from biomass. Rice husk was chosen as the biomass source. The results of the characterization studies applied before and after the carbonization process were presented in the study. Rice husk is a suitable raw material for the production of porous carbon material by carbonization method with its low moisture content (2.01 wt.%) and high volatile matter content (63.48 wt.%). It was observed that the surface area of the synthesized carbonaceous material was 79.63 m2/g and the average pore size was 5.07 nm. ZnO nano-particles were deposited on the carbon substrate using chemical bath storage technique. ZnO nano-particles characterized by scanning electron microscopy (SEM) and X-ray diffractometry (XRD). It was determined that they have crystalline structure and the surface morphology of all thin films are homogeneous and compact.

Kaynakça

  • Atukeren, E. Z. (2013). Pirinç Kabuğu Külü ve Çam altı Tuzlası Atık Tuz Çözeltisi Kullanılarak Magnezyum Silikat Üretimi. (Doctoral Dissertation). İstanbul Technical University, İstanbul.
  • ASTM E-897-82 (1983), Standart test method for volatile matter in analysis sample refuse derived fuel-3, In ASTM Annual Book of Ame. Soc. for Testing and Materials Standarts, Easton, M.D., USA.
  • ASTM D-1102-84 (1983), Standart test method for ash in wood, In ASTM Annual Book of Ame. Soc. for Testing and Materials Standarts, Easton, M.D., USA.
  • Babu, B. V., & Chaurasia, A. S. (2003). Modeling for pyrolysis of solid particle: kinetics and heat transfer effects. Energy Conversion and Management, 44(14), 2251-2275. doi: https://doi.org/10.1016/S0196-8904(02)00252-2.
  • Balathanigaimani, M. S., Shim, W. G., Lee, M. J., Kim, C., Lee, J. W., & Moon, H. (2008). Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors. Electrochemistry Communications, 10(6), 868-871. doi: https://doi.org/10.1016/j.elecom.2008.04.003
  • Bashid, H. A. A., Lim, H. N., Kamaruzaman, S., Rashid, S. A., Yunus, R., Huang, N. M., ... & Alagarsamy, P. (2017). Electrodeposition of polypyrrole and reduced graphene oxide onto carbon bundle fibre as electrode for supercapacitor. Nanoscale research letters, 12(1), 1-10. doi: https://doi.org/10.1186/s11671-017-2010-3
  • Dubal, D. P., Dhawale, D. S., Salunkhe, R. R., Pawar, S. M., Fulari, V. J., & Lokhande, C. D. (2009). A novel chemical synthesis of interlocked cubes of hausmannite Mn3O4 thin films for supercapacitor application. Journal of Alloys and Compounds, 484(1-2), 218-221. doi: https://doi.org/10.1016/j.jallcom.2009.03.135
  • Dubal, D. P., Dhawale, D. S., Salunkhe, R. R., Fulari, V. J., & Lokhande, C. D. (2010). Chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application. Journal of Alloys and Compounds, 497(1-2), 166-170. doi: https://doi.org/10.1016/j.jallcom.2010.02.182
  • Elias, M., Akter, S., Hossain, M. A., & Suhag, M. H. (2021). Fabrication of Zn3 (PO4) 2/carbon nanotubes nanocomposite thin film via sol-gel drop coating method with enhanced photocatalytic activity. Thin Solid Films, 717, 138472. doi: https://doi.org/10.1016/j.tsf.2020.138472
  • Ghosh, A., & Lee, Y. H. (2012). Carbon‐based electrochemical capacitors. ChemSusChem, 5(3), 480-499. doi: https://doi.org/10.1002/cssc.201100645
  • Harker, J.H., Backhurst, J.R. (1981), Fuel and Energy 120, Academic Press Inc., London.
  • Hodes, G. (2007). Semiconductor and ceramic nanoparticle films deposited by chemical bath deposition. Physical Chemistry Chemical Physics, 9(18), 2181-2196. doi: https://doi.org/10.1039/B616684A
  • Hossain, M. Z., Bahar, M. M., Sarkar, B., Donne, S. W., Wade, P., & Bolan, N. (2021). Assessment of the fertilizer potential of biochars produced from slow pyrolysis of biosolid and animal manures. Journal of Analytical and Applied Pyrolysis, 155, 105043. https://doi.org/10.1016/j.jaap.2021.105043.
  • Ito, E., Mozia, S., Okuda, M., Nakano, T., Toyoda, M., & Inagaki, M. (2007). Nanoporous carbons from cypress II. Application to electric double layer capacitors. New Carbon Materials, 22(4), 321-326. doi: https://doi.org/10.1016/S1872-5805(08)60003-7
  • Jin, H., Wang, X., Gu, Z., & Polin, J. (2013). Carbon materials from high ash biochar for supercapacitor and improvement of capacitance with HNO3 surface oxidation. Journal of Power Sources, 236, 285-292. doi: https://doi.org/10.1016/j.jpowsour.2013.02.088
  • Jina, M., Zhang, X., Zhen, Q., He, Y., Chen, X., Lyu, W., ... & Ding, M. (2017). An electrochemical sensor for indole in plasma based on MWCNTs-chitosan modified screen-printed carbon electrode. Biosensors and Bioelectronics, 98, 392-397. doi: https://doi.org/10.1016/j.bios.2017.07.018
  • Kant, R., Sharma, D., & Chanchal, V. (2021). Enhancement in dielectric and optical properties of Al doped ZnO/reduced graphene oxide nanocomposite. Materials Technology, 1-8. doi: https://doi.org/10.1080/10667857.2020.1868745
  • Karayılmazlar, S., Saraçoğlu, N., Çabuk, Y. & Kurt, R. (2011). Biyokütlenin Türkiye’de Enerji Üretiminde Değerlendirilmesi. Bartın Orman Fakültesi Dergisi, 13 (19), 63.
  • Karthikeyan, K., Aravindan, V., Lee, S. B., Jang, I. C., Lim, H. H., Park, G. J., ... & Lee, Y. S. (2010). A novel asymmetric hybrid supercapacitor based on Li2FeSiO4 and activated carbon electrodes. Journal of Alloys and Compounds, 504(1), 224-227. doi: https://doi.org/10.1016/j.jallcom.2010.05.097
  • Kulal, P. M., Dubal, D. P., Lokhande, C. D., & Fulari, V. J. (2011). Chemical synthesis of Fe2O3 thin films for supercapacitor application. Journal of Alloys and Compounds, 509(5), 2567-2571. doi: https://doi.org/10.1016/j.jallcom.2010.11.091
  • Kuratani, K., Okuno, K., Iwaki, T., Kato, M., Takeichi, N., Miyuki, T., ... & Sakai, T. (2011). Converting rice husk activated carbon into active material for capacitor using three-dimensional porous current collector. Journal of Power Sources, 196(24), 10788-10790. doi: https://doi.org/10.1016/j.jpowsour.2011.09.001
  • Li, Q., Liu, F., Zhang, L., Nelson, B. J., Zhang, S., Ma, C., ... & Zhang, X. (2012). In situ construction of potato starch based carbon nanofiber/activated carbon hybrid structure for high-performance electrical double layer capacitor. Journal of power sources, 207, 199-204. doi: https://doi.org/10.1016/j.jpowsour.2012.01.142
  • Li, X., Xing, W., Zhuo, S., Zhou, J., Li, F., Qiao, S. Z., & Lu, G. Q. (2011). Preparation of capacitor’s electrode from sunflower seed shell. Bioresource technology, 102(2), 1118-1123. doi: https://doi.org/10.1016/j.biortech.2010.08.110
  • Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M., Doğan, S., ... & Morkoç, A. H. (2005). A comprehensive review of ZnO materials and devices. Journal of applied physics, 98(4), 11. doi: https://doi.org/10.1063/1.1992666
  • Presser, V., Zhang, L., Niu, J. J., McDonough, J., Perez, C., Fong, H., & Gogotsi, Y. (2011). Storage Materials: Flexible Nano‐felts of Carbide‐Derived Carbon with Ultra‐high Power Handling Capability (Adv. Energy Mater. 3/2011). Advanced Energy Materials, 1(3), 422-422. doi: https://doi.org/10.1002/aenm.201100047
  • Salunkhe, R. R., Jang, K., Yu, H., Yu, S., Ganesh, T., Han, S. H., & Ahn, H. (2011). Chemical synthesis and electrochemical analysis of nickel cobaltite nanostructures for supercapacitor applications. Journal of Alloys and Compounds, 509(23), 6677-6682. doi: https://doi.org/10.1016/j.jallcom.2011.03.136
  • Sarıkaya, A. (2017). Atık Lastik ve Pirinç Kabuğu Kopirolizinde Pirinç Kabuğunun Ürün Verimlerine Etkisi. (Master Thesis). Afyon Kocatepe University, Afyon.
  • Sun, L., Yang, M., Huang, J., Yu, D., Hong, W., & Chen, X. (2016). Freestanding graphitic carbon nitride photonic crystals for enhanced photocatalysis. Advanced Functional Materials, 26(27), 4943-4950. doi: https://doi.org/10.1002/adfm.201600894
  • Wang, N., Tahmasebi, A., Yu, J., Xu, J., Huang, F., & Mamaeva, A. (2015). A comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass. Bioresource technology, 190, 89-96. doi: https://doi.org/10.1016/j.biortech.2015.04.038
  • Yaman, E., Ulusal, A., & Uzun, B. B. (2021). Co-pyrolysis of lignite and rapeseed cake: a comparative study on the thermal decomposition behavior and pyrolysis kinetics. SN Applied Sciences, 3(1), 1-15. doi: https://doi.org/10.1007/s42452-020-04040-y.
  • Yuan, T., Tahmasebi, A., & Yu, J. (2015). Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor. Bioresource Technology, 175, 333-341. doi: https://doi.org/10.1016/j.biortech.2014.10.108
  • Yüksel, Ö., Canikoglu, N., & Toplan, H. (2003). Kontrollükimyasal Çöktürme Yöntemi ile Üretilen Yüksek Vol Taj. Lı Zn O Varistörlerin Mikroyapısal Özelliklerinin İncelenmesi. Sakarya University Journal of Science, 7(2), 150-153.
  • Zhu, Y., Murali, S., Stoller, M. D., Ganesh, K. J., Cai, W., Ferreira, P. J., ... & Ruoff, R. S. (2011). Carbon-based supercapacitors produced by activation of graphene. science, 332(6037), 1537-1541. doi: https://doi.org/10.1126/science.1200770

BİYOKÜTLEDEN ÜRETİLEN KARBON ALTLIK ÜZERİNDE ZNO NANO-PARÇACIKLARIN BİRİKTİRİLMESİ VE KARAKTERİZASYONU

Yıl 2021, , 431 - 439, 31.12.2021
https://doi.org/10.31796/ogummf.957064

Öz

Yapılan bu çalışmada, ısıl ve kimyasal kararlılığı yüksek, biyo-uyumlu, ucuz ve toksik olmayan özellikleri ile pek çok uygulama alanında kullanılan çinko oksit (ZnO) nano-çiçekler; gözenekli karbon altlık olarak sürdürülebilir bir kaynak olan biyokütleden üretilen biyo-char üzerinde biriktirilmiştir. Biyokütle kaynağı olarak pirinç kabuğu seçilmiştir. Karbonizasyon süreci öncesinde ve sonrasında yapılan karakterizasyon çalışmalarının sonuçları çalışma içerisinde sunulmuştur. Pirinç kabuğunun sahip olduğu düşük nem miktarı (kütlece %2,01) ve yüksek uçucu madde miktarı (kütlece %63,48), bu hammaddenin karbonizasyon metodu ile gözenekli karbon malzeme üretimi için uygun olduğunu göstermektedir. Sentezlenen karbonlu malzemenin yüzey alanının 79,627 g/m2 ve gözenek boyutunun ise 5,07 nm olduğu görülmüştür. ZnO ince filmler, karbon altlık üzerine kimyasal banyo depolama tekniği kullanılarak biriktirilmiştir. Taramalı elektron mikroskobu (SEM) ve X-ışını difraktometresi (XRD) ile karakterize edilen ZnO nano-çiçeklerin kristal yapıya sahip olduğu belirlenmiştir ve tüm ince filmlerin yüzey morfolojileri ise homojen ve kompakttır.

Kaynakça

  • Atukeren, E. Z. (2013). Pirinç Kabuğu Külü ve Çam altı Tuzlası Atık Tuz Çözeltisi Kullanılarak Magnezyum Silikat Üretimi. (Doctoral Dissertation). İstanbul Technical University, İstanbul.
  • ASTM E-897-82 (1983), Standart test method for volatile matter in analysis sample refuse derived fuel-3, In ASTM Annual Book of Ame. Soc. for Testing and Materials Standarts, Easton, M.D., USA.
  • ASTM D-1102-84 (1983), Standart test method for ash in wood, In ASTM Annual Book of Ame. Soc. for Testing and Materials Standarts, Easton, M.D., USA.
  • Babu, B. V., & Chaurasia, A. S. (2003). Modeling for pyrolysis of solid particle: kinetics and heat transfer effects. Energy Conversion and Management, 44(14), 2251-2275. doi: https://doi.org/10.1016/S0196-8904(02)00252-2.
  • Balathanigaimani, M. S., Shim, W. G., Lee, M. J., Kim, C., Lee, J. W., & Moon, H. (2008). Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors. Electrochemistry Communications, 10(6), 868-871. doi: https://doi.org/10.1016/j.elecom.2008.04.003
  • Bashid, H. A. A., Lim, H. N., Kamaruzaman, S., Rashid, S. A., Yunus, R., Huang, N. M., ... & Alagarsamy, P. (2017). Electrodeposition of polypyrrole and reduced graphene oxide onto carbon bundle fibre as electrode for supercapacitor. Nanoscale research letters, 12(1), 1-10. doi: https://doi.org/10.1186/s11671-017-2010-3
  • Dubal, D. P., Dhawale, D. S., Salunkhe, R. R., Pawar, S. M., Fulari, V. J., & Lokhande, C. D. (2009). A novel chemical synthesis of interlocked cubes of hausmannite Mn3O4 thin films for supercapacitor application. Journal of Alloys and Compounds, 484(1-2), 218-221. doi: https://doi.org/10.1016/j.jallcom.2009.03.135
  • Dubal, D. P., Dhawale, D. S., Salunkhe, R. R., Fulari, V. J., & Lokhande, C. D. (2010). Chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application. Journal of Alloys and Compounds, 497(1-2), 166-170. doi: https://doi.org/10.1016/j.jallcom.2010.02.182
  • Elias, M., Akter, S., Hossain, M. A., & Suhag, M. H. (2021). Fabrication of Zn3 (PO4) 2/carbon nanotubes nanocomposite thin film via sol-gel drop coating method with enhanced photocatalytic activity. Thin Solid Films, 717, 138472. doi: https://doi.org/10.1016/j.tsf.2020.138472
  • Ghosh, A., & Lee, Y. H. (2012). Carbon‐based electrochemical capacitors. ChemSusChem, 5(3), 480-499. doi: https://doi.org/10.1002/cssc.201100645
  • Harker, J.H., Backhurst, J.R. (1981), Fuel and Energy 120, Academic Press Inc., London.
  • Hodes, G. (2007). Semiconductor and ceramic nanoparticle films deposited by chemical bath deposition. Physical Chemistry Chemical Physics, 9(18), 2181-2196. doi: https://doi.org/10.1039/B616684A
  • Hossain, M. Z., Bahar, M. M., Sarkar, B., Donne, S. W., Wade, P., & Bolan, N. (2021). Assessment of the fertilizer potential of biochars produced from slow pyrolysis of biosolid and animal manures. Journal of Analytical and Applied Pyrolysis, 155, 105043. https://doi.org/10.1016/j.jaap.2021.105043.
  • Ito, E., Mozia, S., Okuda, M., Nakano, T., Toyoda, M., & Inagaki, M. (2007). Nanoporous carbons from cypress II. Application to electric double layer capacitors. New Carbon Materials, 22(4), 321-326. doi: https://doi.org/10.1016/S1872-5805(08)60003-7
  • Jin, H., Wang, X., Gu, Z., & Polin, J. (2013). Carbon materials from high ash biochar for supercapacitor and improvement of capacitance with HNO3 surface oxidation. Journal of Power Sources, 236, 285-292. doi: https://doi.org/10.1016/j.jpowsour.2013.02.088
  • Jina, M., Zhang, X., Zhen, Q., He, Y., Chen, X., Lyu, W., ... & Ding, M. (2017). An electrochemical sensor for indole in plasma based on MWCNTs-chitosan modified screen-printed carbon electrode. Biosensors and Bioelectronics, 98, 392-397. doi: https://doi.org/10.1016/j.bios.2017.07.018
  • Kant, R., Sharma, D., & Chanchal, V. (2021). Enhancement in dielectric and optical properties of Al doped ZnO/reduced graphene oxide nanocomposite. Materials Technology, 1-8. doi: https://doi.org/10.1080/10667857.2020.1868745
  • Karayılmazlar, S., Saraçoğlu, N., Çabuk, Y. & Kurt, R. (2011). Biyokütlenin Türkiye’de Enerji Üretiminde Değerlendirilmesi. Bartın Orman Fakültesi Dergisi, 13 (19), 63.
  • Karthikeyan, K., Aravindan, V., Lee, S. B., Jang, I. C., Lim, H. H., Park, G. J., ... & Lee, Y. S. (2010). A novel asymmetric hybrid supercapacitor based on Li2FeSiO4 and activated carbon electrodes. Journal of Alloys and Compounds, 504(1), 224-227. doi: https://doi.org/10.1016/j.jallcom.2010.05.097
  • Kulal, P. M., Dubal, D. P., Lokhande, C. D., & Fulari, V. J. (2011). Chemical synthesis of Fe2O3 thin films for supercapacitor application. Journal of Alloys and Compounds, 509(5), 2567-2571. doi: https://doi.org/10.1016/j.jallcom.2010.11.091
  • Kuratani, K., Okuno, K., Iwaki, T., Kato, M., Takeichi, N., Miyuki, T., ... & Sakai, T. (2011). Converting rice husk activated carbon into active material for capacitor using three-dimensional porous current collector. Journal of Power Sources, 196(24), 10788-10790. doi: https://doi.org/10.1016/j.jpowsour.2011.09.001
  • Li, Q., Liu, F., Zhang, L., Nelson, B. J., Zhang, S., Ma, C., ... & Zhang, X. (2012). In situ construction of potato starch based carbon nanofiber/activated carbon hybrid structure for high-performance electrical double layer capacitor. Journal of power sources, 207, 199-204. doi: https://doi.org/10.1016/j.jpowsour.2012.01.142
  • Li, X., Xing, W., Zhuo, S., Zhou, J., Li, F., Qiao, S. Z., & Lu, G. Q. (2011). Preparation of capacitor’s electrode from sunflower seed shell. Bioresource technology, 102(2), 1118-1123. doi: https://doi.org/10.1016/j.biortech.2010.08.110
  • Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M., Doğan, S., ... & Morkoç, A. H. (2005). A comprehensive review of ZnO materials and devices. Journal of applied physics, 98(4), 11. doi: https://doi.org/10.1063/1.1992666
  • Presser, V., Zhang, L., Niu, J. J., McDonough, J., Perez, C., Fong, H., & Gogotsi, Y. (2011). Storage Materials: Flexible Nano‐felts of Carbide‐Derived Carbon with Ultra‐high Power Handling Capability (Adv. Energy Mater. 3/2011). Advanced Energy Materials, 1(3), 422-422. doi: https://doi.org/10.1002/aenm.201100047
  • Salunkhe, R. R., Jang, K., Yu, H., Yu, S., Ganesh, T., Han, S. H., & Ahn, H. (2011). Chemical synthesis and electrochemical analysis of nickel cobaltite nanostructures for supercapacitor applications. Journal of Alloys and Compounds, 509(23), 6677-6682. doi: https://doi.org/10.1016/j.jallcom.2011.03.136
  • Sarıkaya, A. (2017). Atık Lastik ve Pirinç Kabuğu Kopirolizinde Pirinç Kabuğunun Ürün Verimlerine Etkisi. (Master Thesis). Afyon Kocatepe University, Afyon.
  • Sun, L., Yang, M., Huang, J., Yu, D., Hong, W., & Chen, X. (2016). Freestanding graphitic carbon nitride photonic crystals for enhanced photocatalysis. Advanced Functional Materials, 26(27), 4943-4950. doi: https://doi.org/10.1002/adfm.201600894
  • Wang, N., Tahmasebi, A., Yu, J., Xu, J., Huang, F., & Mamaeva, A. (2015). A comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass. Bioresource technology, 190, 89-96. doi: https://doi.org/10.1016/j.biortech.2015.04.038
  • Yaman, E., Ulusal, A., & Uzun, B. B. (2021). Co-pyrolysis of lignite and rapeseed cake: a comparative study on the thermal decomposition behavior and pyrolysis kinetics. SN Applied Sciences, 3(1), 1-15. doi: https://doi.org/10.1007/s42452-020-04040-y.
  • Yuan, T., Tahmasebi, A., & Yu, J. (2015). Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor. Bioresource Technology, 175, 333-341. doi: https://doi.org/10.1016/j.biortech.2014.10.108
  • Yüksel, Ö., Canikoglu, N., & Toplan, H. (2003). Kontrollükimyasal Çöktürme Yöntemi ile Üretilen Yüksek Vol Taj. Lı Zn O Varistörlerin Mikroyapısal Özelliklerinin İncelenmesi. Sakarya University Journal of Science, 7(2), 150-153.
  • Zhu, Y., Murali, S., Stoller, M. D., Ganesh, K. J., Cai, W., Ferreira, P. J., ... & Ruoff, R. S. (2011). Carbon-based supercapacitors produced by activation of graphene. science, 332(6037), 1537-1541. doi: https://doi.org/10.1126/science.1200770
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Aynur Aşma Bu kişi benim 0000-0001-5890-9039

Elif Yaman 0000-0002-1052-8779

Sinan Temel 0000-0002-0889-9490

Yayımlanma Tarihi 31 Aralık 2021
Kabul Tarihi 1 Kasım 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Aşma, A., Yaman, E., & Temel, S. (2021). BİYOKÜTLEDEN ÜRETİLEN KARBON ALTLIK ÜZERİNDE ZNO NANO-PARÇACIKLARIN BİRİKTİRİLMESİ VE KARAKTERİZASYONU. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 29(3), 431-439. https://doi.org/10.31796/ogummf.957064
AMA Aşma A, Yaman E, Temel S. BİYOKÜTLEDEN ÜRETİLEN KARBON ALTLIK ÜZERİNDE ZNO NANO-PARÇACIKLARIN BİRİKTİRİLMESİ VE KARAKTERİZASYONU. ESOGÜ Müh Mim Fak Derg. Aralık 2021;29(3):431-439. doi:10.31796/ogummf.957064
Chicago Aşma, Aynur, Elif Yaman, ve Sinan Temel. “BİYOKÜTLEDEN ÜRETİLEN KARBON ALTLIK ÜZERİNDE ZNO NANO-PARÇACIKLARIN BİRİKTİRİLMESİ VE KARAKTERİZASYONU”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 29, sy. 3 (Aralık 2021): 431-39. https://doi.org/10.31796/ogummf.957064.
EndNote Aşma A, Yaman E, Temel S (01 Aralık 2021) BİYOKÜTLEDEN ÜRETİLEN KARBON ALTLIK ÜZERİNDE ZNO NANO-PARÇACIKLARIN BİRİKTİRİLMESİ VE KARAKTERİZASYONU. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 29 3 431–439.
IEEE A. Aşma, E. Yaman, ve S. Temel, “BİYOKÜTLEDEN ÜRETİLEN KARBON ALTLIK ÜZERİNDE ZNO NANO-PARÇACIKLARIN BİRİKTİRİLMESİ VE KARAKTERİZASYONU”, ESOGÜ Müh Mim Fak Derg, c. 29, sy. 3, ss. 431–439, 2021, doi: 10.31796/ogummf.957064.
ISNAD Aşma, Aynur vd. “BİYOKÜTLEDEN ÜRETİLEN KARBON ALTLIK ÜZERİNDE ZNO NANO-PARÇACIKLARIN BİRİKTİRİLMESİ VE KARAKTERİZASYONU”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 29/3 (Aralık 2021), 431-439. https://doi.org/10.31796/ogummf.957064.
JAMA Aşma A, Yaman E, Temel S. BİYOKÜTLEDEN ÜRETİLEN KARBON ALTLIK ÜZERİNDE ZNO NANO-PARÇACIKLARIN BİRİKTİRİLMESİ VE KARAKTERİZASYONU. ESOGÜ Müh Mim Fak Derg. 2021;29:431–439.
MLA Aşma, Aynur vd. “BİYOKÜTLEDEN ÜRETİLEN KARBON ALTLIK ÜZERİNDE ZNO NANO-PARÇACIKLARIN BİRİKTİRİLMESİ VE KARAKTERİZASYONU”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, c. 29, sy. 3, 2021, ss. 431-9, doi:10.31796/ogummf.957064.
Vancouver Aşma A, Yaman E, Temel S. BİYOKÜTLEDEN ÜRETİLEN KARBON ALTLIK ÜZERİNDE ZNO NANO-PARÇACIKLARIN BİRİKTİRİLMESİ VE KARAKTERİZASYONU. ESOGÜ Müh Mim Fak Derg. 2021;29(3):431-9.

20873 13565 13566 15461 13568  14913