Araştırma Makalesi
BibTex RIS Kaynak Göster

Forecastıng Method Selectıon For Capacıty Plannıng In Servıce Systems

Yıl 2007, Cilt: 20 Sayı: 1, 137 - 150, 30.06.2007

Öz

Although service firms tend to estimate the number of customers in a sensitive manner, the structure of the service is changeable on a large scale. Under these circumstances, choosing the most suitable forecasting method is a quite important decision. In this paper, a rule-based Expert Forecasting Method Selector (EFMS) was built by using PROLOG to capture the skill and aimed to act as an advisor for choosing appropriate method. EFMS was designed based on specific criteria to cover both qualitative and quantitative methods that may be applied to service systems. The EFMS also provides users fundamental info about forecasting methods and a chance of making calculation related to the selected method. 

Kaynakça

  • [1] A.S. Anagun, “Selecting inventory models using an expert system.”, Computers and Industrial Engineering, Vol.33, No.1-2, pp.299-302, 1997.
  • [2] R.R. Weitz, “NOSTRADAMUS: A knowledge based forecasting advisor”, International Journal of Forecasting, Vol.2, pp.273-283, 1986.
  • [3] K.K. Kwong, D. Cheng, “A prototype microcomputer forecasting expert system.”, Journal of Business Forecasting, Vol.7, pp.21-27, 1988.
  • [4] O.B. Arinze, S. Kim, M. Anandarajan, “Combining and selecting forecasting models using rule based induction.”, Computers and Operations Research, Vol.24, No.5, pp.423-433, 1997.
  • [5] T. Lo, “An expert system for choosing demand forecasting techniques”, International Journal of Production Economics, Vol.33, No.1-3, pp.5-15, 1994.
  • [6] O.B. Arinze, “Selecting appropriate forecasting models using rule induction.”, Omega. The International Journal of Management Science, Vol.22, pp.647-658, 1994.
  • [7] M.S. Kandil, S.M. El-Debeiky, N.E. Hasanien, “Overview and comparison of long-term forecasting techniques for a fast developing utility: part I” Electric Power System Research, Volume 58, No.1, pp.11-17, 2001.
  • [8] M.S. Kandil, S.M. El-Debeiky, N.E. Hasanien, “The implementation of longterm forecasting strategies using a knowledge-based expert systems: part II” Electric Power System Research, Volume 58, No.1, pp.19-25, 2001.
  • [9] R. B. Chase, N. J. Aquilano, “Production and Operations Management”, 7th edition, IRWIN: Chicago, 1995.
  • [10] D. M. Georgoff, R. G. Murdick, “Manager’s guide to forecasting.”, Harward Business Review, Vol. Jan-Feb, pp.110-120, 1986.
  • [11] J.C. Chambers, S.K. Mullick, D.D. Smith,. “How to choose the right forecasting techniques.”, Harward Business Review, Vol.49, No.4, pp.45-74, 1971.
  • [12] R.G. Murdick, B. Render, R.S. Russell, “Service Operations Management.”, Allyn and Bacon:USA, 1990.
  • [13] J.H. Wilson, B. Keating, “Business Forecasting”, 2nd edition, IRWIN:USA, 1994.
  • [14] I. Bratko, “Prolog: Programming for Artificial Intelligence.”, Addison Wesley: USA, 1990.

Forecastıng Method Selectıon For Capacıty Plannıng In Servıce Systems

Yıl 2007, Cilt: 20 Sayı: 1, 137 - 150, 30.06.2007

Öz

Although service firms tend to estimate the number of customers in a sensitive manner, the structure of the service is changeable on a large scale. Under these circumstances, choosing the most suitable forecasting method is a quite important decision. In this paper, a rule-based Expert Forecasting Method Selector (EFMS) was built by using PROLOG to capture the skill and aimed to act as an advisor for choosing appropriate method. EFMS was designed based on specific criteria to cover both qualitative and quantitative methods that may be applied to service systems. The EFMS also provides users fundamental info about forecasting methods and a chance of making calculation related to the selected method. 

Kaynakça

  • [1] A.S. Anagun, “Selecting inventory models using an expert system.”, Computers and Industrial Engineering, Vol.33, No.1-2, pp.299-302, 1997.
  • [2] R.R. Weitz, “NOSTRADAMUS: A knowledge based forecasting advisor”, International Journal of Forecasting, Vol.2, pp.273-283, 1986.
  • [3] K.K. Kwong, D. Cheng, “A prototype microcomputer forecasting expert system.”, Journal of Business Forecasting, Vol.7, pp.21-27, 1988.
  • [4] O.B. Arinze, S. Kim, M. Anandarajan, “Combining and selecting forecasting models using rule based induction.”, Computers and Operations Research, Vol.24, No.5, pp.423-433, 1997.
  • [5] T. Lo, “An expert system for choosing demand forecasting techniques”, International Journal of Production Economics, Vol.33, No.1-3, pp.5-15, 1994.
  • [6] O.B. Arinze, “Selecting appropriate forecasting models using rule induction.”, Omega. The International Journal of Management Science, Vol.22, pp.647-658, 1994.
  • [7] M.S. Kandil, S.M. El-Debeiky, N.E. Hasanien, “Overview and comparison of long-term forecasting techniques for a fast developing utility: part I” Electric Power System Research, Volume 58, No.1, pp.11-17, 2001.
  • [8] M.S. Kandil, S.M. El-Debeiky, N.E. Hasanien, “The implementation of longterm forecasting strategies using a knowledge-based expert systems: part II” Electric Power System Research, Volume 58, No.1, pp.19-25, 2001.
  • [9] R. B. Chase, N. J. Aquilano, “Production and Operations Management”, 7th edition, IRWIN: Chicago, 1995.
  • [10] D. M. Georgoff, R. G. Murdick, “Manager’s guide to forecasting.”, Harward Business Review, Vol. Jan-Feb, pp.110-120, 1986.
  • [11] J.C. Chambers, S.K. Mullick, D.D. Smith,. “How to choose the right forecasting techniques.”, Harward Business Review, Vol.49, No.4, pp.45-74, 1971.
  • [12] R.G. Murdick, B. Render, R.S. Russell, “Service Operations Management.”, Allyn and Bacon:USA, 1990.
  • [13] J.H. Wilson, B. Keating, “Business Forecasting”, 2nd edition, IRWIN:USA, 1994.
  • [14] I. Bratko, “Prolog: Programming for Artificial Intelligence.”, Addison Wesley: USA, 1990.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Konular Endüstri Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Ezgi Aktar Demirtaş

A.sermet Anagün Bu kişi benim

Yayımlanma Tarihi 30 Haziran 2007
Yayımlandığı Sayı Yıl 2007 Cilt: 20 Sayı: 1

Kaynak Göster

APA Aktar Demirtaş, E., & Anagün, A. (2007). Forecastıng Method Selectıon For Capacıty Plannıng In Servıce Systems. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 20(1), 137-150.
AMA Aktar Demirtaş E, Anagün A. Forecastıng Method Selectıon For Capacıty Plannıng In Servıce Systems. ESOGÜ Müh Mim Fak Derg. Haziran 2007;20(1):137-150.
Chicago Aktar Demirtaş, Ezgi, ve A.sermet Anagün. “Forecastıng Method Selectıon For Capacıty Plannıng In Servıce Systems”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 20, sy. 1 (Haziran 2007): 137-50.
EndNote Aktar Demirtaş E, Anagün A (01 Haziran 2007) Forecastıng Method Selectıon For Capacıty Plannıng In Servıce Systems. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 20 1 137–150.
IEEE E. Aktar Demirtaş ve A. Anagün, “Forecastıng Method Selectıon For Capacıty Plannıng In Servıce Systems”, ESOGÜ Müh Mim Fak Derg, c. 20, sy. 1, ss. 137–150, 2007.
ISNAD Aktar Demirtaş, Ezgi - Anagün, A.sermet. “Forecastıng Method Selectıon For Capacıty Plannıng In Servıce Systems”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 20/1 (Haziran 2007), 137-150.
JAMA Aktar Demirtaş E, Anagün A. Forecastıng Method Selectıon For Capacıty Plannıng In Servıce Systems. ESOGÜ Müh Mim Fak Derg. 2007;20:137–150.
MLA Aktar Demirtaş, Ezgi ve A.sermet Anagün. “Forecastıng Method Selectıon For Capacıty Plannıng In Servıce Systems”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, c. 20, sy. 1, 2007, ss. 137-50.
Vancouver Aktar Demirtaş E, Anagün A. Forecastıng Method Selectıon For Capacıty Plannıng In Servıce Systems. ESOGÜ Müh Mim Fak Derg. 2007;20(1):137-50.

20873 13565 13566 15461 13568  14913