AÇIK MADEN İŞLETMELERİNDE PARTİKÜL MADDE SALINIMI: LİTERATÜR ARAŞTIRMASI
Yıl 2021,
Cilt: 29 Sayı: 3, 450 - 465, 31.12.2021
Zekeriya Duran
,
Bülent Erdem
,
Tuğba Doğan
Öz
Partikül madde kaynaklı hava kirliliği insan sağlığına ve çevreye zarar verebilmektedir. Partikül madde kaynaklarından birisi de madencilik sektörüdür. Açık maden işletmelerinde, yapılan faaliyet türüne (delme, patlatma, yükleme, taşıma, sıyırma, kırma, eleme vb.) bağlı olarak çalışma bölgelerinde değişik düzeylerde PM salınımı oluşmaktadır. Bu nedenle sürdürülen her faaliyetin partikül madde salınım değerlerinin ölçülmesi, bunların ilgili mevzuatta belirtilmiş olan sınır değerler dikkate alınarak değerlendirilmesi ve olumsuz etkileri önleyici/azaltıcı önlemlerin planlanması önemlidir. Konu üzerine yapılmış olan çalışmalar incelendiğinde, maden işletmelerinde yapılan faaliyetin türüne göre oluşabilecek PM salınımını modelleyen denklemlerin geliştirildiği ancak bunların, farklı işletmelerdeki aynı faaliyet için bile değiştiği tespit edilmiştir. Bu nedenle, PM salınım değerlerinin maden işletmesine özgü olduğu, sürekli salınım ölçümü yapmanın daha doğru sonuçlara ulaşılmasını sağlayacağı ve dolayısıyla en gerçekçi yaklaşım olarak, bir maden işletmesinde sürdürülen her faaliyet için ayrı PM salınım modellemesinin yapılmasının gerektiği sonucuna varılmıştır.
Destekleyen Kurum
Sivas Cumhuriyet Üniversitesi Bilimsel Araştırma Projeleri (CÜBAP) Komisyonu
Teşekkür
Bu çalışma Sivas Cumhuriyet Üniversitesi Bilimsel Araştırma Projeleri (CÜBAP) Komisyonu tarafından M-780 Nolu proje kapsamında desteklenmiştir.
Kaynakça
- Air Pollution, (2020). https://www.who.int/health-topics/air-pollution#tab=tab_1 alındığı tarih: 15.01.2020.
- Appleton, T, J., Kingman, S, W., Lowndes, I, S., Silvester, S, A., (2006). The development of a modelling strategy for the simulation of fugitive dust emissions from in-pit quarrying activities: A UK case study, International Journal of Mining, Reclamation and Environment Vol. 20, No. 1, 57 – 82. https://doi.org/10.1080/13895260500396404
- Arregoce´s, H.A., Rojano, R., Angulo, L., Restrepo, G., (2018). Intake fraction of PM10 from coal mine emissions in the North of Colombia, Journal of Environmental and Public Health Volume, Article ID 8532463, 8 pages. https://doi.org/10.1155/2018/8532463
- Axetell, K., Cowherd, C., (1984). Improved emission factors for fugitive dust from Western Surface Coal Mining Sources, US. Environmental Protection Agency, Cincinnati.
- Badu, A., (2014). Dust monitoring, characterization and prediction in an opencast coal mining project, Department of Mining Engineering National Institute Of Technology Rourkela.
- Balcı, S., (2016). Çimento üretiminde toz ve gürültü maruziyetinin değerlendirilmesi, Çalışma Ve Sosyal Güvenlik Bakanlığı İş Sağlığı Ve Güvenliği Genel Müdürlüğü, İş Sağlığı ve Güvenliği Uzmanlık Tezi, Ankara.
- Beloconi, A., Chrysoulakisc, N., Lyapustind, A., Jürg Utzinger, J., Vounatsou, P., (2018). Bayesian geostatistical modelling of PM10 and PM2.5 surface level concentrations in Europe using high-resolution satellite-derived products, Environment International 121, 57-70. https://doi.org/10.1016/j.envint.2018.08.041
- Beşir, A, Ç., (2015). Yerüstü madenciliğinde kullanılan partikül madde emisyon faktörlerinin Türkiye ve uluslararası uygulamalarla değerlendirilmesi, Yüksek Lisans Tezi, Hacettepe Üniversitesi, Ankara.
- Cao, J., Chow, C. J., Lee, S.C. F., Watson, G. J., (2013). Evolution of PM2.5 measurements and standards in the U.S. and future perspectives for China, Aerosol and Air Quality Research, 13: pp.1197–1211. https://doi.org/10.4209/aaqr.2012.11.0302
- CCME (2020). https://www.ccme.ca/en/resources/air/pm_ozone.html alındığı tarih: 15.01.2020. https://ccme.ca/en/resources#
- Chakraborty, M.K., Ahmad, M., Singh, R.S., Pal, D., Bandopadhyay, C., Chaulya, S.K., (2002). Determination of the emission rate from various opencast mines operations. Environ. Modell. Softw. 17 (5), 467–480. https://doi.org/10.1016/S1364-8152(02)00010-5
- Chaulya, S.K., (2006). Emission rate formulae for surface iron ore mining activities. Environmental Modeling Assessment 11, 361–370. https://doi.org/10.1007/s10666-005-9026-2
- Çınar, İ., Şensöğüt, C., (2017). Mermer fabrikalarında toz koşullarının değerlendirilmesi, MCBÜ Soma Meslek Yüksekokulu Teknik Bilimler Dergisi, Sayı:23 Cilt: I s, 40-48. https://dergipark.org.tr/tr/pub/somatbd/issue/30679/331470
- ÇOB, (2008). Hava Kalitesi Değerlendirme ve Yönetimi Yönetmeliği, Çevre ve Orman Bakanlığı, Ankara.
- ÇŞB, (2014). Sanayi Kaynaklı Hava Kirliliğinin Kontrolü Yönetmeliğinde Değişiklik Yapılmasına Dair Yönetmelik. Çevre ve Şehircilik Bakanlığı, Ankara. https://www.resmigazete.gov.tr/eskiler/2020/11/20201106-2.htm
- Dust (2020). https://manualzz.com/doc/28767715/environmental-monitoring-catalogue alındığı tarih: 09.01.2020.
- EC (2020). https://ec.europa.eu/environment/air/quality/standards.htm alındığı tarih: 15.01.2020.
- Erol, İ., (2012). Türkiye Taşkömürü Kurumu ocaklarında solunabilir toz içindeki kül ve kuvars miktarlarının sistematik olarak ölçülmesi ve istatistiksel değerlendirilmesi, Zonguldak Karaelmas Üniversitesi Fen Bilimleri Enstitüsü Maden Mühendisliği Bölümü, Doktora Tezi, 219 s.
- Evyapan, F., Mungan, D., Akgün, M., Arbak, P., (2012). Hava kalitesi ve sağlık, T.C. Sağlık Bakanlığı ve Türk Toraks Derneği, Ankara, 14-16.
- Gao, M., Beig, G., Şarkı, S., Zhang, H., Hu, J., Ying, Q., Liang, F., Liu, Y., Wang, H., Lu, X., Zhu, T., Carmichael, G.R., Nielsen, C.P., McElroy, M.B., (2018). The impact of power generation emissions on ambient PM2.5 pollution and human health in China and India, Sustainable Cities and Society 42, 259–275. https://doi:10.1016/j.envint.2018.09.015.
- Gautam, S., Patra, A.K., Sahu, S.P., Hitch, M., (2016). Particulate matter pollution in opencast coal mining areas: a threat to human health and environment, International Journal Of Mining, Reclamation And Environment, Vol. 32, no. 2, 75–92. https://doi.org/10.1080/17480930.2016.1218110
- Ghose, M.K., (2004). Emission factors for the quantification of dust in India coal mines. Journal of Scientific and Industrial Research Vol, 63, pp.763-768. http://nopr.niscair.res.in/handle/123456789/5500
- Ghose, M.K., and Majee, S. R., (2007). Characteristics of Hazardous Airborne Dust Around an Indian Surface Coal Mining Area, Environ Monit Assess, 130: pp, 17–25. DOI 10.1007/s10661-006-9448-6
- Health Effects, (2020).Health and Environmental Effects of Particulate Matter (PM)https://www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm alındığı tarih: 09.01.2020.
- Hendryx, M., (2015). The public health impacts of surface coal mining, The Extractive Industries and Society 2, 820–826. https://doi.org/10.1016/j.exis.2015.08.006
Huertas, J, I., Camacho, D, A., Huertas M, E., (2012). Standardized emissions inventory methodology for open-pit mining areas, Environ Sci Pollut Res 19: pp, 2784-2794. DOI 10.1007/s11356-012-0778-3
- Kim, K., Ehsanul Kabir, E., Kabir, S., (2015). A review on the human health impact of airborne particulate matter, Environment International 74, pp, 136-143. https://doi.org/10.1016/j.envint.2014.10.005
- Lal, B., Tripathy, S.S., (2012). Prediction of dust concentration in open cast coal mine using artificial neural network. Atmos. Pollut. Res. 3, 211–218. https://doi.org/10.5094/APR.2012.023
- Laney, A.S., Weissman, D.N., (2014). Respiratory diseases caused by coal mine dust, J Occup. Environ. Med., 56(0 10), 1-13. https://doi.org/10.1097/JOM.0000000000000260
- Lashgari, A., Kecojevic, V., (2016). Comparative analysis of dust emission of digging and loading equipment in surface coal mining, International Journal of Mining, Reclamation and Environment, 30:3, 181-196, https://doi.org/10.1080/17480930.2015.1028516.
- Liu, B.Y.H., Whitby, K.T. and Pui, D.Y.H. (1974). A Portable electrical analyzer for size distribution measurement of submicron aerosols., Journal of the Air Pollution Control Association 24, 1067-1072. https://doi.org/10.1080/00022470.1974.10470016
- Martin, F., Pujadas, M., Artinano, B., Gomez-Moreno, F., Palomino, I., Moreno, N., Alastuey, A., Querol, X., Basora, J., Luaces, J., Guerra, A., (2007). Estimates of atmospheric particle emissions from bulk handling of dusty materials in Spanish Harbours, Atmospheric Environment, 41, 6356-6365. https://doi.org/10.1016/j.atmosenv.2006.12.003
- Martins, N.R., Carrilho da Graça, G., (2018). Impact of PM2.5 in indoor urban environments: A review, Sustainable Cities and Society 42, 259-275. https://doi.org/10.1016/j.scs.2018.07.011
- Miçooğulları, A., (2018). Hatay Kuruyer mevkiindeki taş ocaklarında iş güvenliği açısından taş tozu riskinin araştırılması, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, 96 s.
- Miller, L., Xu, X., (2018). Ambient PM2.5 human health effects—findings in China and research directions, Atmosphere, 9, 424, 2-16. https://doi.org/10.3390/atmos9110424
- NAAQS (2020). https://www.epa.gov/criteria-air-pollutants/naaqs-table alındığı tarih: 15.01.2020.
- Nagesha, K.V., Sastry V.R., Ram, C, K., (2016). Prediction of dust dispersion during drilling operation in open cast coal mines: A multi regression model, Internatıonal Journal Of Envıronmental Scıences Volume 6, No 5, pp, 681-696. https://doi.org/10.6088/ijes.6064
- NPI, (2001). (National Pollution Inventory), Emission Estimation Technique Manual For Mining Version 2.3, Australian Government, Canberra.
- NPI, (2012). (National Pollution Inventory), Emission Estimation Technique Manual For Mining Version 3.1, Australian Government, Canberra. http://www.npi.gov.au/resource/emission-estimation-technique-manual-mining
- NSW (2020). https://www.epa.nsw.gov.au/-/media/epa/corporate-site/resources/air/clean-air-nsw 160415.pdf alındığı tarih: 15.01.2020.
- Önder, M., Yiğit, E., (2009). Assessment of respirable dust exposures in an opencast coal mine, Environ. Monit Assess. 152: 393–401. https://doi.org/10.1007/s10661-008-0324-4.
- Öztürk, N., (2016). Açık işletmelerde ağır iş makinesi operatörlerinin gürültü, titreşim ve toz maruziyetlerinin değerlendirilmesi, Çalışma Ve Sosyal Güvenlik Bakanlığı İş Sağlığı Ve Güvenliği Genel Müdürlüğü, İş Sağlığı ve Güvenliği Uzmanlık Tezi, Ankara.
- Pandey, B., Agrawal, M., Singh S., (2014). Assessment of air pollution around coal mining area: Emphasizing on spatial distributions, seasonal variations and heavy metals, using cluster and principal component analysis, Atmospheric Pollution Research (5), 79-86. https://doi.org/10.5094/APR.2014.010
- Papagiannis, A., Roussos, D., Menegaki, M., Damigos, D., (2014). Externalities from lignite mining-related dust emissions, Energy Policy 74, pp, 414–424. https://doi.org/10.1016/j.enpol.2014.08.026
- Patra, A, K., Gautam, S., Kumar, P., (2016). Emissions and human health impact of particulate matter from surface mining operation - A review, Environmental Technology & Innovation 5, 233-249. https://doi.org/10.1016/j.eti.2016.04.002
- Particulate Matter (PM) Basics, (2020). https://www.epa.gov/pm-pollution/particulate-matter-pm-basics#PM alındığı tarih: 10.01.2020.
- Perrino, C., (2010). Atmospherıc Partıculate Matter, Proceedings of a C.I.S.B. Minisymposium, pp. 35-43. https://www.researchgate.net/profile/Cinzia-Perrino/publication/228652246_Atmospheric_particulate_matter/links/0fcfd511a53bfb95fe000000/Atmospheric-particulate-matter.pdf
- Petavratzi, E., Kingman, S., Lowndes, I., (2005). Particulates from mining operations: A review of sources, effects and regulations, Minerals Engineering 18, pp, 1183–1199. https://doi.org/10.1016/j.mineng.2005.06.017
- Pilling, M., ApSimon, H., Carruthers, D., Carslaw, D., Colvile, R., Derwent, D., Dorling, S., Fisher, B., Harrison, R., Heal, M., Laxen, D., Lindley, S., McCrae, I., Stedman, J., (2005). Particulate Matter in the United Kingdom, Department for the Environment, Food and Rural Affairs Nobel House 17 Smith Square, London, Product code PB10580 ISBN 0-85521-143-1, pp, 444.
- Rahul, J., Jain, M.K., (2014). An lnvestigation in to the lmpact of Particulate Matter on Vegetation along the National Highway: A Review, Research Journal of Environmental Sciences (7), 356-372. https://doi.org/10.3923/rjes.2014.356.372
- Ren, L., Yang, W., Bai, Z., (2017). Characteristics of major air pollutants in China, Ambient air pollution and health impact in China, pp,9. https://doi.org/10.1007/978-981-10-5657-4_2
- Richardson, C., Rutherford, S., Agranovski E, I., (2019). Open cut black coal mining: Empirical verification of PM2.5 air emission estimation techniques, Atmospheric Research 216, pp,151–159. https://doi.org/10.1016/j.atmosres.2018.10.008
- Rodriguez, S., Querol, X., Alastuey, A., De la Rosa, J., (2007). Atmospheric particulate matter and air quality in the Mediterranean: A review, Environ Chem Lett pp, 1-7. https://doi.org/10.1007/s10311-006-0071-0.
- Silvester, S, A., Lowndes, I, S., Hargreaves, D, M., (2009). A computational study of particulate emissions from an open pit quarry under neutral atmospheric conditions, Atmospheric Environment 43, pp, 6415–6424. https://doi.org/10.1016/j.atmosenv.2009.07.006
- SIMRAC, (2003). Handbook to reduce the exposure of workers to dust, Members of the Special Interest Group on Dust and Ventilation, Safety in Mines Research Advisory Committee (SIMRAC), South Africa, COL 027.
- Singh, G., Pal, A., Khoiyanbam, R.S., (2009). Impact of mining on human health in and around Jhansi, Bundelkhand region of Uttar Pradesh, India, Journal of Ecophysiology and Occupational Health, 9, 47-54. https://www.researchgate.net/publication/289196567
- Şahin, A, Ü., (2012). İstanbul üniversitesi Avcılar Yerleşkesi’nde solunabilir partikül maddenin boyut dağılımının ve element içeriğinin incelenmesi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, İstanbul.
- THHP, (2019). Temiz Hava Hakkı Platformu, Hava Kirliliği ve Sağlık Etkileri Kara Rapor, s70.
- Tripathy, D, P., Dash, T, R., Badu, A., Kanungo, R., (2015). Assessment and modelling of dust concentration in an opencast coal mine in İndia, Global Nest Journal, Vol 17, No 4, pp 825-834. https://doi.org/10.30955/gnj.001611
- Tsiouri, V., Kakosimos, K., Kumar, P., (2015). Concentrations, physicochemical characteristics and exposure risks associated with particulate matter in the Middle East Area—A review, Air Qual. Atmos. Health 8, 67–80. https://doi.org/10.1007/s11869-014-0277-4
- USEPA, (1988). Supplement B to Compilation of Air Pollutant Emissions Factors, Volume I: Stationary Point and Area Sources, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina, 188 pp.
- USEPA, (1991). Review of Surface Coal Mining Emissions Factors. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina, 144 pp.
- USEPA, (1995). (United States Environmental Protection Agency), AP-42 Compilation of Air Pollutant Emission Factors, Introduction, North Carolina.
- USEPA, (1998). Revision of emission factors for AP-42 Section 11.9 Western surface coal mining. Revised final report, MRI Project No. 4604-02; Emission Factor and Inventory Group, Office of Air Quality Planning and Standards, US Environmental Protection Agency.
- USEPA, (2006a). Revision of Emission Factors for AP-42. Chapter 13: Miscellaneous Source. Section 13.2.2: Unpaved Roads (Fugitive Dust Sources), 20 pp.
- USEPA, (2006b). Revision of Emission Factors for AP-42. Chapter 13: Miscellaneous Source. Section 13.2.4: Aggregate Handling and Storage Piles, 6 pp.
- Vidinli, N., Özkan, E, K., Topçu, D., Yamurluklu, Y., Gedikli, F, G., Kürkçü, E, A., (2016). Çimento sektöründe tozla mücadele rehberi, Çalışma ve Sosyal Güvenlik Bakanlığı İş Sağlığı ve Güvenliği Genel Müdürlüğü, Bakanlık Yayın No: 57, Ankara.
- Whitby, K.T., Husar, R.B., Liu, B.Y.H. (1972). The aerosol size distribution of Los Angeles Smog. Journal of Colloid and Interface Science, 39, 177–204. https://doi.org/10.1016/0021-9797(72)90153-1
- WHO, (1999). Hazard prevention and control in the work environment: Airborne dust https://www.who.int/occupational_health/publications/en/oehairbornedust3.pdf alındığı tarih: 10.01.2020.
- Xing, Y-F., Xu, Y-H., Shi, M-H., Lian, Y-X., (2016). The impact of PM2.5 on the human respiratory system, Journal of Thoracic Disease, 8(1), E69-E74. https://doi.org/10.3978/j.issn.2072-1439.2016.01.19.
- Zhang, X., Chen, W., Ma, C., Zhan, S., (2013). Modeling particulate matter emissions during mineral loading process under weak wind simulation, Science of the Total Environment 449, 168-173. https://doi.org/10.1016/j.scitotenv.2013.01.050
PARTICULATE MATTER EMISSIONS in SURFACE MINING OPERATIONS: LITERATURE RESEARCH
Yıl 2021,
Cilt: 29 Sayı: 3, 450 - 465, 31.12.2021
Zekeriya Duran
,
Bülent Erdem
,
Tuğba Doğan
Kaynakça
- Air Pollution, (2020). https://www.who.int/health-topics/air-pollution#tab=tab_1 alındığı tarih: 15.01.2020.
- Appleton, T, J., Kingman, S, W., Lowndes, I, S., Silvester, S, A., (2006). The development of a modelling strategy for the simulation of fugitive dust emissions from in-pit quarrying activities: A UK case study, International Journal of Mining, Reclamation and Environment Vol. 20, No. 1, 57 – 82. https://doi.org/10.1080/13895260500396404
- Arregoce´s, H.A., Rojano, R., Angulo, L., Restrepo, G., (2018). Intake fraction of PM10 from coal mine emissions in the North of Colombia, Journal of Environmental and Public Health Volume, Article ID 8532463, 8 pages. https://doi.org/10.1155/2018/8532463
- Axetell, K., Cowherd, C., (1984). Improved emission factors for fugitive dust from Western Surface Coal Mining Sources, US. Environmental Protection Agency, Cincinnati.
- Badu, A., (2014). Dust monitoring, characterization and prediction in an opencast coal mining project, Department of Mining Engineering National Institute Of Technology Rourkela.
- Balcı, S., (2016). Çimento üretiminde toz ve gürültü maruziyetinin değerlendirilmesi, Çalışma Ve Sosyal Güvenlik Bakanlığı İş Sağlığı Ve Güvenliği Genel Müdürlüğü, İş Sağlığı ve Güvenliği Uzmanlık Tezi, Ankara.
- Beloconi, A., Chrysoulakisc, N., Lyapustind, A., Jürg Utzinger, J., Vounatsou, P., (2018). Bayesian geostatistical modelling of PM10 and PM2.5 surface level concentrations in Europe using high-resolution satellite-derived products, Environment International 121, 57-70. https://doi.org/10.1016/j.envint.2018.08.041
- Beşir, A, Ç., (2015). Yerüstü madenciliğinde kullanılan partikül madde emisyon faktörlerinin Türkiye ve uluslararası uygulamalarla değerlendirilmesi, Yüksek Lisans Tezi, Hacettepe Üniversitesi, Ankara.
- Cao, J., Chow, C. J., Lee, S.C. F., Watson, G. J., (2013). Evolution of PM2.5 measurements and standards in the U.S. and future perspectives for China, Aerosol and Air Quality Research, 13: pp.1197–1211. https://doi.org/10.4209/aaqr.2012.11.0302
- CCME (2020). https://www.ccme.ca/en/resources/air/pm_ozone.html alındığı tarih: 15.01.2020. https://ccme.ca/en/resources#
- Chakraborty, M.K., Ahmad, M., Singh, R.S., Pal, D., Bandopadhyay, C., Chaulya, S.K., (2002). Determination of the emission rate from various opencast mines operations. Environ. Modell. Softw. 17 (5), 467–480. https://doi.org/10.1016/S1364-8152(02)00010-5
- Chaulya, S.K., (2006). Emission rate formulae for surface iron ore mining activities. Environmental Modeling Assessment 11, 361–370. https://doi.org/10.1007/s10666-005-9026-2
- Çınar, İ., Şensöğüt, C., (2017). Mermer fabrikalarında toz koşullarının değerlendirilmesi, MCBÜ Soma Meslek Yüksekokulu Teknik Bilimler Dergisi, Sayı:23 Cilt: I s, 40-48. https://dergipark.org.tr/tr/pub/somatbd/issue/30679/331470
- ÇOB, (2008). Hava Kalitesi Değerlendirme ve Yönetimi Yönetmeliği, Çevre ve Orman Bakanlığı, Ankara.
- ÇŞB, (2014). Sanayi Kaynaklı Hava Kirliliğinin Kontrolü Yönetmeliğinde Değişiklik Yapılmasına Dair Yönetmelik. Çevre ve Şehircilik Bakanlığı, Ankara. https://www.resmigazete.gov.tr/eskiler/2020/11/20201106-2.htm
- Dust (2020). https://manualzz.com/doc/28767715/environmental-monitoring-catalogue alındığı tarih: 09.01.2020.
- EC (2020). https://ec.europa.eu/environment/air/quality/standards.htm alındığı tarih: 15.01.2020.
- Erol, İ., (2012). Türkiye Taşkömürü Kurumu ocaklarında solunabilir toz içindeki kül ve kuvars miktarlarının sistematik olarak ölçülmesi ve istatistiksel değerlendirilmesi, Zonguldak Karaelmas Üniversitesi Fen Bilimleri Enstitüsü Maden Mühendisliği Bölümü, Doktora Tezi, 219 s.
- Evyapan, F., Mungan, D., Akgün, M., Arbak, P., (2012). Hava kalitesi ve sağlık, T.C. Sağlık Bakanlığı ve Türk Toraks Derneği, Ankara, 14-16.
- Gao, M., Beig, G., Şarkı, S., Zhang, H., Hu, J., Ying, Q., Liang, F., Liu, Y., Wang, H., Lu, X., Zhu, T., Carmichael, G.R., Nielsen, C.P., McElroy, M.B., (2018). The impact of power generation emissions on ambient PM2.5 pollution and human health in China and India, Sustainable Cities and Society 42, 259–275. https://doi:10.1016/j.envint.2018.09.015.
- Gautam, S., Patra, A.K., Sahu, S.P., Hitch, M., (2016). Particulate matter pollution in opencast coal mining areas: a threat to human health and environment, International Journal Of Mining, Reclamation And Environment, Vol. 32, no. 2, 75–92. https://doi.org/10.1080/17480930.2016.1218110
- Ghose, M.K., (2004). Emission factors for the quantification of dust in India coal mines. Journal of Scientific and Industrial Research Vol, 63, pp.763-768. http://nopr.niscair.res.in/handle/123456789/5500
- Ghose, M.K., and Majee, S. R., (2007). Characteristics of Hazardous Airborne Dust Around an Indian Surface Coal Mining Area, Environ Monit Assess, 130: pp, 17–25. DOI 10.1007/s10661-006-9448-6
- Health Effects, (2020).Health and Environmental Effects of Particulate Matter (PM)https://www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm alındığı tarih: 09.01.2020.
- Hendryx, M., (2015). The public health impacts of surface coal mining, The Extractive Industries and Society 2, 820–826. https://doi.org/10.1016/j.exis.2015.08.006
Huertas, J, I., Camacho, D, A., Huertas M, E., (2012). Standardized emissions inventory methodology for open-pit mining areas, Environ Sci Pollut Res 19: pp, 2784-2794. DOI 10.1007/s11356-012-0778-3
- Kim, K., Ehsanul Kabir, E., Kabir, S., (2015). A review on the human health impact of airborne particulate matter, Environment International 74, pp, 136-143. https://doi.org/10.1016/j.envint.2014.10.005
- Lal, B., Tripathy, S.S., (2012). Prediction of dust concentration in open cast coal mine using artificial neural network. Atmos. Pollut. Res. 3, 211–218. https://doi.org/10.5094/APR.2012.023
- Laney, A.S., Weissman, D.N., (2014). Respiratory diseases caused by coal mine dust, J Occup. Environ. Med., 56(0 10), 1-13. https://doi.org/10.1097/JOM.0000000000000260
- Lashgari, A., Kecojevic, V., (2016). Comparative analysis of dust emission of digging and loading equipment in surface coal mining, International Journal of Mining, Reclamation and Environment, 30:3, 181-196, https://doi.org/10.1080/17480930.2015.1028516.
- Liu, B.Y.H., Whitby, K.T. and Pui, D.Y.H. (1974). A Portable electrical analyzer for size distribution measurement of submicron aerosols., Journal of the Air Pollution Control Association 24, 1067-1072. https://doi.org/10.1080/00022470.1974.10470016
- Martin, F., Pujadas, M., Artinano, B., Gomez-Moreno, F., Palomino, I., Moreno, N., Alastuey, A., Querol, X., Basora, J., Luaces, J., Guerra, A., (2007). Estimates of atmospheric particle emissions from bulk handling of dusty materials in Spanish Harbours, Atmospheric Environment, 41, 6356-6365. https://doi.org/10.1016/j.atmosenv.2006.12.003
- Martins, N.R., Carrilho da Graça, G., (2018). Impact of PM2.5 in indoor urban environments: A review, Sustainable Cities and Society 42, 259-275. https://doi.org/10.1016/j.scs.2018.07.011
- Miçooğulları, A., (2018). Hatay Kuruyer mevkiindeki taş ocaklarında iş güvenliği açısından taş tozu riskinin araştırılması, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, 96 s.
- Miller, L., Xu, X., (2018). Ambient PM2.5 human health effects—findings in China and research directions, Atmosphere, 9, 424, 2-16. https://doi.org/10.3390/atmos9110424
- NAAQS (2020). https://www.epa.gov/criteria-air-pollutants/naaqs-table alındığı tarih: 15.01.2020.
- Nagesha, K.V., Sastry V.R., Ram, C, K., (2016). Prediction of dust dispersion during drilling operation in open cast coal mines: A multi regression model, Internatıonal Journal Of Envıronmental Scıences Volume 6, No 5, pp, 681-696. https://doi.org/10.6088/ijes.6064
- NPI, (2001). (National Pollution Inventory), Emission Estimation Technique Manual For Mining Version 2.3, Australian Government, Canberra.
- NPI, (2012). (National Pollution Inventory), Emission Estimation Technique Manual For Mining Version 3.1, Australian Government, Canberra. http://www.npi.gov.au/resource/emission-estimation-technique-manual-mining
- NSW (2020). https://www.epa.nsw.gov.au/-/media/epa/corporate-site/resources/air/clean-air-nsw 160415.pdf alındığı tarih: 15.01.2020.
- Önder, M., Yiğit, E., (2009). Assessment of respirable dust exposures in an opencast coal mine, Environ. Monit Assess. 152: 393–401. https://doi.org/10.1007/s10661-008-0324-4.
- Öztürk, N., (2016). Açık işletmelerde ağır iş makinesi operatörlerinin gürültü, titreşim ve toz maruziyetlerinin değerlendirilmesi, Çalışma Ve Sosyal Güvenlik Bakanlığı İş Sağlığı Ve Güvenliği Genel Müdürlüğü, İş Sağlığı ve Güvenliği Uzmanlık Tezi, Ankara.
- Pandey, B., Agrawal, M., Singh S., (2014). Assessment of air pollution around coal mining area: Emphasizing on spatial distributions, seasonal variations and heavy metals, using cluster and principal component analysis, Atmospheric Pollution Research (5), 79-86. https://doi.org/10.5094/APR.2014.010
- Papagiannis, A., Roussos, D., Menegaki, M., Damigos, D., (2014). Externalities from lignite mining-related dust emissions, Energy Policy 74, pp, 414–424. https://doi.org/10.1016/j.enpol.2014.08.026
- Patra, A, K., Gautam, S., Kumar, P., (2016). Emissions and human health impact of particulate matter from surface mining operation - A review, Environmental Technology & Innovation 5, 233-249. https://doi.org/10.1016/j.eti.2016.04.002
- Particulate Matter (PM) Basics, (2020). https://www.epa.gov/pm-pollution/particulate-matter-pm-basics#PM alındığı tarih: 10.01.2020.
- Perrino, C., (2010). Atmospherıc Partıculate Matter, Proceedings of a C.I.S.B. Minisymposium, pp. 35-43. https://www.researchgate.net/profile/Cinzia-Perrino/publication/228652246_Atmospheric_particulate_matter/links/0fcfd511a53bfb95fe000000/Atmospheric-particulate-matter.pdf
- Petavratzi, E., Kingman, S., Lowndes, I., (2005). Particulates from mining operations: A review of sources, effects and regulations, Minerals Engineering 18, pp, 1183–1199. https://doi.org/10.1016/j.mineng.2005.06.017
- Pilling, M., ApSimon, H., Carruthers, D., Carslaw, D., Colvile, R., Derwent, D., Dorling, S., Fisher, B., Harrison, R., Heal, M., Laxen, D., Lindley, S., McCrae, I., Stedman, J., (2005). Particulate Matter in the United Kingdom, Department for the Environment, Food and Rural Affairs Nobel House 17 Smith Square, London, Product code PB10580 ISBN 0-85521-143-1, pp, 444.
- Rahul, J., Jain, M.K., (2014). An lnvestigation in to the lmpact of Particulate Matter on Vegetation along the National Highway: A Review, Research Journal of Environmental Sciences (7), 356-372. https://doi.org/10.3923/rjes.2014.356.372
- Ren, L., Yang, W., Bai, Z., (2017). Characteristics of major air pollutants in China, Ambient air pollution and health impact in China, pp,9. https://doi.org/10.1007/978-981-10-5657-4_2
- Richardson, C., Rutherford, S., Agranovski E, I., (2019). Open cut black coal mining: Empirical verification of PM2.5 air emission estimation techniques, Atmospheric Research 216, pp,151–159. https://doi.org/10.1016/j.atmosres.2018.10.008
- Rodriguez, S., Querol, X., Alastuey, A., De la Rosa, J., (2007). Atmospheric particulate matter and air quality in the Mediterranean: A review, Environ Chem Lett pp, 1-7. https://doi.org/10.1007/s10311-006-0071-0.
- Silvester, S, A., Lowndes, I, S., Hargreaves, D, M., (2009). A computational study of particulate emissions from an open pit quarry under neutral atmospheric conditions, Atmospheric Environment 43, pp, 6415–6424. https://doi.org/10.1016/j.atmosenv.2009.07.006
- SIMRAC, (2003). Handbook to reduce the exposure of workers to dust, Members of the Special Interest Group on Dust and Ventilation, Safety in Mines Research Advisory Committee (SIMRAC), South Africa, COL 027.
- Singh, G., Pal, A., Khoiyanbam, R.S., (2009). Impact of mining on human health in and around Jhansi, Bundelkhand region of Uttar Pradesh, India, Journal of Ecophysiology and Occupational Health, 9, 47-54. https://www.researchgate.net/publication/289196567
- Şahin, A, Ü., (2012). İstanbul üniversitesi Avcılar Yerleşkesi’nde solunabilir partikül maddenin boyut dağılımının ve element içeriğinin incelenmesi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, İstanbul.
- THHP, (2019). Temiz Hava Hakkı Platformu, Hava Kirliliği ve Sağlık Etkileri Kara Rapor, s70.
- Tripathy, D, P., Dash, T, R., Badu, A., Kanungo, R., (2015). Assessment and modelling of dust concentration in an opencast coal mine in İndia, Global Nest Journal, Vol 17, No 4, pp 825-834. https://doi.org/10.30955/gnj.001611
- Tsiouri, V., Kakosimos, K., Kumar, P., (2015). Concentrations, physicochemical characteristics and exposure risks associated with particulate matter in the Middle East Area—A review, Air Qual. Atmos. Health 8, 67–80. https://doi.org/10.1007/s11869-014-0277-4
- USEPA, (1988). Supplement B to Compilation of Air Pollutant Emissions Factors, Volume I: Stationary Point and Area Sources, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina, 188 pp.
- USEPA, (1991). Review of Surface Coal Mining Emissions Factors. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina, 144 pp.
- USEPA, (1995). (United States Environmental Protection Agency), AP-42 Compilation of Air Pollutant Emission Factors, Introduction, North Carolina.
- USEPA, (1998). Revision of emission factors for AP-42 Section 11.9 Western surface coal mining. Revised final report, MRI Project No. 4604-02; Emission Factor and Inventory Group, Office of Air Quality Planning and Standards, US Environmental Protection Agency.
- USEPA, (2006a). Revision of Emission Factors for AP-42. Chapter 13: Miscellaneous Source. Section 13.2.2: Unpaved Roads (Fugitive Dust Sources), 20 pp.
- USEPA, (2006b). Revision of Emission Factors for AP-42. Chapter 13: Miscellaneous Source. Section 13.2.4: Aggregate Handling and Storage Piles, 6 pp.
- Vidinli, N., Özkan, E, K., Topçu, D., Yamurluklu, Y., Gedikli, F, G., Kürkçü, E, A., (2016). Çimento sektöründe tozla mücadele rehberi, Çalışma ve Sosyal Güvenlik Bakanlığı İş Sağlığı ve Güvenliği Genel Müdürlüğü, Bakanlık Yayın No: 57, Ankara.
- Whitby, K.T., Husar, R.B., Liu, B.Y.H. (1972). The aerosol size distribution of Los Angeles Smog. Journal of Colloid and Interface Science, 39, 177–204. https://doi.org/10.1016/0021-9797(72)90153-1
- WHO, (1999). Hazard prevention and control in the work environment: Airborne dust https://www.who.int/occupational_health/publications/en/oehairbornedust3.pdf alındığı tarih: 10.01.2020.
- Xing, Y-F., Xu, Y-H., Shi, M-H., Lian, Y-X., (2016). The impact of PM2.5 on the human respiratory system, Journal of Thoracic Disease, 8(1), E69-E74. https://doi.org/10.3978/j.issn.2072-1439.2016.01.19.
- Zhang, X., Chen, W., Ma, C., Zhan, S., (2013). Modeling particulate matter emissions during mineral loading process under weak wind simulation, Science of the Total Environment 449, 168-173. https://doi.org/10.1016/j.scitotenv.2013.01.050