Araştırma Makalesi
BibTex RIS Kaynak Göster

KRİYOJENİK ISIL İŞLEMİN Ti6Al4V ALAŞIMINLARINDA DİNAMİK TOKLUK ÜZERİNDEKİ ETKİSİNİN DENEYSEL ARAŞTIRILMASI

Yıl 2024, Cilt: 32 Sayı: 1, 1215 - 1220, 22.04.2024
https://doi.org/10.31796/ogummf.1399851

Öz

Ti6Al4V alaşımlarının mekanik ve mikroyapı özelliklerinin iyileştirilmesi konusunda çeşitli ısıl işlemler vardır. Bu ısıl işlemlerden biri de kriyojenik ısıl işlemdir. Kriyojenik işlem, malzemenin -196°C’ye kademeli soğutulup, bekletilerek ve sonrasında kademeli ısıtılarak uygulanan bir ısıl işlemdir. Son yıllarda gelişen teknoloji ile metallerin mikro yapısını ve mekanik özelliklerini iyileştirmek için tamamlayıcı bir proses olarak kullanılmaktadır. Bu çalışmada Ti6Al4V alaşımlarına farklı bekletme sürelerinde uygulanan kriyojenik ısıl işlemin dinamik tokluk ve mikroyapısal özellikler üzerindeki etkisi incelenmiştir. Kriyojenik ısıl işlemler 12, 24 ve 36 saat olacak şekilde yapılmıştır. Numunelerin oda sıcaklığında dinamik tokluk değerini gözlemleyebilmek için Charpy çentikli darbe testi yapılmıştır. Deneysel çalışmaların neticesinde Ti6Al4V alaşımına uygulanan kriyojenik ısıl işlemin tokluk değeri üzerinde olumlu etkisi olduğu gözlemlenmiş, 36 saat kriyojenik işlem uygulanan numunenin dinamik tokluğunun işlemsiz numuneye göre %28 arttığı ve en efektif bekletme süresi olduğu görülmüştür. Ayrıca kriyojenik işlemin etkilerini belirlemek için mikro yapı incelemeleri ve mikrosertlik testi yapılmıştır. Mikroyapı üzerinde ise süre koşuluna bağlı olarak β fazının α fazına dönüşmesiyle yapıdaki iç gerilmelerin azaldığı ve daha kararlı bir yapıya dönüştüğü gözlemlenmiştir. Kriyojenik ısıl işlemin sıcaklık ve süre kontrollü uygulanmasının malzemenin mekanik ve mikroyapısal özelliklerini olumlu yönde etkilediği gözlemlenmiştir.

Kaynakça

  • Chen, P., Malone T., Bond R., Torres P., (2001). Effects of Cryogenic Treatment on the Residual Stress and Mechanical Properties of an Aerospace Aluminum Alloy. Proceedings of The 4th Conference on Aerospace Materials, Processes, and Environmental Technology.
  • Çakır, F. H. (2019). Ti6Al4V Alaşımına Kriyojenik İşlemin Etkilerinin Araştırılması (Doktora Tezi). Eskişehir, Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir.
  • Das, D., Dutta, A. K., Ray, K. K., (2010). Structure-Property Correlation of Cryotreated AISI D2 Steel. Advanced Materials Research 117: 49-54. DOI: https://doi.org/10.4028/www.scientific.net/AMR.117.49
  • Das, D., Dutta, A. K., Ray, K. K., (2009). Influence of temperature of sub-zero treatments on the wear behaviour of die steel. Wear 267(9-10): 1361-1370. DOI: https://doi.org/10.1016/j.wear.2008.11.029
  • Du, Z., Yan M., Liu F., Xueping Z., Chen Y., Guowei L., Guolong L., Yuyong C., (2019). Improving mechanical properties of near beta titanium alloy by high-low duplex aging. Materials Science and Engineering: A 754: 702-707. DOI: https://doi.org/10.1016/j.msea.2019.03.127
  • Gill, S. S., Rupinder S., Harpreed S., Jagdev s., (2009). Wear behaviour of cryogenically treated tungsten carbide inserts under dry and wet turning conditions. International Journal of Machine Tools and Manufacture 49(3-4): 256-260. DOI: https://doi.org/10.1016/j.ijmachtools.2008.11.001
  • Gu, K., Zhang H., Zhao B., Wang J., Zhou Y., Zhiqiang L., (2013). Effect of cryogenic treatment and aging treatment on the tensile properties and microstructure of Ti–6Al–4V alloy. Materials Science and Engineering: A 584: 170-176. DOI: https://doi.org/10.1016/j.msea.2013.07.021
  • Höke G., Şahin İ., Henifi Ç., Fındıklı T., (2014). Kriyojenik İşlemin SAE 4140 Çeliğin Mekanik Özellikleri Üzerine Etkisi. Journal of Selcuk-Technic 13(2).
  • K. Tanrıöver, A. Taşçı. (1997). Titanyum Alaşımlarının Isıl İşlemi. Makine Magazin 58.
  • Kawabata, T., Suenaga H., Izumi O., (1984). "Effect of cold working and ageing treatment on ductility of an Al-6.0% Zn-2.6% Mg alloy at 4.2 to 293 K." Journal of Materials Science 19(3): 1007-1021. DOI : https://doi.org/10.1007/BF00540471
  • Kim, S. S., Nack J. K., (1999). Tensile behavior of rapidly solidified Al-Li-Zr and Al-Li-Cu-Mg-Zr alloys at 293 and 77 K. Metallurgical and Materials Transactions A 30(8): 2254-2258. DOI: https://doi.org/10.1007/s11661-999-0039-3
  • Peters, M., Hemptenmacher J., Kumpfert J., Leyens C., (2003). Structure and Properties of Titanium and Titanium Alloys. Titanium and Titanium Alloys: 1-36. DOI : https://doi.org/10.1002/3527602119.ch1
  • Semiatin, S. L., Seetharaman V., Weiss I., (1997). The thermomechanical processing of alpha/beta titanium alloys. Jom 49(6): 33-39. DOI : https://doi.org/10.1007/BF02914711
  • Senthilkumar, D., Rajendran I., Pellizzari M., Siiriainen J., (2011). Influence of shallow and deep cryogenic treatment on the residual state of stress of 4140 steel. Journal of Materials Processing Technology 211(3): 396-401. DOI : https://doi.org/10.1016/j.jmatprotec.2010.10.018
  • Vilaro, T., Colin C., Bartout J. D., (2011). As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting. Metallurgical and Materials Transactions A 42(10): 3190-3199. DOI: https://doi.org/10.1007/s11661-011-0731-y
  • Voort, G. F. V. (2004). ASM handbook. Vol. 9, Metallography and microstructures. Materials Park, Ohio, ASM Materials Park, Ohio.
  • Yun, D., Xiaoping L., Xiao H., (2013). Classic contributions: cryogenic treatment Deep cryogenic treatment of high speed steel: microstructure and mechanism. International Heat Treatment and Surface Engineering 2(2): 80-84. DOI : https://doi.org/10.1179/174951508X358482
  • Zhirafar, S., Rezaeian A., Pugh M., (2007). Effect of cryogenic treatment on the mechanical properties of 4340 steel. Journal of Materials Processing Technology 186(1-3): 298-303. DOI : https://doi.org/10.1016/j.jmatprotec.2006.12.046

INVESTIGATION OF THE EFFECT OF CRYOGENIC HEAT TREATMENT ON EXPERIMENTAL DYNAMIC TOUGHNESS IN Ti6Al4V ALLOYS

Yıl 2024, Cilt: 32 Sayı: 1, 1215 - 1220, 22.04.2024
https://doi.org/10.31796/ogummf.1399851

Öz

There are various heat treatments regarding the improvement of mechanical and microstructural properties of Ti6Al4V alloys. One of these heat treatments is cryogenic heat treatment. The process is a heat treatment applied by gradually cooling the material to -196°C, soaking and then gradually heating it. Developing technology in nowadays, this process is used as an additive process to enhance the microstructure and mechanical properties of materials. In this study, the effect of cryogenic heat treatment applications on Ti6Al4V alloys at different soaking times on dynamic impact toughness and microstructural properties was examined. Cryogenic heat treatment was applied for 12, 24 and 36 hours. Charpy impact test was applied on the samples to observe the dynamic toughness performance at room temperature. It is observed in experimental studies the application of cryogenic heat treatment on theTi6Al4V alloy had a beneficial effect on the dynamic toughness. The most contribution to the toughness was observed in subjected to 36 hours of cryogenic treatment increased by 28% compared to the untreated sample. Additionally, microstructure examinations and microhardness tests were evaluated to conclude the effects of the heat treatment process. On the microstructure, phase transformation of β to α phase is particularly depending on the soaking time. Cryogenic heat treatment reduces the residual stress in the lattice and it turned into a more stable structure. The temperature and time controlled application of cryogenic heat treatment positively affects the primarily microstructural and mechanical properties of the material.

Kaynakça

  • Chen, P., Malone T., Bond R., Torres P., (2001). Effects of Cryogenic Treatment on the Residual Stress and Mechanical Properties of an Aerospace Aluminum Alloy. Proceedings of The 4th Conference on Aerospace Materials, Processes, and Environmental Technology.
  • Çakır, F. H. (2019). Ti6Al4V Alaşımına Kriyojenik İşlemin Etkilerinin Araştırılması (Doktora Tezi). Eskişehir, Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir.
  • Das, D., Dutta, A. K., Ray, K. K., (2010). Structure-Property Correlation of Cryotreated AISI D2 Steel. Advanced Materials Research 117: 49-54. DOI: https://doi.org/10.4028/www.scientific.net/AMR.117.49
  • Das, D., Dutta, A. K., Ray, K. K., (2009). Influence of temperature of sub-zero treatments on the wear behaviour of die steel. Wear 267(9-10): 1361-1370. DOI: https://doi.org/10.1016/j.wear.2008.11.029
  • Du, Z., Yan M., Liu F., Xueping Z., Chen Y., Guowei L., Guolong L., Yuyong C., (2019). Improving mechanical properties of near beta titanium alloy by high-low duplex aging. Materials Science and Engineering: A 754: 702-707. DOI: https://doi.org/10.1016/j.msea.2019.03.127
  • Gill, S. S., Rupinder S., Harpreed S., Jagdev s., (2009). Wear behaviour of cryogenically treated tungsten carbide inserts under dry and wet turning conditions. International Journal of Machine Tools and Manufacture 49(3-4): 256-260. DOI: https://doi.org/10.1016/j.ijmachtools.2008.11.001
  • Gu, K., Zhang H., Zhao B., Wang J., Zhou Y., Zhiqiang L., (2013). Effect of cryogenic treatment and aging treatment on the tensile properties and microstructure of Ti–6Al–4V alloy. Materials Science and Engineering: A 584: 170-176. DOI: https://doi.org/10.1016/j.msea.2013.07.021
  • Höke G., Şahin İ., Henifi Ç., Fındıklı T., (2014). Kriyojenik İşlemin SAE 4140 Çeliğin Mekanik Özellikleri Üzerine Etkisi. Journal of Selcuk-Technic 13(2).
  • K. Tanrıöver, A. Taşçı. (1997). Titanyum Alaşımlarının Isıl İşlemi. Makine Magazin 58.
  • Kawabata, T., Suenaga H., Izumi O., (1984). "Effect of cold working and ageing treatment on ductility of an Al-6.0% Zn-2.6% Mg alloy at 4.2 to 293 K." Journal of Materials Science 19(3): 1007-1021. DOI : https://doi.org/10.1007/BF00540471
  • Kim, S. S., Nack J. K., (1999). Tensile behavior of rapidly solidified Al-Li-Zr and Al-Li-Cu-Mg-Zr alloys at 293 and 77 K. Metallurgical and Materials Transactions A 30(8): 2254-2258. DOI: https://doi.org/10.1007/s11661-999-0039-3
  • Peters, M., Hemptenmacher J., Kumpfert J., Leyens C., (2003). Structure and Properties of Titanium and Titanium Alloys. Titanium and Titanium Alloys: 1-36. DOI : https://doi.org/10.1002/3527602119.ch1
  • Semiatin, S. L., Seetharaman V., Weiss I., (1997). The thermomechanical processing of alpha/beta titanium alloys. Jom 49(6): 33-39. DOI : https://doi.org/10.1007/BF02914711
  • Senthilkumar, D., Rajendran I., Pellizzari M., Siiriainen J., (2011). Influence of shallow and deep cryogenic treatment on the residual state of stress of 4140 steel. Journal of Materials Processing Technology 211(3): 396-401. DOI : https://doi.org/10.1016/j.jmatprotec.2010.10.018
  • Vilaro, T., Colin C., Bartout J. D., (2011). As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting. Metallurgical and Materials Transactions A 42(10): 3190-3199. DOI: https://doi.org/10.1007/s11661-011-0731-y
  • Voort, G. F. V. (2004). ASM handbook. Vol. 9, Metallography and microstructures. Materials Park, Ohio, ASM Materials Park, Ohio.
  • Yun, D., Xiaoping L., Xiao H., (2013). Classic contributions: cryogenic treatment Deep cryogenic treatment of high speed steel: microstructure and mechanism. International Heat Treatment and Surface Engineering 2(2): 80-84. DOI : https://doi.org/10.1179/174951508X358482
  • Zhirafar, S., Rezaeian A., Pugh M., (2007). Effect of cryogenic treatment on the mechanical properties of 4340 steel. Journal of Materials Processing Technology 186(1-3): 298-303. DOI : https://doi.org/10.1016/j.jmatprotec.2006.12.046
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Tasarım ve Davranışları
Bölüm Araştırma Makaleleri
Yazarlar

Cansu Çimen 0000-0001-8240-6888

Koray Kılıçay 0000-0003-2025-4991

Esad Kaya 0000-0002-7332-6154

Erken Görünüm Tarihi 22 Nisan 2024
Yayımlanma Tarihi 22 Nisan 2024
Gönderilme Tarihi 4 Aralık 2023
Kabul Tarihi 8 Şubat 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 32 Sayı: 1

Kaynak Göster

APA Çimen, C., Kılıçay, K., & Kaya, E. (2024). KRİYOJENİK ISIL İŞLEMİN Ti6Al4V ALAŞIMINLARINDA DİNAMİK TOKLUK ÜZERİNDEKİ ETKİSİNİN DENEYSEL ARAŞTIRILMASI. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 32(1), 1215-1220. https://doi.org/10.31796/ogummf.1399851
AMA Çimen C, Kılıçay K, Kaya E. KRİYOJENİK ISIL İŞLEMİN Ti6Al4V ALAŞIMINLARINDA DİNAMİK TOKLUK ÜZERİNDEKİ ETKİSİNİN DENEYSEL ARAŞTIRILMASI. ESOGÜ Müh Mim Fak Derg. Nisan 2024;32(1):1215-1220. doi:10.31796/ogummf.1399851
Chicago Çimen, Cansu, Koray Kılıçay, ve Esad Kaya. “KRİYOJENİK ISIL İŞLEMİN Ti6Al4V ALAŞIMINLARINDA DİNAMİK TOKLUK ÜZERİNDEKİ ETKİSİNİN DENEYSEL ARAŞTIRILMASI”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 32, sy. 1 (Nisan 2024): 1215-20. https://doi.org/10.31796/ogummf.1399851.
EndNote Çimen C, Kılıçay K, Kaya E (01 Nisan 2024) KRİYOJENİK ISIL İŞLEMİN Ti6Al4V ALAŞIMINLARINDA DİNAMİK TOKLUK ÜZERİNDEKİ ETKİSİNİN DENEYSEL ARAŞTIRILMASI. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 32 1 1215–1220.
IEEE C. Çimen, K. Kılıçay, ve E. Kaya, “KRİYOJENİK ISIL İŞLEMİN Ti6Al4V ALAŞIMINLARINDA DİNAMİK TOKLUK ÜZERİNDEKİ ETKİSİNİN DENEYSEL ARAŞTIRILMASI”, ESOGÜ Müh Mim Fak Derg, c. 32, sy. 1, ss. 1215–1220, 2024, doi: 10.31796/ogummf.1399851.
ISNAD Çimen, Cansu vd. “KRİYOJENİK ISIL İŞLEMİN Ti6Al4V ALAŞIMINLARINDA DİNAMİK TOKLUK ÜZERİNDEKİ ETKİSİNİN DENEYSEL ARAŞTIRILMASI”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 32/1 (Nisan 2024), 1215-1220. https://doi.org/10.31796/ogummf.1399851.
JAMA Çimen C, Kılıçay K, Kaya E. KRİYOJENİK ISIL İŞLEMİN Ti6Al4V ALAŞIMINLARINDA DİNAMİK TOKLUK ÜZERİNDEKİ ETKİSİNİN DENEYSEL ARAŞTIRILMASI. ESOGÜ Müh Mim Fak Derg. 2024;32:1215–1220.
MLA Çimen, Cansu vd. “KRİYOJENİK ISIL İŞLEMİN Ti6Al4V ALAŞIMINLARINDA DİNAMİK TOKLUK ÜZERİNDEKİ ETKİSİNİN DENEYSEL ARAŞTIRILMASI”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, c. 32, sy. 1, 2024, ss. 1215-20, doi:10.31796/ogummf.1399851.
Vancouver Çimen C, Kılıçay K, Kaya E. KRİYOJENİK ISIL İŞLEMİN Ti6Al4V ALAŞIMINLARINDA DİNAMİK TOKLUK ÜZERİNDEKİ ETKİSİNİN DENEYSEL ARAŞTIRILMASI. ESOGÜ Müh Mim Fak Derg. 2024;32(1):1215-20.

20873 13565 13566 15461 13568  14913