Araştırma Makalesi
BibTex RIS Kaynak Göster

PALEO-HYDROTHERMAL DEPOSITION CONDITIONS, PALEO-HYDRODYNAMIC EVENTS AND PALEO-CLIMATE STUDIES IN ILGIN FIELD (KONYA) BITUMINOUS CLAYSTONE DEPOSITION BASIN

Yıl 2024, Cilt: 32 Sayı: 3, 1432 - 1447, 22.12.2024
https://doi.org/10.31796/ogummf.1438395

Öz

Hydrothermal fluid activities significantly affect the degree of preservation of organic matter as well as the enrichment of trace elelemnts like Mo, U, Cu, Ni and Zn in bituminous sedimentary rocks such as claystone and shale. The examined samples’ Fe/Ti ratio (mean: 126.34) and (Fe+Mn)/Ti ratio (mean: 126.79) ratios of the examined samples show that the Ilgın paleo-lake basin is affected by a hydrothermal fluid. The Zr/Rb ratio suggests that the Ilgın paleo-lake basin has been influenced by hydrothermal fluid. According to the Zr/Rb ratios of the examined samples; While a "weak paleo-hydrodynamic force" (0.71) was effective at the base of the sequence, towards the top, "strong paleo-hydrodynamic forces (2.06-2.86) and weak paleo-hydrodynamic forces (1.78-1, 80) were effective. The water depth of the Ilgın paleo-lake basin is 21.02 meters, and bituminous claystone samples were deposited in a "semi-deep lake". Based on the "Compositional Variability Index" (ICVort= 14.31) values of the Ilgın basin bituminous rock samples, these samples contain a high clay content and were deposited under very low energy water conditions. Considering the paleoclimate indicators derived from Sr/Cu (average: 37.10), Rb/Sr (average: 0.106), Th/U (average: 0.34), Sr/Ba (average: 3.2) and Fe/Mn (average: 596, 33) ratios in the examined samples, a very hot and arid climate prevailed in the Ilgın paleo-lake basin.

Kaynakça

  • Abraham, K., Kautz, K., Tillmanns, E. & Walenta, K. (1978). Arsenbrackebuschite, Pb2(Fe,Zn)(OH, H2O)[AsO4]2, a new arsenate mineral. Neues Jahrbuch für Mineralogie, Monatshefte, 193-196.
  • Akgün, F., Kayseri, M.S. & Akkiraz, M.S. (2007). Palaeoclimatic evolution and vegetational changes during the Late Oligocene-Miocene period in Western and Central Anatolia (Turkey). Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 56-90.
  • Akgün, F., Akkiraz, M.S., Üçbaş, S.D., Bozcu, M., Sevinç Kapan-Yeşilyurt, S. & Bozcu, A. (2013). Vegetation and Climate Characteristics of the Oligocene in Northwest Turkey: Data from the Southwestern Part of the Thrace Basin, Northwest Turkey. Turkish Journal of Earth Sciences, 22, 277-303.
  • Akkiraz, M.S. (2011). Vegetation and climate in the Miocene deposits of southern side of the Buyuk Menderes Graben, Șahinali-2 core, SW Turkey. Bulletin of Geosciences, 86(4), 859-878.
  • Akkiraz, M.S., Akgün, F., Utescher, T., Bruch, A.A. & Mosbrugger, V. (2011). Precipitation gradients during the Miocene in Western and Central Turkey as quantified from pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology, 304(3-4), 276-290.
  • Akkiraz, M.S., Akgün, F., Utescher, T., Wilde, V., Bruch, A.A., Mosbrugger, V. & Üçbaş, S.D. (2012). Palaeoflora and Climate of Lignitebearing Lower−Middle Miocene Sediments in the Seyitömer and Tunçbilek Sub-basins, Kütahya Province, Northwest Turkey. Turkish Journal of Earth Sciences, 21, 213-235.
  • Boström, K. (1983). Genesis of ferromanganese deposits-diagnostic criteria for recent and old deposits. Hydrothermal Processes at Seafloor Spreading Centers, Springer, Berlin, pp 473–489.
  • Chen, H.M., Zheng, C.R., Tu, C. & Zhu, Y.G. (1999). Heavy metal pollution in soils in China: Status and countermeasures. Ambio, 28, 130–134.
  • Chu, C.L., Chen, Q.L., Zhang, B., Shi, Z., Jiang, H.J. & Yang, X. (2016). Influence on formation of Yuertusi Source Rock by hydrothermal activities at Dongergou section, Tarim Basin. Acta Sedimentol Sin 34(4):803–810 (in Chinese with English abstract).
  • Couch, E.L. 1971. Calculation of paleosalinities from boron and clay mineral data. American Association of Petroleum Geologists Bulletin, 55, 1829–1837. doi: https://doi.org/10.1306/819A3DAC-16C5-11D7-8645000102C1865D
  • Cullers, R.L. & Podkovyrov, V.N. (2000). Geochemistry of the Mesoproterozoic Lakhanda Shales in Southeastern Yakutia, Russia: Implications for Mineralogical and Provenance Control, and Recycling. Precambrian Research,104,77-93. doi: https://doi.org/10.1016/S0301-9268(00)00090-5
  • Dai, S., Bechtel, A., Eble, C.F., Flores, R.M., French, D., Graham, I.T., Hood, M.M., Hower, J.C., Korasidis V.A. & Moore, T.A. (2020). Recognition of peat depositional environments in coal: a review. Int. J. Coal Geol., 219, 103383. doi: https://doi.org/10.1016/j.coal.2019.103383
  • Ding, T., Valkiers, S., Kipphardt, H., De Bievre, P., Taylor, P. D. P., Gonfiantini, R. & Krouse, R. (2001). Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur. Geochimica et Cosmochimica Acta, 65(15), 2433–2437. doi: https://doi.org/10.1016/S0016-7037(01)00611-1
  • Fu, J., Li, S., Xu, L. & Niu, X. (2018). Paleo-sedimentary environmental restoration and its significance of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China. Petrol. Explor. Develop., 45(6): 998–1008. doi: https://doi.org/10.1016/S1876-3804(18)30104-6
  • Gallagher, T.M. & Sheldon, N.D. (2013). A new paleothermometer for forest paleosols and its implications for Cenozoic climate, Geology, 41, 647–650. doi: https://doi.org/10.1130/G34074.1
  • Hu, X.F., Liu, Q.J., Liu, R., Sun, P.C., Hu, S.C., Meng, Q.T. & Liu, S.Y. (2012). Clay mineral and inorganic geochemcal characteristics of Eocene Huadian Formation in Huadian basin and their paleoenvironment implications. J China Coal Soc. 37(3):416–23 (in Chinese).
  • Dana, J.D., Klein, C. & Hurlbut, C.S. (1985). Manual of Mineralogy. Wiley. 596p. ISBN 047 182 1829. 978047 1821823.
  • Hüseyinca, M.Y. ve Eren. Y. (2007). Ilgın (Konya) kuzeyinin stratigrafisi ve tektonik evrimi. S.Ü. Müh.-Mim. Fak. Derg., c.23, s.1-2.
  • Jia, J., Liu, Z., Bechtel, A., Strobl, S.A.I. & Sun, P. (2013). Tectonic and climate control of oil shale deposition in the Upper Cretaceous Qingshankou Formation (Songliao Basin, NE China). International Journal of Earth Sciences, 102, 1717–1734. doi: https://doi.org/10.1007/s00531-013-0903-7
  • Jin, Z., Li, F., Cao, J., Wang, S. & Yu, J. (2006). Geochemistry of Daihai Lake sediments, Inner Mongolia, north China: Implications for provenance, sedimentary sorting, and catchment weathering. Geomorphology, 80(3-4), 147–163. doi: https://doi.org/10.1016/j.geomorph.2006.02.006
  • Jin, Z. & Zhang, E. (2002). Paleoclimate Implications of Rb/Sr Ratios from Lake Sediments. Sci. Technol. Eng. 2, 20–22.
  • Karayiğit, A.I., Akgün, F.,Gayer, R.A. & Temel, A. (1999). Quality, Palynology, And Paleoenvironmental Interpretation of the Ilgın Lignite, Turkey. International Journal of Coal Geology, 38, pp.219‐236. doi: https://doi.org/10.1016/S0166-5162(98)00015-9
  • Kayseri, M.S. ve Akgün, F. (2010). Türkiye’de Geç Burdigaliyen–Langiyen Periyodu ve Avrupa ile Paleortamsal ve Paleoiklimsel Karşılaştırma: Muğla–Milas (Kultak) Geç Burdigaliyen-Langiyen Palinoflorası ve Paleoiklimsel Özellikleri. Türkiye Jeoloji Bülteni, 53, 1.
  • Kayseri-Özer, M.S. (2014). Spatial distribution of climatic conditions from the Middle Eocene to Late Miocene based on palynoflora in Central, Eastern and Western Anatolia. Geodinamica Acta, 28, 1-36.
  • Lerman, A. (1978). Lakes: Chemistry, Geology, Physics. Springer‐Verlag, New York, Heidelberg, Berlin, 363p.
  • Lerman, A., Imboden, D.M., Gat, J. & Chou, L. (1995). Physics and Chemistry of Lakes. Springer-Verlag, 761 Physics and chemistry of lakes. Springer-Verlag. Berlin.
  • Li, D., Li, R., Zhu, Z., Wu, X., Cheng, J., Liu, F. & Zhao, B. (2017). Origin of organic matter and paleo-sedimentary environment reconstruction of the Triassic oil shale in Tongchuan City, southern Ordos Basin (China). Fuel, 208, 223–235. doi: https://doi.org/10.1016/j.fuel.2017.07.008
  • Li, M., Hinnov, L.A., Huang, C. & Ogg, J.G. (2018). Sedimentary Noise and Sea Levels Linked to Land-Ocean Water Exchange and Obliquity Forcing. Nat. Commun. , 9, 1004 https://doi.org/10.1038/s41467-018-03454-y
  • Liang, W.J., Xiao, C.T., Xiao, K. & Lin, W. (2015). The relationship of Late Jurassic paleoenvironment and paleoclimate with geochemical elements in Amdo Country of northern Tibet. Geol China 42(4):1079–1091 (in Chinese with English abstract).
  • Madhavaraju, J., Hussain, S.M., Ugeswari, J., Nagarajan, R., Ramasamy, S. & Mahalakshmi, S. (2015a). Paleo-redox conditions of the Albian-Danian carbonate rocks of the Cauvery Basin, South India: Implications for Chemostratigraphy, in Ramkumar, M. (ed.), Chemostratigraphy: Concepts, Techniques and Applications: Elsevier Special Volume, 247-271.
  • Madhavaraju, J., Scott, R.W., Lee, Y.I., Bincy, K.S., González-León, C.M. & Ramasamy, S. (2015b). Facies, biostratigraphy, diagenesis, and depositional environments of Lower Cretaceous strata, Sierra San José section, Sonora (Mexico): Carnets de Géologie (Notebooks on Geology), 15, 103-122.
  • Madhavaraju, J., Loser, H., Lee, Y.I., Lozano-Santacruz, R. & Pi-Puig, T. (2016). Geochemistry of Lower Cretaceous limestones of the Alisitos Formation,Baja California, Mexico: Implications for REE source and paleo-redox conditions: Journal of South American Earth Sciences, 66, 149-165. doi: https://doi.org/10.1016/j.jsames.2015.11.013
  • Meyer, I., Davies, G. R. & Stuut, J.B.W. (2011). Grain size control on Sr-Nd isotope provenance studies and impact on paleoclimate recon-structions: an example from deep-sea sediments offshore NW Africa. Geochem. Geophys. Geosyst. 12, 14. doi: https://doi.org/10.1029/2010GC003355
  • Mondal, M.E.A., Wani, H. & Mondal, B. (2012). Geochemical signature of provenance, tectonics and chemical weathering in the Quaternary flood plain sediments of the Hindon River, Gangetic plain, India: Tectonophysics, 566, 87-94. doi: https://doi.org/10.1016/j.tecto.2012.07.001
  • Mosbrugger, V., Utescher, T. & Dilcher, D.L. (2005). Cenozoic continental climatic evolution of Central Europe. Proceedings of the National Academy of Sciences of the United States of America (PNAS) 102 (42).
  • Nesse, W.D. (2000). Introduction to Mineralogy, Oxford University Press, 442p.
  • Poulton, S.W. & Raiswell, R. (2002). The low-temperature geochemical cycle of iron: from continental fluxes to marine sediment deposition. American Journal of Science, 302(9), 774-805. doi: https://doi.org/10.2475/ajs.302.9.774
  • Ramachandran, A., Madhavaraju, J., Ramasamy, S., Lee, Y.I., Rao, S., Chawngthu, D.L. & Velmurugan, K. (2016). Geochemistry of the Proterozoic clastic rocks of Kerur Formation of Kaladgi-Badami Basin, Northern Karnataka, South India: Implications for paleoweathering and provenance. Turkish Journal of Earth Sciences 25, 126-144. doi: https://doi.org/10.3906/yer-1503-4
  • Reheis, M.C. (1990). Influence of climate and eolian dust on the major-element chemistry and clay mineralogy of soils in the northern Bighorn Basin, U.S.A. Catena 17 (3), 219–248. https://doi.org/10.1016/0341-8162(90)90018-9
  • Sarı, A., Ismayılzada,K., Pehlivanlı,B.Y. & Erol,F. (2023). The Relationship between Depositional Processes and Biological Productivity of Bituminous Claystones: Ilgın (Konya) Field. General Topics in Geology and Earth Sciences 1. Chapter II. p.23-40.
  • Sarı, A., Ismayılzada, K., Akıska, E. & Erol, F. (2024a). Ilgın (Konya) bitumlu kiltaşı çökelimi havzasında paleo-tuzluluk incelemeleri: Diyatome türü alglerle tuzluluk arasındaki ilişki. KSÜ Mühendislik Bilimleri Dergisi (baskıda)
  • Sarı, A., Ismayılzada, K., Akıska, S. & Erol, F. (2024b). Ilgın (Konya) Havzası Miyosen Yaşlı Bitümlü Kiltaşlarındaki Redoksa Duyarlı Element Davranışları ve Redoks Koşulları Arasındaki İlişki. Karaelmas Fen ve Mühendislik Dergisi (baskıda)
  • Sun, Q., Xie, M., Shi, L., Zhang, Z., Lin, Y., Shang, W., Wang, K., Li, W., Liu, J. & Chu, G. (2013). Alkanes, compound-specific carbon isotope measures and climate variation during the last millennium from varved sediments of Lake Xiaolongwan, northeast China. J Paleolimnol 50, 331–344. https://doi.org/10.1007/s10933-013-9728-4
  • Strömberg, C.A.E., Werdelin, L., Friis, E.M. & Saraç, G. (2007). The spread of grass-dominated habitats in Turkey and surrounding areas during the Cenozoic: phytolith evidence. Palaeogeography, Palaeoclimatology, Palaeoecology 250, 18-49.
  • Teng, G,E., Hui, L,W., Xu, Y,C. & Chen, J,F. (2005). Correlative study on parameters of inorganic geochemistry and hydrocarbon source rocks formative environment. Adv Earth Sci 20(2):193–200. doi: https://doi.org/10.11867/j.issn.1001-8166.2005.02.0193
  • Wang, Z.W., Fu, X.G., Feng, X.L., Song, C.Y., Wang, D., Che, W.B. & Zeng., S.Q. (2017). Geochemical features of the black shales from the Wuyu Basin, southern Tibet: implications for palaeoenvironment and palaeoclimate. Geol. J. 52, 282-297. doi: https://doi.org/10.1002/gj.2756
  • Wignall, P.B. & Twitchett, R.J. (1996). Oceanic anoxia and the end Permian mass extinction. Science, 272, 1155–1158. doi: https://doi.org/10.1126/science.272.5265.1155
  • Wu, Z,P. & Zhou, Y,Q. (2000). Using the characteristic elements from meteoritic must in strata to calculate sedimentation rate. Acta Sedimentol Sin 18(3):395–399 (in Chinese with English abstract).
  • Xu,Q., Wang, Y., Ma,L., Meng, T., Bi,J. & Jiang, C. (2021). The character and origin of sequence architecture in the arid climate zone: A case of the Lower Submember of the Fourth Member of Shahejie Formation in the Bonan Sub-Sag. Published under licence by IOP Publishing Ltd6th International Conference on Energy Science and Applied Technology IOP Conf. Series: Earth and Environmental Science 804. 022033 IOP Publishing.
  • Xu, C., Shan, X.L., Lin, H.M., Hao, G.L., Liu, P., Wang, X.D., Shen, M.R., Rexiti, Y., Li, K. & Li, Z.S. (2022). The formation of early Eocene organic-rich mudstone in the western Pearl River Mouth Basin, South China: Insight from paleoclimate and hydrothermal activity. Int. J. Coal Geol. 253, 103957. doi: https://doi.org/10.1016/j.coal.2022.103957
  • Yan, K., Wang, C., Mischke, S., Wang, J., Shen, L., Yu,X. & Meng, L. (2021). Major and trace-element geochemistry of Late Cretaceous clastic rocks in the Jitai Basin, southeast China. Sci. Rep., 11, 13846. doi: https://doi.org/10.1038/s41598-021-93125-8
  • Yang, J., Cui, Z., Yi, C., Zhang, W. & Liu, K. (2004). Glacial Lacustrine Sediment's Response to Climate Change since Holocene in Diancang Mountain, Acta Geographica Sinica, 4,525-533 (in Chinese with English abstract).
  • Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686-693.
  • Zhang, X.H, & Zhao, Z,Y. (2002). Definition of Milankovitch cycles for Yangchang formation of the upper triassic in Ordos Basin. Oil Gas Geol 23(4):372–375 (in Chinese with English abstract).
  • Zhang, C.L., Gao, A,L., Liu, Z., Huang, J., Yang, Y.J. & Zhang, Y. (2011). Study of character on sedimentary water and Palaeoclimate for Chang oil layer in Ordos Basin. Nat Gas Geosci 22(4):582–587 (in Chinese with English abstract).
  • Zhang, K., Liu, R., Liu, Z.J. & Li,L. (2021). Geochemical characteristics and geological significance of humid climate events in the Middle-Late Triassic (Ladinian-Carnian) of the Ordos Basin, central China. Mar. Pet. Geol., 131, 105179. doi: https://doi.org/10.1016/j.marpetgeo.2021.105179
  • Zhao, B.S., Li, R.X., Wang, X.Z., Wu, X.Y., Wang, N., Qin, X.L., Cheng, J.H. & Li, J.J. (2016). Sedimentary environment and preservation conditions of organic matter analysis of Shanxi formation mud shale in Yanchang exporation area, Ordos Basin. Geol Sci Technol Inf 35(6):103–111 (in Chinese with English abstract).
  • Zhong, D.K., Jiang, Z,K., Guo, Q. & Sun, H,T. (2015). A review about research history, situation and prospects of hydrothermal sedimentation. J Palaeogeogr 17(3):285–296 (in Chinese with English abstract).

ILGIN SAHASI (KONYA) BİTÜMLÜ KİLTAŞI ÇÖKELİMİ HAVZASINDA PALEO-HİDROTERMAL ÇÖKELME KOŞULLARI, PALEO-HİDRODİNAMİK OLAYLAR VE PALEO-İKLİM İNCELEMELERİ

Yıl 2024, Cilt: 32 Sayı: 3, 1432 - 1447, 22.12.2024
https://doi.org/10.31796/ogummf.1438395

Öz

Hidrotermal akışkan faaliyetleri kiltaşı ve şeyl gibi bitümlü sedimanter kayaçlardaki Mo, U, Cu, Ni ve Zn gibi iz elementlerin zenginleşmesinin yanı sıra organik maddenin korunma derecesini de önemli ölçüde etkiler. İncelenen örneklerinin Fe/Ti (ort: 126,34) ve (Fe+Mn)/Ti (ort: 126,79) oranları Ilgın paleo-göl havzasının hidrotermal bir sıvıdan etkilendiğini göstermektedir. Zr/Rb oranı çeşitli araştırmacılar tarafından, sedimanter havzalarda paleo-hidrodinamik kuvvetle ilişkili olarak su derinliğinin değişmesinin belirlenmesi amacıyla kullanmıştır. İncelenen örneklerinin Zr/Rb oranlarına göre; istifin tabanında “zayıf paleo-hidrodinamik bir kuvvet” (0,71) etkili olmuşken, üste doğru ise ardışıklı olarak “güçlü paleo-hidrodinamik (2,06-2,86) ile zayıf paleo-hidrodinamik kuvvetler (1,78-1,80) etkili olmuşlardır. Ilgın paleo-göl havzasının su derinliği 21,02 metre olup, bitümlü kiltaşı örnekleri “yarı derin bir gölde” çökelmişlerdir. Ilgın havzası bitümlü kayaç örneklerinin Bileşimsel Değişkenlik İndeksi” (ICVort= 14,31) değerlerine göre örnekler çok yüksek kil içeriğine sahip olup, enerjisi çok düşük su koşullarında çökelmişlerdir. İncelenen örneklerde, Sr/Cu (ort: 37,10), Rb/Sr (ort: 0,106), Th/U (ort: 0,34), Sr/Ba (ort:3,2), Fe/Mn (ort: 596,33) oranlarına ait paleo-iklim göstergelerine göre Ilgın paleo-göl havzasında oldukça sıcak ve kurak iklim etkili olmuştur.

Teşekkür

Yazarlar, bu makaleyi eğitim-öğretimindeki 90. yıl münasebetiyle (1934-2024) Ankara Üniversitesi Jeoloji Mühendisliği Bölümü’ne (Ankara Jeoloji) ithaf ederler. Bitümlü kiltaşı örneklerinde Majör ve Minör element analizleri Ankara Üniversitesi YEBİM laboratuvarında ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry) model cihaz kullanılarak yapılmış olup, kendilerine teşekkür ederiz.

Kaynakça

  • Abraham, K., Kautz, K., Tillmanns, E. & Walenta, K. (1978). Arsenbrackebuschite, Pb2(Fe,Zn)(OH, H2O)[AsO4]2, a new arsenate mineral. Neues Jahrbuch für Mineralogie, Monatshefte, 193-196.
  • Akgün, F., Kayseri, M.S. & Akkiraz, M.S. (2007). Palaeoclimatic evolution and vegetational changes during the Late Oligocene-Miocene period in Western and Central Anatolia (Turkey). Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 56-90.
  • Akgün, F., Akkiraz, M.S., Üçbaş, S.D., Bozcu, M., Sevinç Kapan-Yeşilyurt, S. & Bozcu, A. (2013). Vegetation and Climate Characteristics of the Oligocene in Northwest Turkey: Data from the Southwestern Part of the Thrace Basin, Northwest Turkey. Turkish Journal of Earth Sciences, 22, 277-303.
  • Akkiraz, M.S. (2011). Vegetation and climate in the Miocene deposits of southern side of the Buyuk Menderes Graben, Șahinali-2 core, SW Turkey. Bulletin of Geosciences, 86(4), 859-878.
  • Akkiraz, M.S., Akgün, F., Utescher, T., Bruch, A.A. & Mosbrugger, V. (2011). Precipitation gradients during the Miocene in Western and Central Turkey as quantified from pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology, 304(3-4), 276-290.
  • Akkiraz, M.S., Akgün, F., Utescher, T., Wilde, V., Bruch, A.A., Mosbrugger, V. & Üçbaş, S.D. (2012). Palaeoflora and Climate of Lignitebearing Lower−Middle Miocene Sediments in the Seyitömer and Tunçbilek Sub-basins, Kütahya Province, Northwest Turkey. Turkish Journal of Earth Sciences, 21, 213-235.
  • Boström, K. (1983). Genesis of ferromanganese deposits-diagnostic criteria for recent and old deposits. Hydrothermal Processes at Seafloor Spreading Centers, Springer, Berlin, pp 473–489.
  • Chen, H.M., Zheng, C.R., Tu, C. & Zhu, Y.G. (1999). Heavy metal pollution in soils in China: Status and countermeasures. Ambio, 28, 130–134.
  • Chu, C.L., Chen, Q.L., Zhang, B., Shi, Z., Jiang, H.J. & Yang, X. (2016). Influence on formation of Yuertusi Source Rock by hydrothermal activities at Dongergou section, Tarim Basin. Acta Sedimentol Sin 34(4):803–810 (in Chinese with English abstract).
  • Couch, E.L. 1971. Calculation of paleosalinities from boron and clay mineral data. American Association of Petroleum Geologists Bulletin, 55, 1829–1837. doi: https://doi.org/10.1306/819A3DAC-16C5-11D7-8645000102C1865D
  • Cullers, R.L. & Podkovyrov, V.N. (2000). Geochemistry of the Mesoproterozoic Lakhanda Shales in Southeastern Yakutia, Russia: Implications for Mineralogical and Provenance Control, and Recycling. Precambrian Research,104,77-93. doi: https://doi.org/10.1016/S0301-9268(00)00090-5
  • Dai, S., Bechtel, A., Eble, C.F., Flores, R.M., French, D., Graham, I.T., Hood, M.M., Hower, J.C., Korasidis V.A. & Moore, T.A. (2020). Recognition of peat depositional environments in coal: a review. Int. J. Coal Geol., 219, 103383. doi: https://doi.org/10.1016/j.coal.2019.103383
  • Ding, T., Valkiers, S., Kipphardt, H., De Bievre, P., Taylor, P. D. P., Gonfiantini, R. & Krouse, R. (2001). Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur. Geochimica et Cosmochimica Acta, 65(15), 2433–2437. doi: https://doi.org/10.1016/S0016-7037(01)00611-1
  • Fu, J., Li, S., Xu, L. & Niu, X. (2018). Paleo-sedimentary environmental restoration and its significance of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China. Petrol. Explor. Develop., 45(6): 998–1008. doi: https://doi.org/10.1016/S1876-3804(18)30104-6
  • Gallagher, T.M. & Sheldon, N.D. (2013). A new paleothermometer for forest paleosols and its implications for Cenozoic climate, Geology, 41, 647–650. doi: https://doi.org/10.1130/G34074.1
  • Hu, X.F., Liu, Q.J., Liu, R., Sun, P.C., Hu, S.C., Meng, Q.T. & Liu, S.Y. (2012). Clay mineral and inorganic geochemcal characteristics of Eocene Huadian Formation in Huadian basin and their paleoenvironment implications. J China Coal Soc. 37(3):416–23 (in Chinese).
  • Dana, J.D., Klein, C. & Hurlbut, C.S. (1985). Manual of Mineralogy. Wiley. 596p. ISBN 047 182 1829. 978047 1821823.
  • Hüseyinca, M.Y. ve Eren. Y. (2007). Ilgın (Konya) kuzeyinin stratigrafisi ve tektonik evrimi. S.Ü. Müh.-Mim. Fak. Derg., c.23, s.1-2.
  • Jia, J., Liu, Z., Bechtel, A., Strobl, S.A.I. & Sun, P. (2013). Tectonic and climate control of oil shale deposition in the Upper Cretaceous Qingshankou Formation (Songliao Basin, NE China). International Journal of Earth Sciences, 102, 1717–1734. doi: https://doi.org/10.1007/s00531-013-0903-7
  • Jin, Z., Li, F., Cao, J., Wang, S. & Yu, J. (2006). Geochemistry of Daihai Lake sediments, Inner Mongolia, north China: Implications for provenance, sedimentary sorting, and catchment weathering. Geomorphology, 80(3-4), 147–163. doi: https://doi.org/10.1016/j.geomorph.2006.02.006
  • Jin, Z. & Zhang, E. (2002). Paleoclimate Implications of Rb/Sr Ratios from Lake Sediments. Sci. Technol. Eng. 2, 20–22.
  • Karayiğit, A.I., Akgün, F.,Gayer, R.A. & Temel, A. (1999). Quality, Palynology, And Paleoenvironmental Interpretation of the Ilgın Lignite, Turkey. International Journal of Coal Geology, 38, pp.219‐236. doi: https://doi.org/10.1016/S0166-5162(98)00015-9
  • Kayseri, M.S. ve Akgün, F. (2010). Türkiye’de Geç Burdigaliyen–Langiyen Periyodu ve Avrupa ile Paleortamsal ve Paleoiklimsel Karşılaştırma: Muğla–Milas (Kultak) Geç Burdigaliyen-Langiyen Palinoflorası ve Paleoiklimsel Özellikleri. Türkiye Jeoloji Bülteni, 53, 1.
  • Kayseri-Özer, M.S. (2014). Spatial distribution of climatic conditions from the Middle Eocene to Late Miocene based on palynoflora in Central, Eastern and Western Anatolia. Geodinamica Acta, 28, 1-36.
  • Lerman, A. (1978). Lakes: Chemistry, Geology, Physics. Springer‐Verlag, New York, Heidelberg, Berlin, 363p.
  • Lerman, A., Imboden, D.M., Gat, J. & Chou, L. (1995). Physics and Chemistry of Lakes. Springer-Verlag, 761 Physics and chemistry of lakes. Springer-Verlag. Berlin.
  • Li, D., Li, R., Zhu, Z., Wu, X., Cheng, J., Liu, F. & Zhao, B. (2017). Origin of organic matter and paleo-sedimentary environment reconstruction of the Triassic oil shale in Tongchuan City, southern Ordos Basin (China). Fuel, 208, 223–235. doi: https://doi.org/10.1016/j.fuel.2017.07.008
  • Li, M., Hinnov, L.A., Huang, C. & Ogg, J.G. (2018). Sedimentary Noise and Sea Levels Linked to Land-Ocean Water Exchange and Obliquity Forcing. Nat. Commun. , 9, 1004 https://doi.org/10.1038/s41467-018-03454-y
  • Liang, W.J., Xiao, C.T., Xiao, K. & Lin, W. (2015). The relationship of Late Jurassic paleoenvironment and paleoclimate with geochemical elements in Amdo Country of northern Tibet. Geol China 42(4):1079–1091 (in Chinese with English abstract).
  • Madhavaraju, J., Hussain, S.M., Ugeswari, J., Nagarajan, R., Ramasamy, S. & Mahalakshmi, S. (2015a). Paleo-redox conditions of the Albian-Danian carbonate rocks of the Cauvery Basin, South India: Implications for Chemostratigraphy, in Ramkumar, M. (ed.), Chemostratigraphy: Concepts, Techniques and Applications: Elsevier Special Volume, 247-271.
  • Madhavaraju, J., Scott, R.W., Lee, Y.I., Bincy, K.S., González-León, C.M. & Ramasamy, S. (2015b). Facies, biostratigraphy, diagenesis, and depositional environments of Lower Cretaceous strata, Sierra San José section, Sonora (Mexico): Carnets de Géologie (Notebooks on Geology), 15, 103-122.
  • Madhavaraju, J., Loser, H., Lee, Y.I., Lozano-Santacruz, R. & Pi-Puig, T. (2016). Geochemistry of Lower Cretaceous limestones of the Alisitos Formation,Baja California, Mexico: Implications for REE source and paleo-redox conditions: Journal of South American Earth Sciences, 66, 149-165. doi: https://doi.org/10.1016/j.jsames.2015.11.013
  • Meyer, I., Davies, G. R. & Stuut, J.B.W. (2011). Grain size control on Sr-Nd isotope provenance studies and impact on paleoclimate recon-structions: an example from deep-sea sediments offshore NW Africa. Geochem. Geophys. Geosyst. 12, 14. doi: https://doi.org/10.1029/2010GC003355
  • Mondal, M.E.A., Wani, H. & Mondal, B. (2012). Geochemical signature of provenance, tectonics and chemical weathering in the Quaternary flood plain sediments of the Hindon River, Gangetic plain, India: Tectonophysics, 566, 87-94. doi: https://doi.org/10.1016/j.tecto.2012.07.001
  • Mosbrugger, V., Utescher, T. & Dilcher, D.L. (2005). Cenozoic continental climatic evolution of Central Europe. Proceedings of the National Academy of Sciences of the United States of America (PNAS) 102 (42).
  • Nesse, W.D. (2000). Introduction to Mineralogy, Oxford University Press, 442p.
  • Poulton, S.W. & Raiswell, R. (2002). The low-temperature geochemical cycle of iron: from continental fluxes to marine sediment deposition. American Journal of Science, 302(9), 774-805. doi: https://doi.org/10.2475/ajs.302.9.774
  • Ramachandran, A., Madhavaraju, J., Ramasamy, S., Lee, Y.I., Rao, S., Chawngthu, D.L. & Velmurugan, K. (2016). Geochemistry of the Proterozoic clastic rocks of Kerur Formation of Kaladgi-Badami Basin, Northern Karnataka, South India: Implications for paleoweathering and provenance. Turkish Journal of Earth Sciences 25, 126-144. doi: https://doi.org/10.3906/yer-1503-4
  • Reheis, M.C. (1990). Influence of climate and eolian dust on the major-element chemistry and clay mineralogy of soils in the northern Bighorn Basin, U.S.A. Catena 17 (3), 219–248. https://doi.org/10.1016/0341-8162(90)90018-9
  • Sarı, A., Ismayılzada,K., Pehlivanlı,B.Y. & Erol,F. (2023). The Relationship between Depositional Processes and Biological Productivity of Bituminous Claystones: Ilgın (Konya) Field. General Topics in Geology and Earth Sciences 1. Chapter II. p.23-40.
  • Sarı, A., Ismayılzada, K., Akıska, E. & Erol, F. (2024a). Ilgın (Konya) bitumlu kiltaşı çökelimi havzasında paleo-tuzluluk incelemeleri: Diyatome türü alglerle tuzluluk arasındaki ilişki. KSÜ Mühendislik Bilimleri Dergisi (baskıda)
  • Sarı, A., Ismayılzada, K., Akıska, S. & Erol, F. (2024b). Ilgın (Konya) Havzası Miyosen Yaşlı Bitümlü Kiltaşlarındaki Redoksa Duyarlı Element Davranışları ve Redoks Koşulları Arasındaki İlişki. Karaelmas Fen ve Mühendislik Dergisi (baskıda)
  • Sun, Q., Xie, M., Shi, L., Zhang, Z., Lin, Y., Shang, W., Wang, K., Li, W., Liu, J. & Chu, G. (2013). Alkanes, compound-specific carbon isotope measures and climate variation during the last millennium from varved sediments of Lake Xiaolongwan, northeast China. J Paleolimnol 50, 331–344. https://doi.org/10.1007/s10933-013-9728-4
  • Strömberg, C.A.E., Werdelin, L., Friis, E.M. & Saraç, G. (2007). The spread of grass-dominated habitats in Turkey and surrounding areas during the Cenozoic: phytolith evidence. Palaeogeography, Palaeoclimatology, Palaeoecology 250, 18-49.
  • Teng, G,E., Hui, L,W., Xu, Y,C. & Chen, J,F. (2005). Correlative study on parameters of inorganic geochemistry and hydrocarbon source rocks formative environment. Adv Earth Sci 20(2):193–200. doi: https://doi.org/10.11867/j.issn.1001-8166.2005.02.0193
  • Wang, Z.W., Fu, X.G., Feng, X.L., Song, C.Y., Wang, D., Che, W.B. & Zeng., S.Q. (2017). Geochemical features of the black shales from the Wuyu Basin, southern Tibet: implications for palaeoenvironment and palaeoclimate. Geol. J. 52, 282-297. doi: https://doi.org/10.1002/gj.2756
  • Wignall, P.B. & Twitchett, R.J. (1996). Oceanic anoxia and the end Permian mass extinction. Science, 272, 1155–1158. doi: https://doi.org/10.1126/science.272.5265.1155
  • Wu, Z,P. & Zhou, Y,Q. (2000). Using the characteristic elements from meteoritic must in strata to calculate sedimentation rate. Acta Sedimentol Sin 18(3):395–399 (in Chinese with English abstract).
  • Xu,Q., Wang, Y., Ma,L., Meng, T., Bi,J. & Jiang, C. (2021). The character and origin of sequence architecture in the arid climate zone: A case of the Lower Submember of the Fourth Member of Shahejie Formation in the Bonan Sub-Sag. Published under licence by IOP Publishing Ltd6th International Conference on Energy Science and Applied Technology IOP Conf. Series: Earth and Environmental Science 804. 022033 IOP Publishing.
  • Xu, C., Shan, X.L., Lin, H.M., Hao, G.L., Liu, P., Wang, X.D., Shen, M.R., Rexiti, Y., Li, K. & Li, Z.S. (2022). The formation of early Eocene organic-rich mudstone in the western Pearl River Mouth Basin, South China: Insight from paleoclimate and hydrothermal activity. Int. J. Coal Geol. 253, 103957. doi: https://doi.org/10.1016/j.coal.2022.103957
  • Yan, K., Wang, C., Mischke, S., Wang, J., Shen, L., Yu,X. & Meng, L. (2021). Major and trace-element geochemistry of Late Cretaceous clastic rocks in the Jitai Basin, southeast China. Sci. Rep., 11, 13846. doi: https://doi.org/10.1038/s41598-021-93125-8
  • Yang, J., Cui, Z., Yi, C., Zhang, W. & Liu, K. (2004). Glacial Lacustrine Sediment's Response to Climate Change since Holocene in Diancang Mountain, Acta Geographica Sinica, 4,525-533 (in Chinese with English abstract).
  • Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686-693.
  • Zhang, X.H, & Zhao, Z,Y. (2002). Definition of Milankovitch cycles for Yangchang formation of the upper triassic in Ordos Basin. Oil Gas Geol 23(4):372–375 (in Chinese with English abstract).
  • Zhang, C.L., Gao, A,L., Liu, Z., Huang, J., Yang, Y.J. & Zhang, Y. (2011). Study of character on sedimentary water and Palaeoclimate for Chang oil layer in Ordos Basin. Nat Gas Geosci 22(4):582–587 (in Chinese with English abstract).
  • Zhang, K., Liu, R., Liu, Z.J. & Li,L. (2021). Geochemical characteristics and geological significance of humid climate events in the Middle-Late Triassic (Ladinian-Carnian) of the Ordos Basin, central China. Mar. Pet. Geol., 131, 105179. doi: https://doi.org/10.1016/j.marpetgeo.2021.105179
  • Zhao, B.S., Li, R.X., Wang, X.Z., Wu, X.Y., Wang, N., Qin, X.L., Cheng, J.H. & Li, J.J. (2016). Sedimentary environment and preservation conditions of organic matter analysis of Shanxi formation mud shale in Yanchang exporation area, Ordos Basin. Geol Sci Technol Inf 35(6):103–111 (in Chinese with English abstract).
  • Zhong, D.K., Jiang, Z,K., Guo, Q. & Sun, H,T. (2015). A review about research history, situation and prospects of hydrothermal sedimentation. J Palaeogeogr 17(3):285–296 (in Chinese with English abstract).
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Ali Sarı 0000-0001-6289-3332

Kamal Ismayılzada 0000-0002-0960-0286

Elif Akıska 0000-0002-6180-4710

Fuat Erol 0009-0008-5830-3860

Erken Görünüm Tarihi 12 Aralık 2024
Yayımlanma Tarihi 22 Aralık 2024
Gönderilme Tarihi 16 Mart 2024
Kabul Tarihi 16 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 32 Sayı: 3

Kaynak Göster

APA Sarı, A., Ismayılzada, K., Akıska, E., Erol, F. (2024). ILGIN SAHASI (KONYA) BİTÜMLÜ KİLTAŞI ÇÖKELİMİ HAVZASINDA PALEO-HİDROTERMAL ÇÖKELME KOŞULLARI, PALEO-HİDRODİNAMİK OLAYLAR VE PALEO-İKLİM İNCELEMELERİ. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 32(3), 1432-1447. https://doi.org/10.31796/ogummf.1438395
AMA Sarı A, Ismayılzada K, Akıska E, Erol F. ILGIN SAHASI (KONYA) BİTÜMLÜ KİLTAŞI ÇÖKELİMİ HAVZASINDA PALEO-HİDROTERMAL ÇÖKELME KOŞULLARI, PALEO-HİDRODİNAMİK OLAYLAR VE PALEO-İKLİM İNCELEMELERİ. ESOGÜ Müh Mim Fak Derg. Aralık 2024;32(3):1432-1447. doi:10.31796/ogummf.1438395
Chicago Sarı, Ali, Kamal Ismayılzada, Elif Akıska, ve Fuat Erol. “ILGIN SAHASI (KONYA) BİTÜMLÜ KİLTAŞI ÇÖKELİMİ HAVZASINDA PALEO-HİDROTERMAL ÇÖKELME KOŞULLARI, PALEO-HİDRODİNAMİK OLAYLAR VE PALEO-İKLİM İNCELEMELERİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 32, sy. 3 (Aralık 2024): 1432-47. https://doi.org/10.31796/ogummf.1438395.
EndNote Sarı A, Ismayılzada K, Akıska E, Erol F (01 Aralık 2024) ILGIN SAHASI (KONYA) BİTÜMLÜ KİLTAŞI ÇÖKELİMİ HAVZASINDA PALEO-HİDROTERMAL ÇÖKELME KOŞULLARI, PALEO-HİDRODİNAMİK OLAYLAR VE PALEO-İKLİM İNCELEMELERİ. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 32 3 1432–1447.
IEEE A. Sarı, K. Ismayılzada, E. Akıska, ve F. Erol, “ILGIN SAHASI (KONYA) BİTÜMLÜ KİLTAŞI ÇÖKELİMİ HAVZASINDA PALEO-HİDROTERMAL ÇÖKELME KOŞULLARI, PALEO-HİDRODİNAMİK OLAYLAR VE PALEO-İKLİM İNCELEMELERİ”, ESOGÜ Müh Mim Fak Derg, c. 32, sy. 3, ss. 1432–1447, 2024, doi: 10.31796/ogummf.1438395.
ISNAD Sarı, Ali vd. “ILGIN SAHASI (KONYA) BİTÜMLÜ KİLTAŞI ÇÖKELİMİ HAVZASINDA PALEO-HİDROTERMAL ÇÖKELME KOŞULLARI, PALEO-HİDRODİNAMİK OLAYLAR VE PALEO-İKLİM İNCELEMELERİ”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 32/3 (Aralık 2024), 1432-1447. https://doi.org/10.31796/ogummf.1438395.
JAMA Sarı A, Ismayılzada K, Akıska E, Erol F. ILGIN SAHASI (KONYA) BİTÜMLÜ KİLTAŞI ÇÖKELİMİ HAVZASINDA PALEO-HİDROTERMAL ÇÖKELME KOŞULLARI, PALEO-HİDRODİNAMİK OLAYLAR VE PALEO-İKLİM İNCELEMELERİ. ESOGÜ Müh Mim Fak Derg. 2024;32:1432–1447.
MLA Sarı, Ali vd. “ILGIN SAHASI (KONYA) BİTÜMLÜ KİLTAŞI ÇÖKELİMİ HAVZASINDA PALEO-HİDROTERMAL ÇÖKELME KOŞULLARI, PALEO-HİDRODİNAMİK OLAYLAR VE PALEO-İKLİM İNCELEMELERİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, c. 32, sy. 3, 2024, ss. 1432-47, doi:10.31796/ogummf.1438395.
Vancouver Sarı A, Ismayılzada K, Akıska E, Erol F. ILGIN SAHASI (KONYA) BİTÜMLÜ KİLTAŞI ÇÖKELİMİ HAVZASINDA PALEO-HİDROTERMAL ÇÖKELME KOŞULLARI, PALEO-HİDRODİNAMİK OLAYLAR VE PALEO-İKLİM İNCELEMELERİ. ESOGÜ Müh Mim Fak Derg. 2024;32(3):1432-47.

20873 13565 13566 15461 13568  14913