Araştırma Makalesi
BibTex RIS Kaynak Göster

INVESTIGATION OF THE EFFECT OF CuO SINTERING AID ON THE ELECTRICAL PROPERTIES OF NON-STOICHIOMETRIC NBT-ST CERAMICS

Yıl 2024, Cilt: 32 Sayı: 3, 1526 - 1536, 22.12.2024
https://doi.org/10.31796/ogummf.1542806

Öz

In the last two decades, extensive research has been conducted on lead-free piezoceramics to find alternatives to lead-zirconate-titanate (PZT) and its derivatives, which are widely utilized in electromechanical devices, including actuators, transducers, sensors, energy harvesting, and energy storage applications. Among these studies, sodium bismuth titanate (Na0.5Bi0.5TiO3-NBT) based ceramics and compositions near the morphotropic phase boundary (MPB) are notable for their electrical properties. A recent study modified the NBT ceramic composition with strontium titanate (SrTiO3-ST). The non-stoichiometric ceramic composition [Na0,5Bi0,5TiO3]0,75[Sr1-yTiO3-x]0,25-NBT-SnT (where x=0.25) was synthesized via solid-state calcination, and the effect of CuO additives on sintering performance and properties was investigated. The synthesis process achieved a significant proportion of the NBT-SnT phase in pseudo cubic symmetry. Secondary phase formation during sintering was observed to increase with CuO sintering aid. The highest density was achieved with ceramics containing 0.5% CuO sintered at 1200°C for 3 hours. For these ceramics, the dielectric constant (K) ranged from 570 to 1300 at a frequency of 10 kHz, with dielectric loss (tan δ) values ranging from 0.04 to 0.11, indicative of relaxor ferroelectric behavior with a degree of diffuse phase transition (γ) ranging from 1.84 to 1.99.

Teşekkür

The authors acknowledge Gebze Technical University, the Department of Materials Science and Engineering, and the Piezodevices research group for their support in the structural and electrical characterizations of this study.

Kaynakça

  • Acosta, M., Jo, W., & Rödel, J. (2014). Temperature- and Frequency-Dependent Properties of the 0.75Bi1/2Na1/2TiO3–0.25SrTiO3 Lead-Free Incipient Piezoceramic. Journal of the American Ceramic Society, 97(6), 1937-1943. doi: https://doi.org/10.1111/jace.12884
  • Acosta, M., Novak, N., Rojas, V., Patel, S., Vaish, R., Koruza, J., Rossetti, G. A., Jr., & Rödel, J. (2017). BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. Applied Physics Reviews, 4(4). doi: https://doi.org/10.1063/1.4990046
  • Ang, C., & Yu, Z. (2006). High, Purely Electrostrictive Strain in Lead-Free Dielectrics. Advanced Materials, 18(1),103-106. doi: https://doi.org/10.1002/adma.200500951
  • Berksoy-Yavuz, A., Kaya, M. Y., Avcı, T., Cakırbas, G., & Menşur, E. (2022). Fabrication of 0.94NBT–0.06BT textured ceramics using plate-like NBT templates and their electrical properties. Journal of Materials Science: Materials in Electronics, 33(5), 2336-2349. doi: https://doi.org/10.1007/s10854-021-07433-w
  • Berksoy-Yavuz, A., Kaya, M. Y., Yalcin, E., Gozuacik, N. K., & Mensur, E. (2024). Effect of texture on ultra-high strain behavior in eco-friendly NBT-0.25ST ceramics using NBT template. Journal of the American Ceramic Society, 107(8), 5502-5511. doi: https://doi.org/10.1111/jace.19834
  • Bobrek, I., Berksoy-Yavuz, A., Kaya, M. Y., Alkoy, S., Okatan, M. B., Misirlioglu, I. B., & Mensur-Alkoy, E. (2021). Temperature Dependent Electrical and Electrocaloric Properties of Textured 0.72PMN- 0.28PT Ceramics*. Integrated Ferroelectrics, 223(1), 214-227. doi: https://doi.org/10.1080/10584587.2021.1964300
  • Cao, W. P., Li, W. L., Dai, X. F., Zhang, T. D., Sheng, J., Hou, Y. F., & Fei, W. D. (2016). Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics. Journal of the European Ceramic Society, 36(3), 593-600. doi: https://doi.org/10.1016/j.jeurceramsoc.2015.10.019
  • Cross, L. E. (1987). Relaxor ferroelectrics. Ferroelectrics, 76(1), 241-267. doi: https://doi.org/10.1080/00150198708016945
  • Cui, C., Pu, Y., Gao, Z., Wan, J., Guo, Y., Hui, C., Wang, Y., & Cui, Y. (2017). Structure, dielectric and relaxor properties in lead-free ST-NBT ceramics for high energy storage applications. Journal of Alloys and Compounds, 711, 319-326. doi: https://doi.org//10.1016/j.jallcom.2017.04.023
  • EU-Directive. (2003). 2002/96/EC Waste electrical and electronic equipment (WEEE). Official Journal of the European Union L, 37, 24-38.
  • EU-Directive. (2011). Restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS). Official Journal of the European Union, 2011/65/EU(88).
  • Fan, P., Liu, K., Ma, W., Tan, H., Zhang, Q., Zhang, L., Zhou, C., Salamon, D., Zhang, S.-T., Zhang, Y., Nan, B., & Zhang, H. (2021). Progress and perspective of high strain NBT-based lead-free piezoceramics and multilayer actuators. Journal of Materiomics, 7(3), 508-544. doi: https://doi.org/10.1016/j.jmat.2020.11.009
  • Frömling, T., Steiner, S., Ayrikyan, A., Bremecker, D., Dürrschnabel, M., Molina-Luna, L., Kleebe, H.-J., Hutter, H., Webber, K. G., & Acosta, M. (2018). Designing properties of (Na1/2Bix)TiO3-based materials through A-site non-stoichiometry. Journal of Materials Chemistry C, 6(4), 738-744. doi: https://doi.org/10.1039/C7TC03975A
  • Gao, X., Yang, J., Wu, J., Xin, X., Li, Z., Yuan, X., Shen, X., & Dong, S. (2020). Piezoelectric Actuators and Motors: Materials, Designs, and Applications. Advanced Materials Technologies, 5(1), 1900716. doi: https://doi.org/10.1002/admt.201900716
  • Gozuacik, N. K., & Alkoy, S. (2024). Origin of ultrahigh field-induced strain in the Gd-doped 0.854Bi0.5Na0.5TiO3-0.12Bi0.5K0.5TiO3-0.026BaTiO3 ternary ceramic system. Japanese Journal of Applied Physics. doi: https://doi.org/10.35848/1347-4065/ad7147
  • Gupta, S. K., McQuade, R., Gibbons, B., Mardilovich, P., & Cann, D. P. (2020). Electric field-induced strain in Sr(Hf0.5Zr0.5)O3-modified Bi0.5(Na0.8K0.2)0.5TiO3 piezoelectric ceramics. Journal of Applied Physics, 127(7). doi: https://doi.org/10.1063/1.5132536
  • He, H., Lu, X., Li, M., Wang, Y., Li, Z., Lu, Z., & Lu, L. (2020). Thermal and compositional driven relaxor ferroelectric behaviours of lead-free Bi0.5Na0.5TiO3–SrTiO3 ceramics Journal of Materials Chemistry C, 8(7), 2411-2418. doi: https://doi.org/10.1039/C9TC04864B
  • Hill, N. A. (2000). Why Are There so Few Magnetic Ferroelectrics? The Journal of Physical Chemistry B, 104(29), 6694-6709. doi: https://doi.org/10.1021/jp000114x
  • Hiruma, Y., Imai, Y., Watanabe, Y., Nagata, H., & Takenaka, T. (2008). Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3–SrTiO3 ferroelectric ceramics. Applied Physics Letters, 92(26). doi: https://doi.org/10.1063/1.2955533
  • Jo, W., Daniels, J., Damjanovic, D., Kleemann, W., & Rödel, J. (2013). Two-stage processes of electrically induced-ferroelectric to relaxor transition in 0.94(Bi1/2Na1/2)TiO3-0.06BaTiO3. Applied Physics Letters, 102(19). doi: https://doi.org/10.1063/1.4805360
  • Jo, W., Schaab, S., Sapper, E., Schmitt, L. A., Kleebe, H.-J., Bell, A. J., & Rödel, J. (2011). On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol% BaTiO3. Journal of Applied Physics, 110(7), 074106. doi: https://doi.org/10.1063/1.3645054
  • Kaya, M. Y., Menşur-Alkoy, E., Gürbüz, A., Öner, M., & Alkoy, S. (2018). Influence of Compositional Variation on the Electrical Properties of [Pb(Zn1/3Nb2/3)O3]–[Pb(Zr, Ti)O3] Ceramics and Their Transducer Application. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 65(7), 1268-1277. doi: https://doi.org/10.1109/TUFFC.2018.2829800
  • Kim, S., Choi, H., Han, S., Park, J. S., Lee, M. H., Song, T. K., Kim, M.-H., Do, D., & Kim, W.-J. (2017). A correlation between piezoelectric response and crystallographic structural parameter observed in lead-free (1-x)( Bi0.5Na0.5)TiO3–xSrTiO3 piezoelectrics. Journal of the European Ceramic Society, 37(4), 1379-1386. doi: https://doi.org/10.1016/j.jeurceramsoc.2016.11.023
  • Krauss, W., Schütz, D., Mautner, F. A., Feteira, A., & Reichmann, K. (2010). Piezoelectric properties and phase transition temperatures of the solid solution of (1−x)(Bi0.5Na0.5)TiO3–xSrTiO3. Journal of the European Ceramic Society, 30(8), 1827-1832. doi: https://doi.org/10.1016/j.jeurceramsoc.2010.02.001
  • Li, Q., Wang, J., Ma, Y., Ma, L., Dong, G., & Fan, H. (2016). Enhanced energy-storage performance and dielectric characterization of 0.94 Bi0.5Na0.5TiO3–0.06BaTiO3 modified by CaZrO3. Journal of Alloys and Compounds, 663, 701-707. doi: https://doi.org/10.1016/j.jallcom.2015.12.194
  • Liub, G., Dong, J., Zhang, L., Yan, Y., Jing, R., & Jin, L. (2020). Phase evolution in (1−x)(Na0.5Bi0.5)TiO3-xSrTiO3 solid solutions: A study focusing on dielectric and ferroelectric characteristics. Journal of Materiomics, 6(4), 677-691. doi: https://doi.org/10.1016/j.jmat.2020.05.005
  • Liua, G., Dong, J., Zhang, L., Yu, L., Wei, F., Li, Y., Gao, J., Hu, J., Yan, Y., Li, Q., Yu, K., & Jin, L. (2020). Na0.25Sr0.5Bi0.25TiO3 relaxor ferroelectric ceramic with greatly enhanced electric storage property by a B-site ion doping. Ceramics International, 46(8, Part B), 11680-11688. doi: https://doi.org/10.1016/j.ceramint.2020.01.199
  • Liub, X., Li, F., Li, P., Zhai, J., Shen, B., & Liu, B. (2017). Tuning the ferroelectric-relaxor transition temperature in NBT-based lead-free ceramics by Bi nonstoichiometry. Journal of the European Ceramic Society, 37(15), 4585-4595. doi: https://doi.org/10.1016/j.jeurceramsoc.2017.05.042
  • Liua, X., Li, F., Zhai, J., Shen, B., Li, P., & Liu, B. (2017). Composition-induced structural transitions and enhanced strain response in nonstoichiometric NBT-based ceramics. Journal of the American Ceramic Society, 100(8), 3636-3645. doi: https://doi.org/10.1111/jace.14918
  • Liud, X., Shen, B., & Zhai, J. (2019). Designing novel sodium bismuth titanate lead-free incipient perovskite for piezoactuator applications. Journal of the American Ceramic Society, 102(11), 6751-6759. doi: https://doi.org/10.1111/jace.16533
  • Liuc, X., Zhai, J., Shen, B., Li, F., Zhang, Y., Li, P., & Liu, B. (2017). Electric-field-temperature phase diagram and electromechanical properties in lead-free (Na0.5Bi0.5)TiO3-based incipient piezoelectric ceramics. Journal of the European Ceramic Society, 37(4), 1437-1447. doi: https://doi.org/10.1016/j.jeurceramsoc.2016.12.020
  • Lou, G., Yin, Q., Duan, A., Cao, D., & Yin, X. (2018). Structure, dielectric properties and impedance analysis of lead-free (1 − x)Na0.5Bi0.5TiO3-xSrTiO3 ceramics. Journal of Materials Science: Materials in Electronics, 29(8), 6283-6288. doi: https://doi.org/10.1007/s10854-018-8607-1
  • Malathi, A. R., Devi, C. S., Kumar, G. S., Vithal, M., & Prasad, G. (2013). Dielectric relaxation in NBT–ST ceramic composite materials. Ionics, 19(12), 1751-1760. doi: https://doi.org/10.1007/s11581-013-0921-2
  • Park, S.-E., & Hong, K. S. (1997). Variations of Structure and Dielectric Properties on Substituting A-site Cations for Sr2+ in (Na1/2Bi1/2)TiO3. Journal of Materials Research, 12(8), 2152-2157. doi: https://doi.org/10.1557/JMR.1997.0288
  • Rahman, J. U., Hussain, A., Maqbool, A., Ryu, G. H., Song, T. K., Kim, W.-J., & Kim, M. H. (2014). Field induced strain response of lead-free BaZrO3-modified Bi0.5Na0.5TiO3–BaTiO3 ceramics. Journal of Alloys and Compounds, 593, 97-102. doi: https://doi.org/10.1016/j.jallcom.2014.01.031
  • Reichmann, K., Feteira, A., & Li, M. (2015). Bismuth Sodium Titanate Based Materials for Piezoelectric Actuators. Materials, 8(12), 8467-8495. doi: https://doi.org/10.3390/ma8125469
  • Rödel, J., Jo, W., Seifert, K. T. P., Anton, E. M., Granzow, T., & Damjanovic, D. (2009). Perspective on the Development of Lead-free Piezoceramics. Journal of the American Ceramic Society, 92-6, 1153-1177. Doi: https://doi.org/10.1111/j.1551-2916.2009.03061.x
  • Rödel, J., & Li, J.-F. (2018). Lead-free piezoceramics: Status and perspectives. MRS Bulletin, 43(8), 576-580. doi: https://doi.org/10.1557/mrs.2018.181
  • Rödel, J., Webber, K. G., Dittmer, R., Jo, W., Kimura, M., & Damjanovic, D. (2015). Transferring lead-free piezoelectric ceramics into application. Journal of the European Ceramic Society, 35(6), 1659-1681. doi: https://doi.org/10.1016/j.jeurceramsoc.2014.12.013
  • Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., & Nakamura, M. (2004). Lead-free piezoceramics. Nature, 432(7013), 84-87. doi: https://doi.org/10.1038/nature03028
  • Sakata, K., & Masuda, Y. (1974). Ferroelectric and antiferroelectric properties of (Na0.5Bi0.5)TiO3-SrTiO3 solid solution ceramics. Ferroelectrics, 7(1), 347-349. doi: https://doi.org/10.1080/00150197408238042
  • Shi, W., Zhang, L., Chen, P., Li, Y., Wang, Y., Liu, G., Yu, K., & Yan, Y. (2019). The ferroelectric, dielectric and energy storage properties of Pb-free 0.6Na0.5Bi0.5TiO3-0.4SrTiO3 bulk ceramics modified by Fe2O3. Materials Research Express, 6(8), 086329. doi: https://doi.org/10.1088/2053-1591/ab25c7
  • Smolenskii, G., Isupov, V., Agranovskaya, A., & Krainik, N. (1961). New Ferroelectrics of Complex Composition IV. Soviet Physics. Solid State, 2, 2651-2654.
  • Su, Q., Zhu, J., Ma, Z., Meng, X., Zhao, Y., Li, Y., & Hao, X. (2022). Enhanced energy-storage properties and charge-discharge performances in Sm3+ modified (Na0.5Bi0.5)TiO3-SrTiO3 lead-free relaxor ferroelectric ceramics. Materials Research Bulletin, 148, 111675. doi:https://doi.org/10.1016/j.materresbull.2021.111675
  • Uchino, K., & Nomura, S. (1982). Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectrics, 44(1), 55-61. doi: https://doi.org/10.1080/00150198208260644
  • Verma, A., Yadav, A. K., Kumar, S., Srihari, V., Rajput, P., Reddy, V. R., Jangir, R., Poshwal, H. K., Liu, S. W., Biring, S., & Sen, S. (2018). Increase in depolarization temperature and improvement in ferroelectric properties by V5+ doping in lead-free 0.94(Na0.5Bi0.5)TiO3-0.06BaTiO3 ceramics. Journal of Applied Physics, 123(22). doi: https://doi.org/10.1063/1.5036927
  • Wang, M., Feng, Q., Wei, Y., Luo, N., Yuan, C., Zhou, C., Fujita, T., Xu, J., & Chen, G. (2021). Relaxor ferroelectric Bi0.5Na0.5TiO3–Sr0.7Nd0.2TiO3 ceramics with high energy storage density and excellent stability under a low electric field. Journal of Physics and Chemistry of Solids, 157, 110209. doi: https://doi.org/10.1016/j.jpcs.2021.110209
  • Weyland, F., Acosta, M., Koruza, J., Breckner, P., Rödel, J., & Novak, N. (2016). Criticality: Concept to Enhance the Piezoelectric and Electrocaloric Properties of Ferroelectrics. Advanced Functional Materials, 26(40), 7326-7333. doi: https://doi.org/10.1002/adfm.201602368
  • Yang, F., Li, M., Li, L., Wu, P., Pradal-Velázquez, E., & Sinclair, D. C. (2018). Defect chemistry and electrical properties of sodium bismuth titanate perovskite. Journal of Materials Chemistry A, 6(13), 5243-5254. doi: https://doi.org/10.1039/C7TA09245H
  • Yang, Y., Wang, H., Bi, L., Zheng, Q., Fan, G., Jie, W., & Lin, D. (2019). High energy storage density and discharging efficiency in La3+/Nb5+-co-substituted (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics. Journal of the European Ceramic Society, 39(10), 3051-3056. doi: https://doi.org/10.1016/j.jeurceramsoc.2019.04.031
  • Zou, K., Dan, Y., Xu, H., Zhang, Q., Lu, Y., Huang, H., & He, Y. (2019). Recent advances in lead-free dielectric materials for energy storage. Materials Research Bulletin, 113, 190-201. doi: https://doi.org/10.1016/j.materresbull.2019.02.002

STOKİYOMETRİK OLMAYAN NBT-ST SERAMİKLERİNİN ELEKTRİKSEL ÖZELLİKLERİNE SİNTERLEME YARDIMCISI CuO KATKISI ETKİSİNİN İNCELENMESİ

Yıl 2024, Cilt: 32 Sayı: 3, 1526 - 1536, 22.12.2024
https://doi.org/10.31796/ogummf.1542806

Öz

Son yirmi yıllık süreçte, elektromekanik cihazlarda, enerji hasadı ve enerji depolama uygulamalarında yaygın kullanıma sahip kurşun zirkonat titanat ve türevi seramiklere alternatif olarak kurşun içermeyen piezoseramiklerin araştırılması ve geliştirilmesi üzerine çok sayıda çalışma yapılmıştır. Bu araştırmalar içerisinde sodyum bizmut titanat (Na0.5Bi0.5TiO3-NBT) esaslı seramikler ve morfotropik faz sınırı (MFS) kompozisyonları sergiledikleri elektriksel özellikler ile öne çıkmaktadır. Bu çalışmada, NBT seramik bileşimi stronsiyum titanat (SrTiO3-ST) ile modifiye edilmiştir. [Na0,5Bi0,5TiO3]0,75[Sr1-xTiO3-x]0,25-NBT-SnT (x=0,25) kimyasal formülünce stokiyometrik olmayan seramik kompozisyonu katı hal kalsinasyon yöntemiyle sentezlenmiş ve CuO katkısının sinterleme performansı ve özellikleri üzerine etkisi incelenmiştir. Sentezleme işlemi sonrasında psedokübik simetride NBT-SnT fazının yüksek oranda oluştuğu görülmüştür. Sinterleme yardımcısı CuO katkısı miktarına bağlı olarak sinterleme işleminde ikincil faz oluşumu gözlenmiştir. En yüksek yoğunlaşma oranı %0,5 CuO katkılı seramiklerde 1200 °C’de 3 saat sinterleme ile elde edilmiştir. Bu seramikler için 10 kHz frekansında dielektrik sabiti (K) 570 ila 1300 arasında, dielektrik kayıp (tan ) değerleri 0,04 ila 0,11 arasında, relaksör ferroelektrik davranışa işaret eden yayınımsallık derecesi () ise 1, 84 ila 1,99 arasında değişmektedir.

Teşekkür

Bu çalışmadaki yapısal ve elektriksel karakterizasyonlara destek sağlayan Gebze Teknik Üniversitesi, Malzeme Bilimi ve Mühendisliği Bölümüne ve Piezoaygıtlar araştırma grubuna teşekkür ederiz.

Kaynakça

  • Acosta, M., Jo, W., & Rödel, J. (2014). Temperature- and Frequency-Dependent Properties of the 0.75Bi1/2Na1/2TiO3–0.25SrTiO3 Lead-Free Incipient Piezoceramic. Journal of the American Ceramic Society, 97(6), 1937-1943. doi: https://doi.org/10.1111/jace.12884
  • Acosta, M., Novak, N., Rojas, V., Patel, S., Vaish, R., Koruza, J., Rossetti, G. A., Jr., & Rödel, J. (2017). BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. Applied Physics Reviews, 4(4). doi: https://doi.org/10.1063/1.4990046
  • Ang, C., & Yu, Z. (2006). High, Purely Electrostrictive Strain in Lead-Free Dielectrics. Advanced Materials, 18(1),103-106. doi: https://doi.org/10.1002/adma.200500951
  • Berksoy-Yavuz, A., Kaya, M. Y., Avcı, T., Cakırbas, G., & Menşur, E. (2022). Fabrication of 0.94NBT–0.06BT textured ceramics using plate-like NBT templates and their electrical properties. Journal of Materials Science: Materials in Electronics, 33(5), 2336-2349. doi: https://doi.org/10.1007/s10854-021-07433-w
  • Berksoy-Yavuz, A., Kaya, M. Y., Yalcin, E., Gozuacik, N. K., & Mensur, E. (2024). Effect of texture on ultra-high strain behavior in eco-friendly NBT-0.25ST ceramics using NBT template. Journal of the American Ceramic Society, 107(8), 5502-5511. doi: https://doi.org/10.1111/jace.19834
  • Bobrek, I., Berksoy-Yavuz, A., Kaya, M. Y., Alkoy, S., Okatan, M. B., Misirlioglu, I. B., & Mensur-Alkoy, E. (2021). Temperature Dependent Electrical and Electrocaloric Properties of Textured 0.72PMN- 0.28PT Ceramics*. Integrated Ferroelectrics, 223(1), 214-227. doi: https://doi.org/10.1080/10584587.2021.1964300
  • Cao, W. P., Li, W. L., Dai, X. F., Zhang, T. D., Sheng, J., Hou, Y. F., & Fei, W. D. (2016). Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics. Journal of the European Ceramic Society, 36(3), 593-600. doi: https://doi.org/10.1016/j.jeurceramsoc.2015.10.019
  • Cross, L. E. (1987). Relaxor ferroelectrics. Ferroelectrics, 76(1), 241-267. doi: https://doi.org/10.1080/00150198708016945
  • Cui, C., Pu, Y., Gao, Z., Wan, J., Guo, Y., Hui, C., Wang, Y., & Cui, Y. (2017). Structure, dielectric and relaxor properties in lead-free ST-NBT ceramics for high energy storage applications. Journal of Alloys and Compounds, 711, 319-326. doi: https://doi.org//10.1016/j.jallcom.2017.04.023
  • EU-Directive. (2003). 2002/96/EC Waste electrical and electronic equipment (WEEE). Official Journal of the European Union L, 37, 24-38.
  • EU-Directive. (2011). Restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS). Official Journal of the European Union, 2011/65/EU(88).
  • Fan, P., Liu, K., Ma, W., Tan, H., Zhang, Q., Zhang, L., Zhou, C., Salamon, D., Zhang, S.-T., Zhang, Y., Nan, B., & Zhang, H. (2021). Progress and perspective of high strain NBT-based lead-free piezoceramics and multilayer actuators. Journal of Materiomics, 7(3), 508-544. doi: https://doi.org/10.1016/j.jmat.2020.11.009
  • Frömling, T., Steiner, S., Ayrikyan, A., Bremecker, D., Dürrschnabel, M., Molina-Luna, L., Kleebe, H.-J., Hutter, H., Webber, K. G., & Acosta, M. (2018). Designing properties of (Na1/2Bix)TiO3-based materials through A-site non-stoichiometry. Journal of Materials Chemistry C, 6(4), 738-744. doi: https://doi.org/10.1039/C7TC03975A
  • Gao, X., Yang, J., Wu, J., Xin, X., Li, Z., Yuan, X., Shen, X., & Dong, S. (2020). Piezoelectric Actuators and Motors: Materials, Designs, and Applications. Advanced Materials Technologies, 5(1), 1900716. doi: https://doi.org/10.1002/admt.201900716
  • Gozuacik, N. K., & Alkoy, S. (2024). Origin of ultrahigh field-induced strain in the Gd-doped 0.854Bi0.5Na0.5TiO3-0.12Bi0.5K0.5TiO3-0.026BaTiO3 ternary ceramic system. Japanese Journal of Applied Physics. doi: https://doi.org/10.35848/1347-4065/ad7147
  • Gupta, S. K., McQuade, R., Gibbons, B., Mardilovich, P., & Cann, D. P. (2020). Electric field-induced strain in Sr(Hf0.5Zr0.5)O3-modified Bi0.5(Na0.8K0.2)0.5TiO3 piezoelectric ceramics. Journal of Applied Physics, 127(7). doi: https://doi.org/10.1063/1.5132536
  • He, H., Lu, X., Li, M., Wang, Y., Li, Z., Lu, Z., & Lu, L. (2020). Thermal and compositional driven relaxor ferroelectric behaviours of lead-free Bi0.5Na0.5TiO3–SrTiO3 ceramics Journal of Materials Chemistry C, 8(7), 2411-2418. doi: https://doi.org/10.1039/C9TC04864B
  • Hill, N. A. (2000). Why Are There so Few Magnetic Ferroelectrics? The Journal of Physical Chemistry B, 104(29), 6694-6709. doi: https://doi.org/10.1021/jp000114x
  • Hiruma, Y., Imai, Y., Watanabe, Y., Nagata, H., & Takenaka, T. (2008). Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3–SrTiO3 ferroelectric ceramics. Applied Physics Letters, 92(26). doi: https://doi.org/10.1063/1.2955533
  • Jo, W., Daniels, J., Damjanovic, D., Kleemann, W., & Rödel, J. (2013). Two-stage processes of electrically induced-ferroelectric to relaxor transition in 0.94(Bi1/2Na1/2)TiO3-0.06BaTiO3. Applied Physics Letters, 102(19). doi: https://doi.org/10.1063/1.4805360
  • Jo, W., Schaab, S., Sapper, E., Schmitt, L. A., Kleebe, H.-J., Bell, A. J., & Rödel, J. (2011). On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol% BaTiO3. Journal of Applied Physics, 110(7), 074106. doi: https://doi.org/10.1063/1.3645054
  • Kaya, M. Y., Menşur-Alkoy, E., Gürbüz, A., Öner, M., & Alkoy, S. (2018). Influence of Compositional Variation on the Electrical Properties of [Pb(Zn1/3Nb2/3)O3]–[Pb(Zr, Ti)O3] Ceramics and Their Transducer Application. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 65(7), 1268-1277. doi: https://doi.org/10.1109/TUFFC.2018.2829800
  • Kim, S., Choi, H., Han, S., Park, J. S., Lee, M. H., Song, T. K., Kim, M.-H., Do, D., & Kim, W.-J. (2017). A correlation between piezoelectric response and crystallographic structural parameter observed in lead-free (1-x)( Bi0.5Na0.5)TiO3–xSrTiO3 piezoelectrics. Journal of the European Ceramic Society, 37(4), 1379-1386. doi: https://doi.org/10.1016/j.jeurceramsoc.2016.11.023
  • Krauss, W., Schütz, D., Mautner, F. A., Feteira, A., & Reichmann, K. (2010). Piezoelectric properties and phase transition temperatures of the solid solution of (1−x)(Bi0.5Na0.5)TiO3–xSrTiO3. Journal of the European Ceramic Society, 30(8), 1827-1832. doi: https://doi.org/10.1016/j.jeurceramsoc.2010.02.001
  • Li, Q., Wang, J., Ma, Y., Ma, L., Dong, G., & Fan, H. (2016). Enhanced energy-storage performance and dielectric characterization of 0.94 Bi0.5Na0.5TiO3–0.06BaTiO3 modified by CaZrO3. Journal of Alloys and Compounds, 663, 701-707. doi: https://doi.org/10.1016/j.jallcom.2015.12.194
  • Liub, G., Dong, J., Zhang, L., Yan, Y., Jing, R., & Jin, L. (2020). Phase evolution in (1−x)(Na0.5Bi0.5)TiO3-xSrTiO3 solid solutions: A study focusing on dielectric and ferroelectric characteristics. Journal of Materiomics, 6(4), 677-691. doi: https://doi.org/10.1016/j.jmat.2020.05.005
  • Liua, G., Dong, J., Zhang, L., Yu, L., Wei, F., Li, Y., Gao, J., Hu, J., Yan, Y., Li, Q., Yu, K., & Jin, L. (2020). Na0.25Sr0.5Bi0.25TiO3 relaxor ferroelectric ceramic with greatly enhanced electric storage property by a B-site ion doping. Ceramics International, 46(8, Part B), 11680-11688. doi: https://doi.org/10.1016/j.ceramint.2020.01.199
  • Liub, X., Li, F., Li, P., Zhai, J., Shen, B., & Liu, B. (2017). Tuning the ferroelectric-relaxor transition temperature in NBT-based lead-free ceramics by Bi nonstoichiometry. Journal of the European Ceramic Society, 37(15), 4585-4595. doi: https://doi.org/10.1016/j.jeurceramsoc.2017.05.042
  • Liua, X., Li, F., Zhai, J., Shen, B., Li, P., & Liu, B. (2017). Composition-induced structural transitions and enhanced strain response in nonstoichiometric NBT-based ceramics. Journal of the American Ceramic Society, 100(8), 3636-3645. doi: https://doi.org/10.1111/jace.14918
  • Liud, X., Shen, B., & Zhai, J. (2019). Designing novel sodium bismuth titanate lead-free incipient perovskite for piezoactuator applications. Journal of the American Ceramic Society, 102(11), 6751-6759. doi: https://doi.org/10.1111/jace.16533
  • Liuc, X., Zhai, J., Shen, B., Li, F., Zhang, Y., Li, P., & Liu, B. (2017). Electric-field-temperature phase diagram and electromechanical properties in lead-free (Na0.5Bi0.5)TiO3-based incipient piezoelectric ceramics. Journal of the European Ceramic Society, 37(4), 1437-1447. doi: https://doi.org/10.1016/j.jeurceramsoc.2016.12.020
  • Lou, G., Yin, Q., Duan, A., Cao, D., & Yin, X. (2018). Structure, dielectric properties and impedance analysis of lead-free (1 − x)Na0.5Bi0.5TiO3-xSrTiO3 ceramics. Journal of Materials Science: Materials in Electronics, 29(8), 6283-6288. doi: https://doi.org/10.1007/s10854-018-8607-1
  • Malathi, A. R., Devi, C. S., Kumar, G. S., Vithal, M., & Prasad, G. (2013). Dielectric relaxation in NBT–ST ceramic composite materials. Ionics, 19(12), 1751-1760. doi: https://doi.org/10.1007/s11581-013-0921-2
  • Park, S.-E., & Hong, K. S. (1997). Variations of Structure and Dielectric Properties on Substituting A-site Cations for Sr2+ in (Na1/2Bi1/2)TiO3. Journal of Materials Research, 12(8), 2152-2157. doi: https://doi.org/10.1557/JMR.1997.0288
  • Rahman, J. U., Hussain, A., Maqbool, A., Ryu, G. H., Song, T. K., Kim, W.-J., & Kim, M. H. (2014). Field induced strain response of lead-free BaZrO3-modified Bi0.5Na0.5TiO3–BaTiO3 ceramics. Journal of Alloys and Compounds, 593, 97-102. doi: https://doi.org/10.1016/j.jallcom.2014.01.031
  • Reichmann, K., Feteira, A., & Li, M. (2015). Bismuth Sodium Titanate Based Materials for Piezoelectric Actuators. Materials, 8(12), 8467-8495. doi: https://doi.org/10.3390/ma8125469
  • Rödel, J., Jo, W., Seifert, K. T. P., Anton, E. M., Granzow, T., & Damjanovic, D. (2009). Perspective on the Development of Lead-free Piezoceramics. Journal of the American Ceramic Society, 92-6, 1153-1177. Doi: https://doi.org/10.1111/j.1551-2916.2009.03061.x
  • Rödel, J., & Li, J.-F. (2018). Lead-free piezoceramics: Status and perspectives. MRS Bulletin, 43(8), 576-580. doi: https://doi.org/10.1557/mrs.2018.181
  • Rödel, J., Webber, K. G., Dittmer, R., Jo, W., Kimura, M., & Damjanovic, D. (2015). Transferring lead-free piezoelectric ceramics into application. Journal of the European Ceramic Society, 35(6), 1659-1681. doi: https://doi.org/10.1016/j.jeurceramsoc.2014.12.013
  • Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., & Nakamura, M. (2004). Lead-free piezoceramics. Nature, 432(7013), 84-87. doi: https://doi.org/10.1038/nature03028
  • Sakata, K., & Masuda, Y. (1974). Ferroelectric and antiferroelectric properties of (Na0.5Bi0.5)TiO3-SrTiO3 solid solution ceramics. Ferroelectrics, 7(1), 347-349. doi: https://doi.org/10.1080/00150197408238042
  • Shi, W., Zhang, L., Chen, P., Li, Y., Wang, Y., Liu, G., Yu, K., & Yan, Y. (2019). The ferroelectric, dielectric and energy storage properties of Pb-free 0.6Na0.5Bi0.5TiO3-0.4SrTiO3 bulk ceramics modified by Fe2O3. Materials Research Express, 6(8), 086329. doi: https://doi.org/10.1088/2053-1591/ab25c7
  • Smolenskii, G., Isupov, V., Agranovskaya, A., & Krainik, N. (1961). New Ferroelectrics of Complex Composition IV. Soviet Physics. Solid State, 2, 2651-2654.
  • Su, Q., Zhu, J., Ma, Z., Meng, X., Zhao, Y., Li, Y., & Hao, X. (2022). Enhanced energy-storage properties and charge-discharge performances in Sm3+ modified (Na0.5Bi0.5)TiO3-SrTiO3 lead-free relaxor ferroelectric ceramics. Materials Research Bulletin, 148, 111675. doi:https://doi.org/10.1016/j.materresbull.2021.111675
  • Uchino, K., & Nomura, S. (1982). Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectrics, 44(1), 55-61. doi: https://doi.org/10.1080/00150198208260644
  • Verma, A., Yadav, A. K., Kumar, S., Srihari, V., Rajput, P., Reddy, V. R., Jangir, R., Poshwal, H. K., Liu, S. W., Biring, S., & Sen, S. (2018). Increase in depolarization temperature and improvement in ferroelectric properties by V5+ doping in lead-free 0.94(Na0.5Bi0.5)TiO3-0.06BaTiO3 ceramics. Journal of Applied Physics, 123(22). doi: https://doi.org/10.1063/1.5036927
  • Wang, M., Feng, Q., Wei, Y., Luo, N., Yuan, C., Zhou, C., Fujita, T., Xu, J., & Chen, G. (2021). Relaxor ferroelectric Bi0.5Na0.5TiO3–Sr0.7Nd0.2TiO3 ceramics with high energy storage density and excellent stability under a low electric field. Journal of Physics and Chemistry of Solids, 157, 110209. doi: https://doi.org/10.1016/j.jpcs.2021.110209
  • Weyland, F., Acosta, M., Koruza, J., Breckner, P., Rödel, J., & Novak, N. (2016). Criticality: Concept to Enhance the Piezoelectric and Electrocaloric Properties of Ferroelectrics. Advanced Functional Materials, 26(40), 7326-7333. doi: https://doi.org/10.1002/adfm.201602368
  • Yang, F., Li, M., Li, L., Wu, P., Pradal-Velázquez, E., & Sinclair, D. C. (2018). Defect chemistry and electrical properties of sodium bismuth titanate perovskite. Journal of Materials Chemistry A, 6(13), 5243-5254. doi: https://doi.org/10.1039/C7TA09245H
  • Yang, Y., Wang, H., Bi, L., Zheng, Q., Fan, G., Jie, W., & Lin, D. (2019). High energy storage density and discharging efficiency in La3+/Nb5+-co-substituted (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics. Journal of the European Ceramic Society, 39(10), 3051-3056. doi: https://doi.org/10.1016/j.jeurceramsoc.2019.04.031
  • Zou, K., Dan, Y., Xu, H., Zhang, Q., Lu, Y., Huang, H., & He, Y. (2019). Recent advances in lead-free dielectric materials for energy storage. Materials Research Bulletin, 113, 190-201. doi: https://doi.org/10.1016/j.materresbull.2019.02.002
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Gülbeniz Yaldiz İnce 0000-0003-2161-8283

Mustafa Yunus Kaya 0000-0002-4518-3184

Erken Görünüm Tarihi 12 Aralık 2024
Yayımlanma Tarihi 22 Aralık 2024
Gönderilme Tarihi 3 Eylül 2024
Kabul Tarihi 14 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 32 Sayı: 3

Kaynak Göster

APA Yaldiz İnce, G., & Kaya, M. Y. (2024). STOKİYOMETRİK OLMAYAN NBT-ST SERAMİKLERİNİN ELEKTRİKSEL ÖZELLİKLERİNE SİNTERLEME YARDIMCISI CuO KATKISI ETKİSİNİN İNCELENMESİ. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 32(3), 1526-1536. https://doi.org/10.31796/ogummf.1542806
AMA Yaldiz İnce G, Kaya MY. STOKİYOMETRİK OLMAYAN NBT-ST SERAMİKLERİNİN ELEKTRİKSEL ÖZELLİKLERİNE SİNTERLEME YARDIMCISI CuO KATKISI ETKİSİNİN İNCELENMESİ. ESOGÜ Müh Mim Fak Derg. Aralık 2024;32(3):1526-1536. doi:10.31796/ogummf.1542806
Chicago Yaldiz İnce, Gülbeniz, ve Mustafa Yunus Kaya. “STOKİYOMETRİK OLMAYAN NBT-ST SERAMİKLERİNİN ELEKTRİKSEL ÖZELLİKLERİNE SİNTERLEME YARDIMCISI CuO KATKISI ETKİSİNİN İNCELENMESİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 32, sy. 3 (Aralık 2024): 1526-36. https://doi.org/10.31796/ogummf.1542806.
EndNote Yaldiz İnce G, Kaya MY (01 Aralık 2024) STOKİYOMETRİK OLMAYAN NBT-ST SERAMİKLERİNİN ELEKTRİKSEL ÖZELLİKLERİNE SİNTERLEME YARDIMCISI CuO KATKISI ETKİSİNİN İNCELENMESİ. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 32 3 1526–1536.
IEEE G. Yaldiz İnce ve M. Y. Kaya, “STOKİYOMETRİK OLMAYAN NBT-ST SERAMİKLERİNİN ELEKTRİKSEL ÖZELLİKLERİNE SİNTERLEME YARDIMCISI CuO KATKISI ETKİSİNİN İNCELENMESİ”, ESOGÜ Müh Mim Fak Derg, c. 32, sy. 3, ss. 1526–1536, 2024, doi: 10.31796/ogummf.1542806.
ISNAD Yaldiz İnce, Gülbeniz - Kaya, Mustafa Yunus. “STOKİYOMETRİK OLMAYAN NBT-ST SERAMİKLERİNİN ELEKTRİKSEL ÖZELLİKLERİNE SİNTERLEME YARDIMCISI CuO KATKISI ETKİSİNİN İNCELENMESİ”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 32/3 (Aralık 2024), 1526-1536. https://doi.org/10.31796/ogummf.1542806.
JAMA Yaldiz İnce G, Kaya MY. STOKİYOMETRİK OLMAYAN NBT-ST SERAMİKLERİNİN ELEKTRİKSEL ÖZELLİKLERİNE SİNTERLEME YARDIMCISI CuO KATKISI ETKİSİNİN İNCELENMESİ. ESOGÜ Müh Mim Fak Derg. 2024;32:1526–1536.
MLA Yaldiz İnce, Gülbeniz ve Mustafa Yunus Kaya. “STOKİYOMETRİK OLMAYAN NBT-ST SERAMİKLERİNİN ELEKTRİKSEL ÖZELLİKLERİNE SİNTERLEME YARDIMCISI CuO KATKISI ETKİSİNİN İNCELENMESİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, c. 32, sy. 3, 2024, ss. 1526-3, doi:10.31796/ogummf.1542806.
Vancouver Yaldiz İnce G, Kaya MY. STOKİYOMETRİK OLMAYAN NBT-ST SERAMİKLERİNİN ELEKTRİKSEL ÖZELLİKLERİNE SİNTERLEME YARDIMCISI CuO KATKISI ETKİSİNİN İNCELENMESİ. ESOGÜ Müh Mim Fak Derg. 2024;32(3):1526-3.

20873 13565 13566 15461 13568  14913