Araştırma Makalesi
BibTex RIS Kaynak Göster

BİNEK ARAÇLARIN DEVRİLME SÜRECİNDEKİ DİNAMİK DAVRANIŞLARININ ANALİZİ VE DEVRİLME ŞARTLARININ BELİRLENMESİ

Yıl 2025, Cilt: 33 Sayı: 1, 1662 - 1678, 24.04.2025
https://doi.org/10.31796/ogummf.1427532

Öz

Taşıtların tekerlek süspansiyon sistemlerinin tasarımında; konfor, yük taşıma kapasitesi ve kullanım kolaylığının yanı sıra virajlardaki sürüş güvenliğinin belirlenmesi de ana hedeflerden birisidir. Bu çalışmada dört tekerlekli binek taşıtları (C sınıfı otomobiller) üç kütleden oluşan bir dinamik sisteme benzetilmiş ve dinamik modeli kurularak virajdaki dinamik davranışları incelenmiştir. Kütlelerden birisi taşıtın gövdesi, diğerleri ise süspansiyon sistemi ile birlikte tekerleklerdir. Dinamik model bu üç kütlenin açısal momentum denklemlerinden oluşmaktadır. Gövdenin momentum denklemi; gövdeyi tekerlek süspansiyon sistemine bağlayan yayların ve damperlerin yarattığı kuvvetlerin momentlerini ve gövdeye etkiyen merkezkaç kuvvetin momentini içermektedir. Süspansiyon mekanizmalarının momentum denklemleri; gövde ile süspansiyon mekanizmaları arasında yer alan yayların ve damperlerin yarattığı kuvvetlerin momentlerini, tekerleğin elastik deformasyonu ve viskoelastik sönümleme özelliğinden doğan kuvvetlerin momentlerini ve süspansiyon mekanizmalarına etkiyen merkezkaç kuvvetlerin momentlerini içermektedir. Momentum denklemlerinin çözümünde Taylor serisine dayanan bir metot kullanılmış olup hassasiyeti üçüncü mertebeden Runga-Kutta metoduna denktir. Çözüm işlemi için bir simülasyon programı geliştirilmiştir. Taşıtın üzerinde hareket ettiği viraj, x=0 daki eğrilik yarıçapı 25 m olan bir parabolik eğri olarak kabul edilmiştir. Taşıtın x=0 da devrilmesine sebep olan hız kritik hız olup daha yüksek hızlarda devrilme bu noktadan önce olmak zorundadır. Simülasyon programını kullanarak taşıtın virajdaki dinamik davranışlarının yanı sıra kritik hızın; taşıt kütlesi, yay sabitleri, taşıtın gövdesinin kütle merkezinin yeri ve tekerlek özellikleri ile değişimi incelenmiştir. Tasarlanan taşıtın yukarıda ifade edilen parabolik eğri ile tanımlı yol üzerindeki yüksüz devrilme hızı 70 km/h civarında belirlenmiştir.

Kaynakça

  • Anh, N. T. (2020). Predict the rollover phenomenon of the vehicle when steering. International Journal of Mechanical & Mechatronics Engineering, 20(5), 31-40. https://www.ijens.org/ijmme.html
  • Cheng, C., & Cebon, D. (2011). Parameter and state estimation for articulated heavy vehicles. Vehicle System Dynamics, 49(1-2), 399-418. https://doi.org/10.1080/00423110903406656
  • Das, R. K., Hossain, M. A. M., Islam, M. T., & Banik, S. C. (2022). Vehicle dynamics, lateral forces, roll angle, tire wear and road profile states estimation—A review. International Journal for Engineering Modelling, 35(2), 65-89. https://doi.org/10.31534/engmod.2022.2.ri.05b
  • Ertlmeier, R., & Spannus, P. (2008, July). Expanding design process of the Air bag Control Unit (ACU)—Connection of active and passive safety by using vehicle dynamics for rollover and side crash detection. In 2008 International Workshop on Intelligent Solutions in Embedded Systems (pp. 1-9). IEEE. https://doi.org/10.1109/WISES.2008.4623309
  • Garcia Guzman, J., Prieto Gonzalez, L., Pajares Redondo, J., Montalvo Martinez, M. M., & Boada, M. J. (2018). Real-time vehicle roll angle estimation based on neural networks in IoT low-cost devices. Sensors, 18(7), 2188. https://doi.org/10.3390/s18072188
  • Gillespie, T. (2021). Fundamentals of Vehicle Dynamics. SAE International. ISBN: 978-1-4686-0176-3.
  • Hamblin, B. C., Martini, R. D., Cameron, J. T., & Brennan, S. N. (2006). Low-order modeling of vehicle roll dynamics. In Proceedings of the American Control Conference (pp. 4008-4015). https://doi.org/10.1109/ACC.2006.1657345
  • Hac, A., Brown, T., & Martens, J. (2004). Detection of vehicle rollover. SAE Technical Paper, 2004-01-1757. https://doi.org/10.4271/2004-01-1757
  • Jalali, M., Hashemi, E., Khajepour, A., Chen, S. K., & Litkouhi, B. (2018). Model predictive control of vehicle roll-over with experimental verification. Control Engineering Practice, 77, 95-108. https://doi.org/10.1016/j.conengprac.2018.04.008
  • Jeong, H. B., You, S. H., Kang, H. H., & Ahn, C. K. (2017, November). Vehicle roll angle and bank angle estimation using FIR filtering. In Eighth International Conference on Intelligent Control and Information Processing (ICICIP, pp. 348-352). IEEE. https://doi.org/10.1109/ICICIP.2017.8113969
  • Jung, J., Shim, T., & Gertsch, J. (2009). A vehicle roll-stability indicator incorporating roll-center movements. IEEE Transactions on Vehicular Technology, 58(8), 4078-4087. https://doi.org/10.1109/TVT.2009.2021420
  • Karabulut, H., Öztürk, E., & Cinar, C. (2011). Dynamic modeling and investigation of vibrations of a single cylinder four-stroke diesel engine. Journal of the Faculty of Engineering and Architecture of Gazi University, 26(1), 173-183. https://dergipark.org.tr/en/pub/gazimmfd
  • Menhour, L., Koenig, D., & d'Andréa-Novel, B. (2012). Road bank and vehicle roll angles estimation based on proportional-integral observer. IFAC Proceedings Volumes, 45(20), 1185-1190. https://doi.org/10.3182/20120829-3-MX-2028.00075
  • National Highway Traffic Safety Administration, 2010. Traffic Safety Facts: 2008 Data, DOT HS 811 368, 12 pp, https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811659
  • Nguyen, D. N., & Nguyen, T. A. (2023). Investigate the relationship between the vehicle roll angle and other factors when steering. Modelling and Simulation in Engineering, 2023, 1-15. https://doi.org/10.1155/2023/6069078
  • Öztürk, E., Karabulut, H. (2012). Dynamic and vibration analysis of a single cylinder diesel engine. Journal of the Faculty of Engineering and Architecture of Gazi University, 27(3), 491-500. https://dergipark.org.tr/en/pub/gazimmfd
  • Putgül, Y., & Altıparmak, D. (2016). Vehicle suspension system types and their effects on front axle geometry. Journal of Polytechnic, 19(2), 195-202. https://doi.org/10.2339/2016.19.2.195-202
  • Rajamani, R. (2012). Vehicle dynamics and control. Springer. https://doi.org/10.1007/978-1-4614-1433-9
  • Rajamani, R., Piyabongkarn, D., Tsourapas, V., & Lew, J. Y. (2011). Parameter and state estimation in vehicle roll dynamics. IEEE Transactions on Intelligent Transportation Systems, 12(4), 1558-1567. https://doi.org/10.1109/TITS.2011.2164246
  • Rahimi, S., & Naraghi, M. (2018). Design of an integrated control system to enhance vehicle roll and lateral dynamics. Transactions of the Institute of Measurement and Control, 40(5), 1435-1446. https://doi.org/10.1177/0142331216685389
  • Ryu, J., & Gerdes, J. C. (2004). Estimation of vehicle roll and road bank angle. In Proceedings of the 2004 American Control Conference (Vol. 3, pp. 2110-2115). https://doi.org/10.23919/ACC.2004.1383772
  • Simon, D. (2001). Kalman filtering. Embedded Systems Programming, 14(6), 72-79. https://engagedscholarship.csuohio.edu/enece_facpub/138
  • Solmaz, H., & Karabulut, H. (2015). A mathematical model to investigate effect of misfire and cyclic variations on crankshaft speed fluctuations in internal combustion engines. Journal of Mechanical Science and Technology, 29(4), 1493-1500. https://doi.org/10.1007/s12206-015-0322-8
  • Trafik Güvenliği Dairesi Başkanlığı. (2020). Montaj Şartları ve Karayolu Trafik İşaretleme Standartları-1.
  • Wang, C., Wang, Z., Zhang, L., Cao, D., & Dorrell, D. G. (2021). A vehicle rollover evaluation system based on enabling state and parameter estimation. IEEE Transactions on Industrial Informatics, 17(6), 4003-4013. https://doi.org/10.1109/TII.2020.3012003
  • Xiao, F., Hu, J., Zhu, P., & Deng, C. (2023). Chassis coordinated control based on ideal roll angle to improve vehicle stability. Vehicle System Dynamics, 61(8), 2074-2102. https://doi.org/10.1080/00423114.2022.2101479
  • Xu, L., & Tseng, H. E. (2007). Robust model-based fault detection for a roll stability control system. IEEE Transactions on Control Systems Technology, 15(3), 519-528. https://doi.org/10.1109/TCST.2006.890287
  • Yu, G., Wang, D., Li, Q., Wang, P., & Wang, Y. (2013). Road bank estimation for bus rollover prediction. Applied Mathematics & Information Sciences, 7(5), 2027. http://dx.doi.org/10.12785/amis/070543
  • Zhang, X., Yan, Y., Guo, K., Yang, Y., & He, G. (2022). Vehicle roll centre estimation with transient dynamics via roll rate. Vehicle System Dynamics, 60(2), 699-717. https://doi.org/10.1080/00423114.2020.1838565
  • Zhang, N., Dong, G. M., & Du, H. P. (2008). Investigation into untripped rollover of light vehicles in the modified fishhook and the sine maneuvers. Part I: Vehicle modelling, roll and yaw instability. Vehicle System Dynamics, 46(4), 271-293. https://doi.org/10.1080/00423110701344752

ANALYSIS OF DYNAMIC BEHAVIOR OF PASSENGER CARS IN ROLLOVER PROCESS AND DETERMINATION OF ROLLOVER CONDITIONS

Yıl 2025, Cilt: 33 Sayı: 1, 1662 - 1678, 24.04.2025
https://doi.org/10.31796/ogummf.1427532

Öz

One of the main objectives of the wheel suspension mechanism design is to characterize the driving safety of vehicles in bends, besides the comfortability, load carrying capability, and use easiness. In this study, a four-wheel vehicle (Like C class automobile) is likened to a dynamic system of three masses, and its behaviors in a bend are examined by establishing a dynamic model. One of the masses is the vehicle's body; the others are the two wheels with their suspension elements. The dynamic model consists of angular momentum equations of these three masses. The momentum equation of the body involves the moments of forces generated by springs and dampers connecting the body to the wheel suspension mechanisms and the moment of centrifugal force exerting on the body. The momentum equations of suspension mechanisms involve the moments of spring and damper forces taking part between body and suspension mechanisms, the moments of deflection and viscoelastic damping forces of tires and, the moment of centrifugal force exerted on suspension mechanisms. A Taylor series method, equivalent to the third-order Runge-Kutta method, is used to solve momentum equations and a simulation program is developed. The bend, on which the vehicle moves, is assumed to be a parabolic curve having 25 m curvature diameter at x=0. The speed of the vehicle causing rollover at x=0 is a critical speed above which the rollover is unavoidable before that point. By using the simulation program, the dynamic behaviors of the vehicle in bend were examined as well as examining the variation of critical speed with the mass of vehicle, the stiffness of springs, the location of mass center and tire properties. On the road defined by a parabolic curve, the unloaded rollover speed of the proposed vehicle is determined as about 70 km/h.

Kaynakça

  • Anh, N. T. (2020). Predict the rollover phenomenon of the vehicle when steering. International Journal of Mechanical & Mechatronics Engineering, 20(5), 31-40. https://www.ijens.org/ijmme.html
  • Cheng, C., & Cebon, D. (2011). Parameter and state estimation for articulated heavy vehicles. Vehicle System Dynamics, 49(1-2), 399-418. https://doi.org/10.1080/00423110903406656
  • Das, R. K., Hossain, M. A. M., Islam, M. T., & Banik, S. C. (2022). Vehicle dynamics, lateral forces, roll angle, tire wear and road profile states estimation—A review. International Journal for Engineering Modelling, 35(2), 65-89. https://doi.org/10.31534/engmod.2022.2.ri.05b
  • Ertlmeier, R., & Spannus, P. (2008, July). Expanding design process of the Air bag Control Unit (ACU)—Connection of active and passive safety by using vehicle dynamics for rollover and side crash detection. In 2008 International Workshop on Intelligent Solutions in Embedded Systems (pp. 1-9). IEEE. https://doi.org/10.1109/WISES.2008.4623309
  • Garcia Guzman, J., Prieto Gonzalez, L., Pajares Redondo, J., Montalvo Martinez, M. M., & Boada, M. J. (2018). Real-time vehicle roll angle estimation based on neural networks in IoT low-cost devices. Sensors, 18(7), 2188. https://doi.org/10.3390/s18072188
  • Gillespie, T. (2021). Fundamentals of Vehicle Dynamics. SAE International. ISBN: 978-1-4686-0176-3.
  • Hamblin, B. C., Martini, R. D., Cameron, J. T., & Brennan, S. N. (2006). Low-order modeling of vehicle roll dynamics. In Proceedings of the American Control Conference (pp. 4008-4015). https://doi.org/10.1109/ACC.2006.1657345
  • Hac, A., Brown, T., & Martens, J. (2004). Detection of vehicle rollover. SAE Technical Paper, 2004-01-1757. https://doi.org/10.4271/2004-01-1757
  • Jalali, M., Hashemi, E., Khajepour, A., Chen, S. K., & Litkouhi, B. (2018). Model predictive control of vehicle roll-over with experimental verification. Control Engineering Practice, 77, 95-108. https://doi.org/10.1016/j.conengprac.2018.04.008
  • Jeong, H. B., You, S. H., Kang, H. H., & Ahn, C. K. (2017, November). Vehicle roll angle and bank angle estimation using FIR filtering. In Eighth International Conference on Intelligent Control and Information Processing (ICICIP, pp. 348-352). IEEE. https://doi.org/10.1109/ICICIP.2017.8113969
  • Jung, J., Shim, T., & Gertsch, J. (2009). A vehicle roll-stability indicator incorporating roll-center movements. IEEE Transactions on Vehicular Technology, 58(8), 4078-4087. https://doi.org/10.1109/TVT.2009.2021420
  • Karabulut, H., Öztürk, E., & Cinar, C. (2011). Dynamic modeling and investigation of vibrations of a single cylinder four-stroke diesel engine. Journal of the Faculty of Engineering and Architecture of Gazi University, 26(1), 173-183. https://dergipark.org.tr/en/pub/gazimmfd
  • Menhour, L., Koenig, D., & d'Andréa-Novel, B. (2012). Road bank and vehicle roll angles estimation based on proportional-integral observer. IFAC Proceedings Volumes, 45(20), 1185-1190. https://doi.org/10.3182/20120829-3-MX-2028.00075
  • National Highway Traffic Safety Administration, 2010. Traffic Safety Facts: 2008 Data, DOT HS 811 368, 12 pp, https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811659
  • Nguyen, D. N., & Nguyen, T. A. (2023). Investigate the relationship between the vehicle roll angle and other factors when steering. Modelling and Simulation in Engineering, 2023, 1-15. https://doi.org/10.1155/2023/6069078
  • Öztürk, E., Karabulut, H. (2012). Dynamic and vibration analysis of a single cylinder diesel engine. Journal of the Faculty of Engineering and Architecture of Gazi University, 27(3), 491-500. https://dergipark.org.tr/en/pub/gazimmfd
  • Putgül, Y., & Altıparmak, D. (2016). Vehicle suspension system types and their effects on front axle geometry. Journal of Polytechnic, 19(2), 195-202. https://doi.org/10.2339/2016.19.2.195-202
  • Rajamani, R. (2012). Vehicle dynamics and control. Springer. https://doi.org/10.1007/978-1-4614-1433-9
  • Rajamani, R., Piyabongkarn, D., Tsourapas, V., & Lew, J. Y. (2011). Parameter and state estimation in vehicle roll dynamics. IEEE Transactions on Intelligent Transportation Systems, 12(4), 1558-1567. https://doi.org/10.1109/TITS.2011.2164246
  • Rahimi, S., & Naraghi, M. (2018). Design of an integrated control system to enhance vehicle roll and lateral dynamics. Transactions of the Institute of Measurement and Control, 40(5), 1435-1446. https://doi.org/10.1177/0142331216685389
  • Ryu, J., & Gerdes, J. C. (2004). Estimation of vehicle roll and road bank angle. In Proceedings of the 2004 American Control Conference (Vol. 3, pp. 2110-2115). https://doi.org/10.23919/ACC.2004.1383772
  • Simon, D. (2001). Kalman filtering. Embedded Systems Programming, 14(6), 72-79. https://engagedscholarship.csuohio.edu/enece_facpub/138
  • Solmaz, H., & Karabulut, H. (2015). A mathematical model to investigate effect of misfire and cyclic variations on crankshaft speed fluctuations in internal combustion engines. Journal of Mechanical Science and Technology, 29(4), 1493-1500. https://doi.org/10.1007/s12206-015-0322-8
  • Trafik Güvenliği Dairesi Başkanlığı. (2020). Montaj Şartları ve Karayolu Trafik İşaretleme Standartları-1.
  • Wang, C., Wang, Z., Zhang, L., Cao, D., & Dorrell, D. G. (2021). A vehicle rollover evaluation system based on enabling state and parameter estimation. IEEE Transactions on Industrial Informatics, 17(6), 4003-4013. https://doi.org/10.1109/TII.2020.3012003
  • Xiao, F., Hu, J., Zhu, P., & Deng, C. (2023). Chassis coordinated control based on ideal roll angle to improve vehicle stability. Vehicle System Dynamics, 61(8), 2074-2102. https://doi.org/10.1080/00423114.2022.2101479
  • Xu, L., & Tseng, H. E. (2007). Robust model-based fault detection for a roll stability control system. IEEE Transactions on Control Systems Technology, 15(3), 519-528. https://doi.org/10.1109/TCST.2006.890287
  • Yu, G., Wang, D., Li, Q., Wang, P., & Wang, Y. (2013). Road bank estimation for bus rollover prediction. Applied Mathematics & Information Sciences, 7(5), 2027. http://dx.doi.org/10.12785/amis/070543
  • Zhang, X., Yan, Y., Guo, K., Yang, Y., & He, G. (2022). Vehicle roll centre estimation with transient dynamics via roll rate. Vehicle System Dynamics, 60(2), 699-717. https://doi.org/10.1080/00423114.2020.1838565
  • Zhang, N., Dong, G. M., & Du, H. P. (2008). Investigation into untripped rollover of light vehicles in the modified fishhook and the sine maneuvers. Part I: Vehicle modelling, roll and yaw instability. Vehicle System Dynamics, 46(4), 271-293. https://doi.org/10.1080/00423110701344752
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Halit Karabulut 0000-0001-6211-5258

Emre Yıldırım 0000-0002-2528-2740

Mesut Düzgün 0000-0003-0582-4183

Kazım Melih Turgut 0009-0001-9375-4439

Erken Görünüm Tarihi 16 Nisan 2025
Yayımlanma Tarihi 24 Nisan 2025
Gönderilme Tarihi 29 Ocak 2024
Kabul Tarihi 9 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 33 Sayı: 1

Kaynak Göster

APA Karabulut, H., Yıldırım, E., Düzgün, M., Turgut, K. M. (2025). BİNEK ARAÇLARIN DEVRİLME SÜRECİNDEKİ DİNAMİK DAVRANIŞLARININ ANALİZİ VE DEVRİLME ŞARTLARININ BELİRLENMESİ. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 33(1), 1662-1678. https://doi.org/10.31796/ogummf.1427532
AMA Karabulut H, Yıldırım E, Düzgün M, Turgut KM. BİNEK ARAÇLARIN DEVRİLME SÜRECİNDEKİ DİNAMİK DAVRANIŞLARININ ANALİZİ VE DEVRİLME ŞARTLARININ BELİRLENMESİ. ESOGÜ Müh Mim Fak Derg. Nisan 2025;33(1):1662-1678. doi:10.31796/ogummf.1427532
Chicago Karabulut, Halit, Emre Yıldırım, Mesut Düzgün, ve Kazım Melih Turgut. “BİNEK ARAÇLARIN DEVRİLME SÜRECİNDEKİ DİNAMİK DAVRANIŞLARININ ANALİZİ VE DEVRİLME ŞARTLARININ BELİRLENMESİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 33, sy. 1 (Nisan 2025): 1662-78. https://doi.org/10.31796/ogummf.1427532.
EndNote Karabulut H, Yıldırım E, Düzgün M, Turgut KM (01 Nisan 2025) BİNEK ARAÇLARIN DEVRİLME SÜRECİNDEKİ DİNAMİK DAVRANIŞLARININ ANALİZİ VE DEVRİLME ŞARTLARININ BELİRLENMESİ. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 33 1 1662–1678.
IEEE H. Karabulut, E. Yıldırım, M. Düzgün, ve K. M. Turgut, “BİNEK ARAÇLARIN DEVRİLME SÜRECİNDEKİ DİNAMİK DAVRANIŞLARININ ANALİZİ VE DEVRİLME ŞARTLARININ BELİRLENMESİ”, ESOGÜ Müh Mim Fak Derg, c. 33, sy. 1, ss. 1662–1678, 2025, doi: 10.31796/ogummf.1427532.
ISNAD Karabulut, Halit vd. “BİNEK ARAÇLARIN DEVRİLME SÜRECİNDEKİ DİNAMİK DAVRANIŞLARININ ANALİZİ VE DEVRİLME ŞARTLARININ BELİRLENMESİ”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 33/1 (Nisan 2025), 1662-1678. https://doi.org/10.31796/ogummf.1427532.
JAMA Karabulut H, Yıldırım E, Düzgün M, Turgut KM. BİNEK ARAÇLARIN DEVRİLME SÜRECİNDEKİ DİNAMİK DAVRANIŞLARININ ANALİZİ VE DEVRİLME ŞARTLARININ BELİRLENMESİ. ESOGÜ Müh Mim Fak Derg. 2025;33:1662–1678.
MLA Karabulut, Halit vd. “BİNEK ARAÇLARIN DEVRİLME SÜRECİNDEKİ DİNAMİK DAVRANIŞLARININ ANALİZİ VE DEVRİLME ŞARTLARININ BELİRLENMESİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, c. 33, sy. 1, 2025, ss. 1662-78, doi:10.31796/ogummf.1427532.
Vancouver Karabulut H, Yıldırım E, Düzgün M, Turgut KM. BİNEK ARAÇLARIN DEVRİLME SÜRECİNDEKİ DİNAMİK DAVRANIŞLARININ ANALİZİ VE DEVRİLME ŞARTLARININ BELİRLENMESİ. ESOGÜ Müh Mim Fak Derg. 2025;33(1):1662-78.

20873      13565         15461