Araştırma Makalesi
BibTex RIS Kaynak Göster

Tesis Atama Problemlerinde Mekansal ve İçsel Etkinlikler: Çok Amaçlı Tesis Atama (TAP/SDEA) Modeli

Yıl 2019, , 191 - 212, 31.12.2019
https://doi.org/10.17494/ogusbd.672818

Öz

Stratejik olarak tesis yerleşim kararları, karar sürecinde içsel ve çevresel pek çok değişkeni gözönünde bulundurması durumunda başarılı çıktılar üretebilmektedir. Çalışma kapsamında, bir otomotiv üreticisinin, üretmeyi planladığı yeni bir modelini (Model A) hangi ülkedeki/ülkelerdeki mevcut tesisin-de/tesislerinde üretmesinin daha rasyonel olacağı kararı ele alınmıştır. Karar sürecinde, arz talep noktaları arası taşıma maliyetleri, talep miktarları ve yeni araç için yapılması gereken yatırım maliyetleri değişkenleri yanında, alternatif mevcut üretim tesisleri etkinlikleri de göz önünde bulundurulmuştur. Çok amaçlı tesis atama/eşzamanlı veri zarflama analizi (TAP/EVZA) modeli ile elde edilen çözüm ve bulgular, tesis atama problemlerinde tesis iç dinamiklerinin de modele dahil edilmesinin, çözüm üzerinde belirgin bir etkisinin olduğunu göstermektedir.

Kaynakça

  • Alizadeh H.M., Rasouli S.M., Moghaddam Tavakkoli R., (2011). The use of multi-criteria data envelopment analysis (MCDEA) for location-allocation problems in a fuzzy environment, Expert system with applications, 38, pp. 5687-5695. Araz, C., Selim, H., Ozkarahan, I., (2007). A fuzzy multi-objective covering-based vehicle location model for emergency services, Comput. Oper. Res., 34, pp. 705–726. Babazadeh R, Razmi J, Pishvaee MS, Rabbani M. A., (2015). Non-radial DEA model for location optimization of Jatropha curcas L. Cultivation, Ind Crop Prod., 69, pp. 197-203 Babazadeh, R., Razmi, J., Pishvaee, M. S., (2016). Sustainable cultivation location optimization of the Jatropha curcas L. under uncertainty: A unified fuzzy data envelopment analysis approach, Measurement, 89, pp. 252-260. Badri, M.A., (1999). Combining the analytic hierarchy process and goal programming for global facility location–allocation problem, International Journal of Production Economics, 62, pp. 237–248. Bhaskaran, S., Turnquist, M.A., (1990). Multiobjective transportation considerations in multiple facility location, Transportation Research, 24 (2), pp. 139–148. Bhattacharya P., Dey, S., Bhattacharya, B.C., (1993). Indegenous ingredients for plant issue culture media, Invention intellegence, pp. 230-232. Chan, Y., Mahan, J.M., Chrissis, J.W. Drake, D.A. Wang, D., (2008). Hierarchical maximal-coverage location–allocation: Case of generalized search-and-rescue, Comput. Oper. Res., 35, pp. 1886–1904. Cho, C.J., (1998). An equity-efficiency trade-off model for the optimum location of medical care facilities, Socio-Econ. Plan. Sci., 32 (2), pp. 99–112. Current J., Min H., Schilling D., (1990). Multiobjective analysis of facility location decisions. European Journal of Operational Research, 49, pp. 295–307. Daskin, M.S., (1995). Network and Discrete Location: Models, Algorithms, and Applications, Wiley Interscience, New York. Du, F., Evans, G.W., (2008). A bi-objective reverse logistics network analysis for post-sale service, Computers & Operations Research, 35, pp. 2617–2634. Eiselt, H. A., Gendreau, M., & Laporte, G., (1995). Arc Routing Problems, Part I: The Chinese Postman Problem, Operations Research, 43(2), pp. 231-242. Erkut, E., Karagiannidis, A., Perkoulidis, G., Tjandra, S.A., (2008). A multicriteria facility location model for municipal solid waste management in North Greece, European Journal of Operation Research, 187, pp. 1402–1421. Farahani, R., Steadie Seifi, M., Asgari, N., (2010). Multiple Criteria Facility Location Problem: A Servey. Apply Mathematical Modelling, 34, pp. 1689 - 1709. Fernández, J., Pelegrín, B., Plastria, F., Tóth, B., (2007). Planar location and design of a new facility with inner and outer competition: An interval lexicographicallike solution procedure, Networks Spatial Econ., 7, pp. 19–44. Galvão, R. D., Espejo, L. G. A., Boffey, B., (2006). Load balancing and capacity constraints in a hierarchical location model, European Journal of Operation Research, 172, pp. 631–646 George, J.W., ReVelle, C.S., (2003). Bi-objective median subtree location problems, Annals of Operations Research, 122, pp. 219–232. Harewood S.I., (2002). Emergency Ambulance Deployment in Barbados: A Multi-Objective Approach, The Journal of the Operational Research Society, 53(2), pp. 185-192. Johnson M.P., (2006). Single-period location models for subsidized housing: Project-based subsidies, Socio-Economic Planning Sciences, 40(4), pp. 249-274. Karasakal, E., Nadirler, D., (2008). An interactive solution approach for a bi-objective semi-desirable location problem, Journal of Global Optimisation, 42, pp. 177–199. Khanjarpanah, H., Jabbarzadeh, A., (2019). Sustainable wind plant location optimization using fuzzy crossefficiency data envelopment analysis, Energy, 170, pp. 1004-1018. Klamroth, K., Wiecek, M.M., (2002). A Bi-Objective Median Location Problem with a Line Barrier. Operations Research, 50, pp. 670-679. Klimberg, R.K., Van Bennekom, F.C., (1997). Aggregate planning models for field service delivery, Location Science, 5(3), pp. 181-195. Klimberg, R. K., Ratick, S. J., (2008). Modeling data envelopment analysis (DEA) efficient location/allocation decisions, Computers and Operations Research, 35(2), pp. 457-474. Leung, S.C.H., (2007). A non-linear goal programming model and solution method for the multi-objective trip distribution problem in transportation engineering, Optimization and Engineering, 8, pp. 277–298. Medaglia, A.L. Villegas, J.G. Rodríguez-Coca D.M., (2009). Hybrid bi-objective evolutionary algorithms for the design of a hospital waste management network, J. Heuristics, 15, pp. 153–176. Myung, V.S., Kim, H., Tcha, D., (1997). A bi-objective uncapacitated facility location problem. European Journal of Operation Research, 100, pp. 608-616. Nickel. S., (1995). Discretization of Planar Location Problems. Shaker. Ohsawa, Y., (1999). A geometrical solution for quadratic bicriteria location models, European Journal of Operations Research, 114, pp. 380–388. Ohsawa Y., Plastria F, Tamura K., (2006). Euclidean push–pull partial covering problems, Computers & Operations Research, 33(12), pp. 3566-3582. Pati, R.K. Vrat, P., Kumar, P., (2008). A goal programming model for paper recycling system, Omega, 36, pp. 405–417. Raisanen, L., Whitaker, R.M. (2005). Comparison and evaluation of multiple objective genetic algorithms for the antenna placement problem, Mobile Networks Applications, 10, pp. 79–88. Selim, H., Ozkarahan, I., (2006). Application of Fuzzy Multi-objective Programming Approach to Supply Chain Distribution Network Design Problem, MICAI Advances in Artificial Intelligence, Springer, Berlin/Heidelberg, pp. 415–425. Stummer, C., Doerner, K., Focke, A., Heidenberger, K., (2004). Determining location and size of medical departments in a hospital network: A multiobjective decision support approach, Health Care Management Science, 7, pp. 63–71. Tajbakhsha, A., Shamsi, A., (2019). A facility location problem for sustainability-conscious power generation decision makers, Journal of Environmental Management 230, pp. 319-334 Thomas P, ChanY, Lehmkuhl L, Nixon W., (2002). Obnoxious-facility location and data envelopment analysis: a combined distance-based formulation. European Journal of Operation Research, 141(3), pp. 495–514. Villegas, J. G., Palacious, F., Medaglia, A., (2006). Solution methods for the bi-objective (costcoverage) unconstrained facility location problem with an illustrative example, Annals of Operations Research 147(1), pp. 109-141. Yang, L., Jones, B.F., Yang, S.H., (2007). A fuzzy multi-objective programming for optimization of fire station locations through genetic algorithms, European Journal of Operation Research, 181, pp. 903–915.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Tekiner Kaya 0000-0001-6136-5028

Yayımlanma Tarihi 31 Aralık 2019
Gönderilme Tarihi 9 Nisan 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Kaya, T. (2019). Tesis Atama Problemlerinde Mekansal ve İçsel Etkinlikler: Çok Amaçlı Tesis Atama (TAP/SDEA) Modeli. Eskişehir Osmangazi Üniversitesi Sosyal Bilimler Dergisi, 20(2), 191-212. https://doi.org/10.17494/ogusbd.672818
AMA Kaya T. Tesis Atama Problemlerinde Mekansal ve İçsel Etkinlikler: Çok Amaçlı Tesis Atama (TAP/SDEA) Modeli. Eskişehir Osmangazi Üniversitesi Sosyal Bilimler Dergisi. Aralık 2019;20(2):191-212. doi:10.17494/ogusbd.672818
Chicago Kaya, Tekiner. “Tesis Atama Problemlerinde Mekansal Ve İçsel Etkinlikler: Çok Amaçlı Tesis Atama (TAP/SDEA) Modeli”. Eskişehir Osmangazi Üniversitesi Sosyal Bilimler Dergisi 20, sy. 2 (Aralık 2019): 191-212. https://doi.org/10.17494/ogusbd.672818.
EndNote Kaya T (01 Aralık 2019) Tesis Atama Problemlerinde Mekansal ve İçsel Etkinlikler: Çok Amaçlı Tesis Atama (TAP/SDEA) Modeli. Eskişehir Osmangazi Üniversitesi Sosyal Bilimler Dergisi 20 2 191–212.
IEEE T. Kaya, “Tesis Atama Problemlerinde Mekansal ve İçsel Etkinlikler: Çok Amaçlı Tesis Atama (TAP/SDEA) Modeli”, Eskişehir Osmangazi Üniversitesi Sosyal Bilimler Dergisi, c. 20, sy. 2, ss. 191–212, 2019, doi: 10.17494/ogusbd.672818.
ISNAD Kaya, Tekiner. “Tesis Atama Problemlerinde Mekansal Ve İçsel Etkinlikler: Çok Amaçlı Tesis Atama (TAP/SDEA) Modeli”. Eskişehir Osmangazi Üniversitesi Sosyal Bilimler Dergisi 20/2 (Aralık 2019), 191-212. https://doi.org/10.17494/ogusbd.672818.
JAMA Kaya T. Tesis Atama Problemlerinde Mekansal ve İçsel Etkinlikler: Çok Amaçlı Tesis Atama (TAP/SDEA) Modeli. Eskişehir Osmangazi Üniversitesi Sosyal Bilimler Dergisi. 2019;20:191–212.
MLA Kaya, Tekiner. “Tesis Atama Problemlerinde Mekansal Ve İçsel Etkinlikler: Çok Amaçlı Tesis Atama (TAP/SDEA) Modeli”. Eskişehir Osmangazi Üniversitesi Sosyal Bilimler Dergisi, c. 20, sy. 2, 2019, ss. 191-12, doi:10.17494/ogusbd.672818.
Vancouver Kaya T. Tesis Atama Problemlerinde Mekansal ve İçsel Etkinlikler: Çok Amaçlı Tesis Atama (TAP/SDEA) Modeli. Eskişehir Osmangazi Üniversitesi Sosyal Bilimler Dergisi. 2019;20(2):191-212.